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A ponderomotive mechanism is analyzed for the excitation of sound when a modulated small- 
amplitude electromagnetic wave is incident normally on a nonisothermal plasma. The plasma is 
assumed to be dense (the dielectric constant is negative at the carrier frequency). The amplitude 
of the sound wave, the amplitude of the wave reflected from the plasma, and the energy flux into 
the plasma are found. 

When an intense electromagnetic wave is incident on a 
plasma with a negative dielectric constant E ,  the transparen- 
cy region may shift into the interior of the plasma. ' The wave 
amplitude required for this effect decreases as the wave fre- 
quency approaches the electron plasma frequency. If the ex- 
ternal radiation varies in time, the electromagnetic field be- 
comes localized in transparent regions and is transported 
into the interior of the plasma along with density waves. 
Karpman2 has studied the conditions for the excitation of 
electroacoustic waves and their dynamics for the situation in 
which an electromagnetic field is trapped where E has small 
negative values. If the dielectric constant is not close to zero, 
the external radiation will have to have a substantial ampli- 
tude in order to excite acoustic rarefaction waves filled with 
an rf field.2 At relatively small amplitudes of the wave inci- 
dent on the plasma, in a situation in which there is no trans- 
parency region near the plasma boundary, acoustic waves 
unrelated to transport of electromagnetic radiation may be 
excited. Aliev et have studied a mechanism for the para- 
metric excitation of sound in a plasma with a layer with a 
sharp transition to vacuum. Since the damping rate of the 
collisionless damping of the surface wave participating in 
the parametric instability exceeds the ion acoustic frequen- 
cy, however, the instability threshold is high.4 In the present 
paper we analyze a sound excitation process in which an 
electromagnetic wave with a variable amplitude is incident 
on a plasma with a negative dielectric constant. The wave 
amplitude is assumed to be small in the sense that the condi- 
tions required for the occurrence of the effects studied in 
Refs. 2 and 4 do not hold. 

1. BASIC EQUATIONSAND BOUNDARY CONDITIONS 

We assume that an unperturbed plasma bounded by a 
nonconducting medium fills the half-space Z)O. An electro- 
magnetic wave of variable amplitude is incident normally on 
the plasma from the neighboring medium (whose dielectric 
constant is assumed equal to unity). The electric field of the 
wave, which for definiteness we direct along the x axis, is 

The amplitude of the incident wave, g o i ,  varies slowly in 
space and time in comparison with an exponential function. 
The total field in the medium, E, ( t ,  z) ,  consists of incident 
wave ( 1 ) and the wave reflected from the plasma, ER ( t ,  z ) ,  
so we have 

E, ( t ,  Z) =Ei (t ,  z )  +En ('9 2) 9 

where 

ER ( t ,  Z )  ='IZER (t+z/c) exp { i o o ( t + z l c ) )  + C.C. ( 2 )  

We write the electric field of the rf wave in the plasma in the 
form 

Ep ( t ,  Z )  ='lzEp ( t ,  Z )  exp io,t+ C.C. ( 3 )  

Taking ponderomotive effects into account, we then see that 
the amplitude of field (3) ,  E, , obeys the system of equations 
(see, for example, Refs. 5 and 6) 

where w,, is the electron plasma frequency, c, = ( T, / 
mi ) ' I 2  is the sound velocity in the nonisothermal plasma, 
and Sn and no are the density variation and the equilibrium 
density of the plasma (Sn <no). We have deliberately con- 
sidered the time derivatives on the right sides of Eqs. (4)  and 
(5),  in contrast with Refs. 5 and 6. Our reason is that the 
amplitude of the sound wave in the plasma and thus the 
absorption coefficient of the plasma for the radiation are 
determined exclusively by the time-varying components of 
the external field.2 To avoid any misunderstanding, we 
should thus consider those terms in the nonlinear sources in 
Eqs. (4)  and (5)  which are strongly coupled to the time 
variation of the rf field and the density variation. System 
(4) ,  (5)  must be supplemented with boundary conditions. 
Since it is assumed from the outset that the external radi- 
ation perturbs the plasma only slightly, the boundary of the 
plasma coincides with the surface of the medium bounding 
the plasma. We will assume below that this boundary is flat 
and fixed. The boundary conditions on the rf field then con- 
sist of the continuity of the electric field and of its first deriv- 
ative.' Using ( 1 ) - (3 ) ,  we can write these conditions as 
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The boundary condition on Eq. ( 5 )  is the vanishing of the 
velocity of quasineutral motions of the plasma boundary: 

Equations ( 4 ) - ( 7 ) ,  along with the conditions 
=$ 

Ep ( t ,  z- + m) -to. 1 Ep 1 dz<- , 
0 

thus form a complete system of equations and boundary con- 
ditions for determining the density variation, the amplitude 
of the electric field in the plasma, and that in the medium 
bounding the plasma. 

