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The damping of a longitudinal sound wave propagating in a metal in an oblique magnetic field 
under nonlinear conditions is investigated. If the resonant-particle groups defined by a specified 
condition do not overlap on the Fermi surface, the mechanism of nonlinear Landau damping by 
isolated resonances is realized. If the widths of the resonances exceed the distance between them, 
the electron motion becomes random and the distribution function is set by the diffusion and by 
the relaxation on the impurities. The transport equation is solved for either case, and the sound 
damping coefficient is obtained. It is shown that in the regime of isolated resonances the 
coefficient of sound damping on the I th resonance is proportional to a small parameter having the 
meaning of the ratio of the collision frequency to the oscillation frequency of the trapped particles. 
In the global stochastization regime, the parameter that determines the decrease of the damping is 
ratio of the size of the stochastization region to the diffusion momentum P,, = (07, ) ' I 2 ,  where D 
is the diffusion coefficient and r ,  is the relaxation time. 

I. INTRODUCTION 

Numerous oscillatory phenomena observed when 
sound and electromagnetic waves propagate in metals 
placed in a magnetic field are due to resonant interaction of 
the wave with the electrons. The particles at resonance with 
the waves are those whose velocity projection on the direc- 
tion of the magnetic field HIIz satisfies the condition 

and the particles most strongly interacting with the wave are 
those whose Larmor orbits are multiples of n-/k, . Here k ,  
and k, are the wave-vector components, w the wave frequen- 
cy, and R the cyclotron frequency. 

In the linear theory that describes the damping of waves 
and the renormalization of their spectrum it is assumed that 
the charged-particle trajectories in the wave fields are insig- 
nificantly distorted during the time between electron colli- 
sions. With increase of amplitude, the most changed are the 
trajectories of those electrons for which condition ( 1 ) is met. 
The velocity of these particles in the wave field oscillates 
about the resonant values determined by ( 1 ), and the oscil- 
lation frequency at the I th resonance turns out to be 

where @,is the amplitude of the electron potential energy in 
the sound-wave field, m* is the effective mass, J, is a Bessel 
function, and p is the Larmor radius. This result can be ob- 
tained with the aid of the so-called resonant perturbation 
theory. We shall not derive Eq. (2 )  here, and refer the reader 
to the known monograph. ' 

If the particle oscillation period is less than the electron 
relaxation time, one can say that the particle is trapped in the 
I th resonance. Of cource, trapping at 1 = 0 differs from that 
at nonzero I .  We consider first the trajectories of particles 
trapped at zero resonance ( I  = 0) .  The trapped particles 
neither overtake nor lag the wave and move on the average 
with it, at a velocity in the interval 

Here Au, is the resonance broadening due to the finite ampli- 
tude of the wave. The entire Larmor orbit of the trapped 
particles oscillates here, as it were, in the wave field with a 
frequency Go. This is also the oscillation frequency of the 
velocity v, and the resonant phase a, equal to k,z - or. It 
must be emphasized that in trapping by a zeroth resonance 
the Larmor orbit may also not be subtended by a single po- 
tential well. What is important for such orbits, however, is 
that where k-v = w and where the electron interacts most 
strongly with the wave the turning point oscillates within the 
limits of one potential well. As to detrapped particles, their 
velocity is outside the trapping region; they either overtake 
the wave or lag it. 

In the I th resonance, as a result of trapping, particles 
having a velocity 

negotiate on the average I wavelengths per period. The oscil- 
lations here hardly differ from those corresponding to I = 0. 
The only difference is that after the revolution the particle 
will no longer land in the potential well from which the mag- 
netic field extracted it. The position of the point k*v = w in 
the new potential well will be shifted relative to the preced- 
ing one by the sound wave. Thus, the particle motion is 
weakly modulated in the magnetic-field direction and the 
modulation frequency is Go. 

This pattern of capture by resonances with different 1 
obtains only in the case when the angle 9 betwen the wave 
vector k and the vector H is not close to i7/2. In the opposite 
case there are no electrons with resonant values of v,, but 
modulation of the motion in a plane perpendicular to the 
magnetic field may turn out to be substantial. This case calls 
for a separate analysis and will not be discussed here. 

According to contemporary notions, motion is regular 
in multidimensional dynamic systems only when the reson- 
ances do not overlap. Thus, the resonances ( 1 ) do not over- 
lap if the distance between them along u,, which is equal to 
R / k ,  , exceeds the combined broadening of Au, + , + Au, of 
two nearest resonances; the broadening can be determined 
with the aid of (2 )  to be 
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If the inverse condition holds, i.e., the resonances overlap, 
the motion acquires a stochastic character. The overlap con- 
dition (the Chirikov criterion) takes in the case considered 
the form" (Ref. 2) 

We investigate in the present paper the damping coeffi- 
cient of a longitudinal acoustic wave propagating in a metal 
in an oblique magnetic field. 

It is known that in the linear regime the damping coeffi- 
cient of such a wave undergoes magnetoacoustic oscillations 
when the value of H is changed.3 We consider damping in the 
regime of capture by isolated resonances and in the regime of 
global stochasticity. We show that with contemporary ex- 
perimental techniques a wave can randomize an appreciable 
part of the electron Fermi surface. 

In Sec. 2 we consider sound absorption by isolated re- 
sonances. The Boltzmann kinetic equation is written in 
terms of the resonance action and angle variables; one of the 
phases (the slow one) describes oscillation at resonance, and 
the other (fast) describes cyclotron rotation. After averag- 
ing the kinetic equation over the fast phase, we obtain the 
distribution function in the I th resonance and determine the 
wave damping. Resonant particle groups corresponding to 
different I make an additive contribution to the wave absorp- 
tion, and the contribution from each resonance decreases by 
an approximate factor 2a, compared with the linear regime, 
where al = (GI?,)-'. 

The third section is devoted to sound damping under 
conditions of global stochasticity of the electron trajectories, 
in a regime in which several resonances overlap. The distri- 
bution function is established in this case through diffusion 
of the electrons in momentum space (the diffusion is a conse- 
quence of stochastic mixing of the phase trajectories), and as 
a result of relaxation to a localequilibrium Fermi distribu- 
tion function. In this case the kinetic energy is reduced, after 
averaging over all phases, to an equation of the diffusion 
type, which is then solved. In addition, linear corrections are 
obtained for the averaged distribution function and deter- 
mine the sound damping. The dpendence of the damping 
coefficient on the magnetic field and on the wave amplitude 
is obtained. 

In the concluding Sec. 4 we discuss the results of an 
analytic and a numerical calculation of the damping coeffi- 
cient in the regime of isolated resonances and in the regime 
of global stochasticity. 

2. ABSORPTION BY ISOLATED RESONANCES 

We calculate the absorption coefficient of longitudinal 
sound propagating at an angle to the magnetic-field direc- 
tions, under conditions of isolated resonant electron groups. 
Following Ref. 4, we express the Hamiltonian of an electron 
in a uniform magnetic field H and in the field of a sound 
wave in terms of the canonical variables q(z,g,,Y) and 
p(pZ,pQ ,m*flX), defined as follows: 

where g, is the gyrophase, X and Yare the coordinates of the 

rotation center, and the generalized momentum P, is con- 
nected with the gyro-radius p and with the magnetic mo- 
ment by 

m'SZp2 m'c 
P,s-=- 2 e P. 

In the new variables, the Hamiltonian takes the form 

H=p:/2m'f QP,-@, cos(k,z--k,p sin q-k,Y-at). (6) 

According to ( 6 ) ,  the total Hamiltonian H is independent of 
the generalized momentum m*QX, so that Y = const. Next, 
transforming to a coordinate frame moving with velocity v, 
= w/kz in the direction of the field H, and introducing the 

variables $= k,z - wt and the conjugate momentum 
P = p, /k,, and using the generating function 

we obtain 
k,ZPz %=-- oP+SZP,-Oo cos ($-k,p sin cp) .  
9m' (7 )  

Finally, using the expansion 

exp (ia sin q)  = El,, (a )  exp (inq) , 
n 

we get ultimately 

k,ZP 
%=- - ~ P + Q P + D ,  XI. (kLp) cos (Q-nq). 