2. SOLUTION OF THE BASIC EQUATIONS 

We take Fourier time transforms of all the quantities 
which appear in Eqs. ( 4 )  and ( 5 ) ,  using the equations 

1 
( P  (I, t )  : an ( z ,  t )  ) = - j ( E  ( z ,  a )  ; 8n ( z ,  a )  ) r i a l  d ~ ,  

2n-- 

The equation and boundary conditions for the Fourier com- 
ponents of the amplitude of the rf field are 

i x ,  (0)  [En (0)  -Eoi (a) I =  ( 1 2 )  

where 

Denoting by F(w,  z )  the right side of Eq. ( l o ) ,  and solving 
the equation by the method of variation of constants, we find 

In deriving expression ( 13 ) we have used the first of condi- 
tions (8) .  Substituting ( 13) into boundary conditions ( 1 1  ) 
and ( 12),  we find an equation for the Fourier component of 
the amplitude of the wave reflected from the plasma: 

where R o ( w )  = ( i -  [ & ( w ) ] ' 1 2 ) / ( i +  [ - E ( w ) ] ~ / ~ )  is the 
linear reflection coefficient; we also find the constant c ,  ( w ) .  
Then using the expression for c ,  ( w )  in Eq. ( 13 ), we find the 
following equation for the Fourier component of the electric 
field amplitude in the plasma: 

E p  ( a ,  Z )  = (I+Ro)Eor ( a )  e-5' 

Since the nonlinear source F(w,  z )  depends on the electric 
field in the plasma, Eq. ( 15) is a nonlinear integral equation. 
There is no need to solve it rigorously in our case. For an 
approximate solution it is sufficient to note that under the 
inequality 

the integral terms - in ( 15) are proportional to the small pa- 
rameter A = I 6 n  I ,,, /p. Equation ( 15 ) can thus be solved 
iteratively. We retain in the resulting solution only the first 
nonvanishing term of the expansion in the parameter A. We 
recall that in formulating this problem we assumed that in- 
equality ( 16) held. To find the electric field of the reflected 
wave and the density variation below, we will use the linear 
solution of Eq. ( 15): 

where D, ( a )  = 1 + R o ( w ) .  The nonlinear part of the solu- 
tion of Eq. ( 15) was already taken into account in Eq. ( 14).  
After substituting ( 1 7 )  into ( 14), we find the following 
expression for the Fourier component of the field of the wave 
reflected from the plasma [we are using the definition of 
F(w,  2 )  I :  

To find 2, ( w )  we thus need to find the Fourier component 
of the density variation 6 n ( w 2 ,  z ) ,  since the spectrum of the 
incident wave is given. The equation and boundary condi- 
tion for 6n(w, ,  z )  are 
- 

d"n - 
caZ - + o,'6n 

dzZ 
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We denote by F, (w,, z )  the second term in braces in ( 2 0 ) ,  
and we transform it. First, as we mentioned above, we use 
the linear relation (17 )  between the field amplitude in the 
plasma and the amplitude of the incident wave (the 
"pump"). Second, we note that the spectal width of the 
pump is much smaller than w,. Then substituting the field 
gp (w, Z) as in ( 1 7 )  into PI (a,, z) ,  and expanding Dp ( w )  
around w  = 0, we find the following expression for F, (a,, 
z) : 

m 

where E ,  = ~ ( 0 ) .  When expression ( 2  1 ) is used, a solution of 
Eq. ( 1 9 )  which satisfies the boundary condition (20 )  is 

where w,, = [xp (w,) + xp (w3 - w2]c, .  The ratio w,/w,, 
cannot in general be regarded as a small parameter. The sec- 
ond term in braces in ( 2 2 )  corresponds to a sound wave 
which is traveling away from the plasma boundary at the 
sound velocity c, . Substituting the density variation (22 )  
into ( 18),  and integrating over z, we find 

m 

where o,, = [xp ((w) + xp ( w  - w,) ]c,. We can also write 
the Fourier component of the density variation in the sound 
wave which is traveling away from the plasma boundary: 

m 

- w .  j,".' d o .  . 
Sn, ( a 2 ,  2) = - i  - Eoi ( ~ s ) E o i *  (0a-o2)  

8nznoT. -_ ",I 2+012 

. exp (iw,z/c,)  . ( 2 4 )  

Expanding o,, and w,, near the origin, we can put expres- 
sions (23 )  and ( 2 4 )  in their final form: 

where w, = 2xp (O)c,. Finding the total energy w, of the 
sound wave which penetrates into the plasma from 

OD 

we see that this energy is exactly equal to the difference 
between the total energies of the incident wave and the re- 
flected wave, Aw, where 

It follows from expression ( 2 6 )  that when an electromagnet- 
ic wave of constant amplitude is incident on the plasma no 
sound wave will be excited. This fact becomes obvious when 
we take inverse Fourier transforms in (26 ) .  As a result we 
find 

We turn now to some cases of interest for applications. 