(8)  2m' 

The new variables introduced here, of the action-angle type, 
are convenient also for the solution of the Boltzmann kinetic 
equation 

a! af a] a! f-fo "+p-+&-++-+C-=--, 
at  dP ap* all, a c ~  'Tr 

where T, is the electron relaxation time, and P, P, , $, and q, 
satisfy, according to (8), the equations 

P,=@. E n ] .  (k,p) sin (ll,-nq), 

C ". 
$=Q--@O - cos ($-nrp) . 

dP, 

Putting, as usual, f =&(E + V )  + g, where f , ( ~  + V) is the 
Fermi local-equilibrium distbution function E and the ener- 
gy we obtain for g the equation 

To solve the kinetic equation in the region of an I th isolated 
resonance it is convenient to change in ( 11 ) and (8),  as in 
resonant perturbation theory, to new resonant variables us- 
ing the generating function F, = ($ - @)Pa + pP0: 
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The new phase a is a slow variable in the 1 th resonance, and 
fl is the fast one. In terms of the resonance variables, the 
Hamiltonian of our system and the kinetic equation for the 
function g take the form 

where 

Vn=@oJn(k,.p), p=[2 (P,-lPa)lrn'QI"', 
TJnR=dVn/dPB, Vna=dV,/dPa, fo'=dfo/de. 

We represent the distribution function g in the region of the 
I th resonance by the series 

where the termgo is the slow part ofg. Substituting the series 
( 14) in the kinetic equation ( 13) and averaging over the fast 
phase P, we obtain for go the equation 

We can similarly obtain an equation for the coefficients g, 
( n # O )  which determine the rapid part of the distribution 
function. Multiplying (13) by exp( - i d )  and averaging 
over p, we have 

It follows from ( 15) and ( 16) that in the resonant region the 
function go is of the order of @A" whileg, is proportional to 
the wave amplitude. Consequently the main contribution to 
the absorption is made by the function go, the only function 
we calculate here.L' When estimating the order of magnitude 
of the terms contained in ( 15) and ( 16) it can be assumed 
that the coefficients V, which are functions of the gyroradi- 
us p(P,,PB 1, are taken at points correspond to resonance 
values Pa, = m* ( w  + IR)/k 5. Retaining in the equation for 
go the terms of order Qo and transforming to the dimension- 
less momentum s = (Pa - Pa, ) / P I  we express ( 15) in the 
form 

ago ago 
s ---- - -- sin a+a,go=fo'Plo sin a ,  

da ds 
where we have introduced the dimensionless parameter 
a, = m*/k ;T,F,, and = ( Q  J,m*)'12/k, is the charac- 
teristic momentum at the I th resonance. 

The equations of the characteristics of the kinetic equa- 
tion ( 17) have an integral 2? = (s2/2) - cosa, which is the 
Hamiltonian that describes the averaged motion at the reso- 
nance. The solution of ( 17) for a, < 1 in the trapped-particle 
region is a function of the form (see Ref. 5)  

and in the region of the detrapped particles, the function 

gouf=Plofo'[al (a-a)  - (s-s) 1 ,  (19) . 

where 

F(a/2,x) is an incomplete elliptic integral of the first kind, 
K ( x )  is a complete elliptic integral of the first kind, x and is 
defined by the relation x P 2  = (s2/4) + sin2(a/2). Trapped 
particles correspond to 1 lc 1 > 1 and detrapped ones to Ix I < 1. 
It should be noted that an equation for the slow part of the 
distribution function go can be obtained also with the aid of 
the Hamiltonian (8a) averaged over the rapid phase 8. 

Having found the distribution function, it is easy to 
solve the problem of absorption of a longitudinal sound wave 
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by resonant electrons. We use for this purpose the energy- 
balance equation in the wave + particle system: 

where r is the damping coefficient, V = 8, V, cos($ - np) 
is the potential energy, the angle brackets denote averaging 
over the volume, n, = [2 / (2d~)~$gdp ,  is the nonequilibri- 
um density of the resonant particles, S is the average flux 
density of the sound wave and is equal top,u2m2c/2, c is the 
speed of sound, p, is the density of the metal, u is the ampli- 
tude of the latice-atom displacement, and 5 is the coordinate 
in the wave propagation direction. Carrying out the neces- 
sary calculations with the aid of (20), and also ( 18) and 
(19), we can express the nonlinear damping coefficient of 
the sound wave by the I th group of resonant particles in the 
form 

where 

is the linear damping coefficient in the I th resonance, n, the 
density, v, the Fermi velocity, 

and E(x) a complete elliptic integral of the second kind. The 
total nonlinear absorption coefficient can be written as the 
sum over all groups of resonant particles, i.e., 

Here 9 is the angle between H and k, and N is the number of 
resonances on the Fermi surface and is determined from the 
inequalities N W k ,  < vf < ( N  + 1 ) Q / k , .  

Equation (22) describes nonlinear sound absorption in 
isolated resonances. The nolinearity parameters a, g 1 deter- 
mine the ratio of the scattering frequency to the oscillation 
frequency of the trapped particles in the I th resonance. If 
a, 2 1 for some resonance, the corresponding contribution to 
the absorption is described by the linear theory. Equations 
for r in the transition regime, when a, - 1 can be obtained in 
analogy with Ref. 5. The explicit form of the dependence of 
r on the magnetic field is discussed in Sec. 4. 

For electrons in a constant magnetic field and in a wave 
field, resonances defined by condition ( 1 ) are not the only 
possible ones. In higher orders of resonant perturbation the- 
ory it is possible to obtain the so-called fractional reson- 
ances, to which are subjected particles with a resonant veloc- 
ity v, satisfying the condition 

where n and m are integers. In second order (in the ampli- 
tude a,) of peturbation theory there occur half-integer re- 
sonances (n = + 1, f 3..., m = 2). The characteristic 
width of these resonances is oc @,, whereas for primary re- 

sonances it is a @y. In n-th order perturbation theory, the 
width of the corresponding resonance is oc @f2. One can 
expect the character of sound absorption in half-integer and 
other fractional resonances to depend on the parameter 
a,, = (ij,, T, ) -'. Thus, for example, ij,, is the frequency 
of particle oscillations in half-integer resonance. In a metal 
we actually have a,, 1, and in this case it can be shown that 
the additional damping is - @:. It should be noted, how- 
ever, that fractional resonances can alter the stochastization 
criterion ( 3  ); allowance for them leads to overlap at smaller 
sound amplitudes. 

Besides the main and fractional resonances, it is known 
that in our system there exist secondary resonances defined 
by the condition 

where 5, is the oscillation frequency in the I th primary reso- 
nance, and the resonances realized for the most part are 
those with m = 1 and n > 1. Secondary resonances form on 
the phase plane closed garlands of islands inside the primary 
resonances. The particle oscillation frequencies in a second- 
ary resonance is, according to Ref. 1, of the order of 

iij3-aL (n!) - Ih ,  (25) 

i.e., Z, <GI. Consequently, secondary resonances can influ- 
ence the absorption only at large amplitudes, when the con- 
dition m , ~ ,  > 1 is met. Estimates show, however, that in this 
case the overlap criterion is already met for primary reson- 
ances, i.e., the motion is stochastic. We therefore disregard 
seconary resonances. 

3. SOUND DAMPING IN THE GLOBAL STOCHASTICITY 
REGIME 

It follows from the results of the preceding section that 
when resonances corresponding to different 1 are isolated, 
the electron motion has a regular character. The reason is 
that at low amplitudes there exist in a two-dimensional sys- 
tem two integrals of motion. With increase of amplitude, one 
of them begins to disintegrate. Inasmuch as invariant sur- 
faces that limit the motion vanish here, the trajectories be- 
come substantially more complicated. A detailed descrip- 
tion of the motion along the trajectories becomes impossible 
in this case, since the motion is stochastic. In this regime, as 
shown by numerous studies of stochastic dynamics of parti- 
cles (see, e.g., Ref. 6 ) ,  a function averaged over the phases 
satisfies an equation of the diffusion type. In our problem the 
kinetic equation in the stochastic regime also reduces to an 
equation of the diffusion type. 