3. EXCITATION OF SOUND BY A BlHARMONlC PUMP 

In this case we write the Fourier components of the 
incident and reflected waves in the form 

After substituting expressions ( 2 7 )  and ( 2 8 )  into ( 2 5 ) ,  we 
find the nonlinear reflection coefficients 

+ ""'"I' 11, 
(m,+iA) ' 

where A = w ,  - w,. The first two terms in square brackets in 
expressions ( 2 9 )  stem from a steady-state modification of 
the skin layer of waves with amplitudes El and E2 (Ref. 1 ). 
The magnitudes of the reflection coefficients R ,  and R ,  are 
written in the form 
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We also write an expression for the density variation in the 
sound wave, 

- &Et' o s o A  
6n, ( t ,  z )  = - i --- 

4nnoT, (o.02+ A') 

and an expression for the energy flux into the plasma, 

p.=c. ' 
IEiI2 ma2A2 
8nZnoTe ' (O,'+A')~ ' 

( 3 2 )  

The right sides of ( 3 0 ) - ( 3 2 )  are extrema at A  -w, ,  i.e., 
when the beat frequency of the rf field is equal in order of 
magnitude to the reciprocal of the time required for the 
sound wave to traverse the length of the pump skin layer. 
The amplitude of the density oscillations, ( 3  1 ), and the ener- 
gy flux of the sound wave, ( 3 2 ) ,  are conveniently expressed 
in terms of the energy fluxes of the incident waves: 

6n, (p ipz )"  c -=- Q ( A ) ,  P I , ~  = - I 2 i . z  1 ', 
no P a  8n 

me " pip2 
p . = 1 , 6 ~ I O - 3 ( ~ e ( e V ) ) ' ( - )  - ? ( A ) ,  

mi p* 

where Q ( A )  = 201, A / ( @ &  + A2) ,  and p ,  is the n ~ r m a l -  
ized energy flux, given by 

4. EXCITATION OF SOUND WHEN AN ELECTROMAGNETIC 
WAVE OF RANDOM AMPLITUDE IS INCIDENT ON A PLASMA 

In this case the complex amplitude of the incident wave 
is a random function of the time, and for the Fourier compo- 
nents we have8 

< E ( o )  >=O, < B ( w ) B ' ( o f ) > = 2 n w  ( o ) 6  (a -of ) ,  ( 3 3 )  

where the angle brackets mean an average over a statistical 
ensemble, and w ( w )  is the spectral energy density, which is 
related to the average radiation energy density by 

OD 

Using expression ( 2 5 )  and definitions ( 3 3 )  to calculate the 
correlation function (B, ( w  )B ( a ' ) ) ,  we find the spec- 
trum of the wave reflected from the plasma in the form 

By calculating the correlation function ( %, ( w )  %f ( w ' ) )  
through the use of ( 2 6 )  and ( 3 3 )  we obtain the following 
expression for the spectral energy density of ion acoustic 
turbulence far from the plasma boundary: 

OD 

The average energy flux into the plasma is related to the 
spectral energy density w, ( w )  by 

(10 

Equations ( 34 )  and ( 35 take their simplest form in the case 
in which the spectral width of the pump is much greater than 
the frequency w, : 

It follows from expression ( 3 7 )  that in this case the frequen- 
cy dependence of the spectral energy density of the ion 
acoustic turbulence is universal. 

Up to this point is has been assumed that there is no 
absorption of the high-frequency or low-frequency waves in 
the plasma. If an absorption does occur, sound excitation 
mechanisms associated with oscillations of the plasma tem- 
perature may be important.9 If, however, it is assumed that 
the primary mechanism for the absorption of the high-fre- 
quency radiation by the plasma is collisional damping, then 
under the inequality 

where vei is the rate of electron-ion collisions, the pondero- 
motive mechanism which we have discussed here for the ex- 
citation of sound waves in a dense plasma is the dominant 
mechanism. 
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