Let us find the distribution function under conditions 
when the cyclotron resonances corresponding to different I 
overlap, i.e. the Chirkikov criterion (3)  is met. It becomes 
then incorrect to calculate the distribution function by the 
procedure of separating the fast and slow phases in an isolat- 
ed resonance, since the electron motion acquires a stochastic 
character and the subdivision of the motion into fast and 
slow is impossible. For electrons in the stochastic regime it is 
necessary to retain all the terms of the series defined by ( 10) 
in the expressions for Pand P, that enter in the kinetic equa- 
tion (9).  The latter takes then the form 
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af f o - f  - Lz nvn (el*n-e-i*n)- = - , 
n ap, 7, 

where w, = ( k  f P/m*) - w - nn,  the phase 
9, = $- np, f=f(P,P ,,... 9- ,. . .a ,,..., t ) ,  and the ampli- 
tudes Vn have here the same meaning as in Sec. 2. We seek 
the solution of (26) in series form: 

f = 2 !(m)ei(m: *), (27) 
(m) 

(m;6) = ... + m -. 9-, + ... + m, 9, + ... The symbol 
(m)  denotes a vector with components (..., m - ,, ..., m, ... ). 
Under stochastization conditions we retain in the distribu- 
tion function (27) the zeroth component fO', which is the 
distribution function averaged over all the phases, as well as 
the terms linear in the amplitude V, . The system of equa- 
tions for the expansion coefficients f (O' and f '  * in' can be 
obtained from (26) and (27) by integrating (26) over all the 
phases 9,. As a result we have 

where the operator D, is defined as 

The vector ( + In) which specifies the function f * In '  has 
components m, = 0 for n # 1 and m, = + 1. The equation 
for the averaged distribution function is exact, and only the 
terms linear in V, are retained in Eqs. (29a) and (29b). In 
the stationary regime, the derivatives with respect to time 
can be left out of (28), (29a) and (29b). The solutions 
(29a) and (29b) take then the form 

Equation (28) can now be reduced with the aid of (30) to a 
two-dimensional diffusion equation in the space P, P, : 

Since P and P, are connected by a conservation law, the 
diffusion equation ( 3 1 ) can be reduced to one-dimensional 
form by introducing the new variables 

Indeed, since the diffusion is over the equal-energy surface 
E = const, the derivative with respect to E vanishes and we 
have in place of (3  1 ) 

where 

is the one-dimensional diffusion coefficient. The solution 
(32) should satisfy the boundary conditions 

which mean that there is no particle flow through the boun- 
daries of the stochastization region. Here P, and P, are the 
values of the momenta corresponding to these boundaries. 
The stochastization region in which the criterion (3)  is satis- 
fied can, generally speaking, have a complicated form. The 
reason is that the widths of the resonances change nomono- 
tonically with increase of the number I. With increase of the 
amplitude, the regions primarily stochasticized are those 
near the two so-called boundary points (P, = + (m*v,/ 
k, )sin a ) ,  since the Bessel function that determines accord- 
ing to (2)  the resonance width is a maximum here. The rea- 
son for the last circumstance is that the argument of the 
Bessel function at these points is of the order of its number. 
Outside the boundary points the widths of the resonance 
curves begin to decrease rapidly, since the argument of the 
Bessel function becomes smaller than the number of the 
function. As shown by our numerical calculations (see Sec. 
4) ,  at the presently attainable sound-input intensities of in a 
metal, the entire Fermi-surface region betwen the boundary 
points can become stochasticized. In a semimetal at the same 
amplitude, the entire Fermi surface can be stochasticized at 
the same wave amplitude. In the foregoing calculations, the 
roles of P, and P, are assumed by the values 
P,, = f (m*u,/k, )sin 9 ,  in a typical metal and by the val- 
ues + P, in a semimetal. 

We examine now the expression for the diffusion coeffi- 
cient. The appearance of a S function in (32a) is known6 to 
be due to the use of a linear approximation For a more accu- 
rate description of the electron motion under stochastization 
conditions, it is necessary to replace the S function by the 
quantity 

where T, the time in which the memory of the initial condi- 
tions is lost (the time of decoupling of the correlations). 
Since the estimate6 T; ' -0lnk is valii' for the correlation 
time, the broadening of the function a t  r(S1 becomes larger 
than the distance betwen the resona~i-es, and the diffusion 
ceofficient becomes a smooth function of the momentum P. 
It can therefore be averaged over the stochasticity region. 
The average diffusion coefficient turns out to be 

where I = (J (k,p) ), and the angle brackets denote double 
averaging over P (over the region 2m*/k,~, of smearing of 
the S functions) and over n. 
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We obtain now the solution of the diffusion equation 
(32) for a fixed value of E. The region in which the Fermi 
distribution function f, = I?(&,  - E - wP) is not zero is de- 
termied with the aid of the inequalities 

and is shown in Fig. 1 (thick line). The second inequality 
follows from the condition P, 20. In region I of Fig. 1, the 
solution of (32) satisfying the boundary condition (33) is 
identically zero, while in region I11 the solution coincides 
with the Fermi function. For fixed E in region 11, the right- 
hand side of (32) is discontinuous at the point 
P = P, = ( E ~  - E)/w and it is natural to require that the 
functionfO' and its derivative Elf0' /dP be continuous at this 
point. The solution takes then the form 

P<P,, (34) 
where Po is the diffusion momentum. The obtained averaged 
function ( 34) determines, according to (30),  the functions 
f' * I n '  with the aid of which the sound damping coefficient 
can be calculated under stochastization conditions. Substi- 
tuting (34) in (30) and taking (27) into account, we obtain 
with the aid of the balance equation (20) 

TL (H = 0)  
I-= 

cos I?(thx, - thx,)  

x(th x2 ch x - sh X) + (sh X, - th X, ch x,) 

FIG. 1. The electron distribution function in region I is zero, in region I1 
the electrons are randomized, and in region 111 the distribution function is 
of the Fermi type. 

Here N,,, is the maximum number of the resonance located 
in the stochastization region. Expression (35) for the ab- 
sorption coefficient is quite complicated, but it can be sub- 
stantially simplified by using the fact that in the integration 
interval (x ,  ,x2 ) the arguments of the Bessel functions con- 
tained in the sum change insignificantly. Therefore, regard- 
ing Jn (k ,p ,  ) as a constant and integrating with respect to x 
we obtain 

where P, - P, is the width of the stochastization region and 
Po = (Dr,) ' I2 is the characteristic distance in momentum 
space over which the particles diffuse within a time r,. 

Equations (35) and (36) take into account the contri- 
bution made to the wave damping by only the stochasticized 
electrons. If the stochastization does not apply to the entire 
Fermi surface, it is necessary to add to r defined by (35) and 
(36) terms that describe the damping by isolated resonances 
that do not land in the stochastization region. The corre- 
sponding increment is determined by Eq. (22).  

The discussion of the damping coefficient in the sto- 
chastic regime and the results of numerical calculations in 
accordance with Eq. (36) are given in the next section. 

4. DISCUSSION OF RESULTS 

We proceed now to an evaluation of the results. Accord- 
ing to the foregoing, sound-absorption both by isolated re- 
sonances and by randomized electrons can be realized in the 
nonlinear regime in an oblique magnetic field. The expres- 
sions (22) and (36) for the corresponding absorption coeffi- 
cients, obtained in Secs. 2 and 3, are relatively simple, and it 
is easy to trace their connection with the absorption coeffi- 
cient in the linear theory of magnetoaceoustic oscillations: 

r, (H=o) 
r, (H) = - Jn2  (in). 

eos fl ",=-N,., 

The nature of the magnetoacoustic oscillations in the linear 
theory is well known. At angles 9 not too close to a/2, a 
pronounced role is played by electrons whose orbits in mo- 
mentum space cross the so-called boundary points of the 
Fermi surface. Corresponding to these electrons in (37) is 
the term in which the argument of the Bessel function is of 
the order of the number of the term itself (the corresponding 
Bessel function is in this case a maximum). 

In the regime of capture by isolated cyclotron reson- 
ances, when the overlap parameter K and the nonlinearity 
parameter a, are less than unity, the pronounced role of the 
electrons located near the boundary points is preserved. As a 
result of the capture, however, the absorption here is weaker 
by a factor 2a, for each resonance, this being typical of non- 
linear-damping theory. Since a, is proportional to 
[ Jn  (xn ) ] ' I 2 ,  the contribution from the corresponding res- 
onance is proportional to [J, (x, ) ] ' I 2 .  

In the stochastization regime, weak oscillations of the 
absorption coefficient are also preserved. Notwithstanding 
the predominantly diffuse electron motion is in this case, and 
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the smoothness of the principal part of the distribution func- 
tion [see Eq. (34) 1, there are also small resonant increments 
[see (30) ] with maxima at values of u, determined by the 
condition ( 1 ) . These increments lead to the appearance in 
(36) of an additional factor 

which determines the decrease of the oscillation amplitude. 
Since the inequality (m*Qn/k Z )  < (P, - P1)/2, holds in 
(38) for all n, the parameter that determines the decrease of 
the damping is in this case the ratio 

Figures 2 and 3 show the a damping coefficients nu- 
merically calculated from Eqs. (22), (36), and (37) in var- 
ious regimes for a typical metal and for a semimetal of the 
bismuth type. The number of terms in the sum of Eq. (36) 
and the overlap region P, - PI were determined in accor- 
dance with the stochastization criterion. Curves 1 in both 
figures correspond to the linear theory. The absorption in 
the regime of nonlinear isolated resonances is shown by 
curves 2. Curves 3 and 4 show the dependences of the damp- 
ing coefficient on the magnetic field in the stochastization 
regime. The abscissa in Figs. 2 and 3 is the parameter 
u = (k, v,/Q)sin9. Curves 2, as seen from the figures, lie in 
the region of u values corresponding to strong magnetic 
fields, where the parameter K is less than unity. Thus, in a 
typical metal this region corresponds to fields stronger than 
lo3 Oe, for the parameters indicated in the caption of Fig. 2. 
The dependence of the absorption coefficient on the recipro- 
cal of the magnetic field has in this field interval qualitatively 
the same form as in the linear theory; the oscillations have 
the same period in H -  ', but the value of r is decreased by an 
approximate factor 2(k, ;T, ) where ; = (@,/rn*) ' I 2 .  In 
semimetals, where the effective mass is on the average 
smaller by two orders, the regime of isolated resonances cor- 
responds to magnetic fields H > 10 Oe (the parameters of the 
semimetal and of the sound wave are indicated in the caption 
of Fig. 3).  The T ( H )  dependence has here the same charac- 
ter as above. 

With decrease of the magnetic field strength, the dis- 
tance R/k, between the resonances decreases and the isolat- 
ed-resonances regime goes over gradually into the regime of 

FIG. 2. Coefficient of sound absorption in a metal in the linear (curve) 
and nonlinear (curves 2, 3, and 4) regimes. The parameters used in the 
calculations were k, = lo3 c m ' ,  St = 60", m* = lop2' g, uF = 10' cm/s 
T, = 10 - R  s (curves 2 and 3).  Curve 4 was plotted using the same param- 
eters but for an amplitude @, = 3 X lo-'* erg. 

FIG. 3. Coefficient ofsound absorption in a semimetal in the linear (curve 
1) and nonlinear (curves 2 and 3) regimes. the parameters used are 
k, = 2 X  1 0 2 c m ' ,  St = 6O0, m* = 10WZ9g, vF = 10scm/s, 7, = 5 X  
s (curves 2' and 3'), while curves 2" and 3" were plotted for 7, = 10-'s. 

global stochasticity at a fixed wave amplitude. We put in all 
the calculations @, = Adivu - 10- l5 erg. As seen from Figs. 
2 and 3, the stochastic regime sets in at the indicated sound- 
wave intensity in fields H < 10' Oe for a metal and H < 10 Oe 
for semimetals. In a metal, an appreciable part of the Fermi 
surface located between the "boundary points" 
( (u, I < v,sin9) has become stochasticized. In the semime- 
tal, the carriers are stochasticized over the entire Fermi sur- 
face. In either case, the absorption coefficient is smaller than 
linear. Curves 3' and 3" of Fig. 3 correspond to different 
values of the parameter b ( H )  (curve 3" was obtained at T,  

= 5 .  lop9 s, and curve 3" at r, = s). The oscillations 
in the semimetal in the stochastic regime are still observable, 
although their amplitude is weaker. As seen from Fig. 2 
(curves 3 and 4) ,  in the stochasticity region there are practi- 
cally no socillations in a metal, since they are indistinguish- 
able also in the corrsponding magnetic-field interval in the 
linear regime. The influence of stochastization in this case is 
manifested by a general decrease of the absorption compared 
with the linear regime. In addition, Fig. 2 shows a weak de- 
crease of r with decrease of the magnetic field strength. 

It must be noted that nonlinear magntoacoustic effects 
were investigated earlier by Gal'perin and Kozub (see, e.g., 
Ref. 7).  They have assumed that the magnetic field is weak 
enough, so that the ratio of the Lorentz force to the deforma- 
tion force, designated b = m*Ru/k@, in Ref. 7, is less than 
unity. There exists in this case a group of electrons captured 
in a potential well of the wave, and their removal by the 
magnetic field from the wells is quite weak. In addition, it is 
assumed in Ref. 7 that the angle between the wave propaga- 
tion and the magnetic field is close to ~ / 2 ,  so that the projec- 
tion of the momentum on the magnetic field direction is con- 
served. 

In contrast to Ref. 7, in our case, as is clear from the 
foregoing, the magnetic field is regarded as strong, the per- 
turbation theory is in terms of the wave amplitude, and here 
n > z , .  

Let us ascertain the angles 9 for which our theory no 
longer holds. Two variants are possible here: 1) an increase 
of 9 causes violation of the nolinearity condition: 

-1 

aL = [ k  ( @ o J f ( k l p )  ) Ih r, coa 81 < 4,  
m ' 
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and then the nonlinearity is suppressed by collisions and the 
linear theory of magnetoacoustic oscillations becomes valid; 
2)  if the relaxation time T,, on the other hand, is long enough 
the condition for the validity of our theory may be violated 
because of the qualitative change of the electron dynamics. 
As 9 /2 - ~ / 2  we can neglect the change of p, in the equa- 
tions of motion and take into account only the modulation of 
the electron transverse momentum by the wave field. As 
shown in Ref. 1, the regime considered by us is valid under 
the condition 

which reduces to the following simpler inequality: 
JI -- (Oo/rn ' )  ' IJ 

6>1--. 
2 U F  

It must be noted that when this inequality is violated the 
theory does not reduce to that in Ref.7, since the magnetic 
field remains strong as before. The question of sound absorp- 
tion in this regime calls for a different analysis. 

To determine the conditions under which no electrons 
will be removed from the potential wells (in the case of 9 not 
equal to ~ / 2 ) ,  it is necessary (as was done in Refs. 7), to 
compare the Lorentz force with the deformation force. The 
criterion for the absence of electron remove1 is easily seen to 
be 

where v is of the order of v,. In our case the inverse inequali- 
ty holds, as follows, for example, from the condition fl2 25,. 
Electrons are then removed from the potential wells, but this 
does not mean suppression of the nonlinearity. 

We note in conclusion that our approach can be used 
also to solve problems in nonlinear damping of waves of oth- 
er types, propagating in metals and semimetals and interact- 
ing with various groups of resonant electrons. 

"The criterion (3)  overestimates somewhat the critical amplitude of the 
wave. When fractional resonances and the finite thickness of the stochas- 
tic layer near the separatrix are taken into account, the stochastization 
sets in at K ~ 0 . 4 .  

"The ratiog, /go can be easily seen to be of the order of the overlap param- 
eter K =: 6/0. In the absence of overlap we have K ( 1. 
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