
Dynamics of Langmuir films 
E. I. Kats and V. V. Lebedev 

Zh. Eksp. Teor. Fiz. 94,134-149 (May 1988) 

A study is made of the dynamics of monomolecular Langmuir films formed by molecules of a 
surface-active substance at an interface between a liquid and a gas. All possible homogeneous 
phases of a Langmuir film permitted by the symmetry are considered: liquid, nematic, smectic, 
and crystalline. The boundary conditions are derived for the liquid-gas interface in the presence of 
a Langmuir film. The attention is concentrated on low-frequency surface modes the spectrum of 
which reflects directly the film symmetry. An important role of thermal fluctuations in the 
dynamics of smectic and nematic films is pointed out. The effects associated with the dipole 
interaction are considered. 

INTRODUCTION 

There is considerable interest in Langmuir films formed 
on the surfaces of water by molecules of a surface-active sub- 
stance (surfactant). This interest is related mainly to the 
possibility of transfer of a Langmuir film to a solid substrate. 
Repeated application of such a procedure produces multi- 
layer films on a solid with a given order of layers. Such "mo- 
lecular architecture" makes it possible to create materials 
very promising from the point of view of their applications.' 

However, Langmuir films are of interest for their own 
sake. For example, a change in the concentration of a surfac- 
tant in a Langmuir film results in numerous phase transfor- 
mations the nature of which is still unclear. This is related 
primarily to the difficulties encountered in experimental in- 
vestigations of such films. Such a situation reduces oppor- 
tunities for molecular architecture, because the structure of 
the film transferred to the solid substrate is not clear. 

We shall begin an analysis of a phase diagram of a Lang- 
muir film from the classification of the phases which may be 
formed. From the symmetry point of view we can distin- 
guish the following possibilities: a liquid or a gas, nematic, 
smectic, crystalline. Some of these phases may exhibit a 
spontaneous dipole moment in the plane of the film. The 
associated effects are discussed briefly at the end of the pa- 
per. 

We shall assume that this symmetry classification ap- 
plies only to homogeneous films. Several recent experimen- 
tal investigations2 have demonstrated that some phases of a 
Langmuir film correspond to an inhomogeneous state of the 
emulsion type. Such a situation requires a special analysis 
and will not be considered here. 

Our task is to provide a dynamic criterion for the classi- 
fication of surface phases in accordance with their symme- 
try. With this in mind we shall consider the surface dynamics 
of a liquid in the presence of a Langmuir film. Surface dy- 
namic effects in a liquid are among the classical objects of 
interest in hydrodynamics. Basic information about these 
effects can be found in  monograph^.'.^ In particular, these 
monographs give the spectrum of surface waves and the 
characteristics of damping of these waves in the presence of a 
surface film. However, such a spectrum is not very sensitive 
to the film symmetry. Therefore, we shall concentrate our 
attention on other low-frequency surface modes the spec- 
trum of which reflects directly the film symmetry. 

In studies of these modes we have to use the boundary 
conditions at a liquid-gas interface in the presence of a Lang- 

muir film. Derivation of these boundary conditions allowing 
for the film symmetry is not a trivial task. It should be point- 
ed out that when discussing surface dynamics of smectic and 
nematic films it is necessary to allow for the role of thermal 
fluctuations. 

THERMODYNAMICSOFA FILM 

We shall begin with an investigation of thermodynam- 
ics of a liquid--gas system in the presence of a Langmuir film 
at the interface. All the parameters representing a gas will be 
identified by a prime and the parameters of the interface will 
be labeled by an index s. It will be convenient to regard these 
as functions of all three spatial variables. Naturally, all the 
physical quantities can be expressed solely in terms of the 
values of these parameters on the surface. 

The position of the interface in space will be described 
by the equation 4) = 0, where a is a certain function of the 
radius vector. We shall assume that @ > 0 in the part of the 
space occupied by the gas and < 0 in that part which is 
occupied by the liquid. Then, a unit vector 

is perpendicular to the surface and directed toward the gas. 
In the spirit of a local equilibrium we can expect a mac- 

roscopic state of a system of this kind to be governed by a 
locally defined set of parameters. These parameters are ex- 
tensive quantities that do not have 6-like singularities at the 
interface. In this case the thermodynamic state ofa  system is 
described by the thermodynamic potential R (Ref. 5 ) . 

I t  is convenient to represent R by an integral over the 
whole space, separating integration over the surface and 
over the liquid and gas regions, and introducing in the inte- 
grand both 6 functions and step 6 functions of @: 

Here, P i s  the pressure in the liquid, P ' is the pressure in the 
gas, and a is the surface tension. As expected, Eq. (2 )  is 
invariant under the transformation 

where f is an arbitrary function which satisfies the only sec- 
ond condition of Eq. (3) .  

The pressure P in Eq. ( 2 )  is a function of the tempera- 
ture of the system T, chemical potential p, and velocity v. 
The thermodynamic identity for the pressure is 
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Here, p is the mass density, s is the entropy density, and j is 
the density of the momentum. It follows from the Gallilean 
invariance that P depends only on the combination p + v2  
/2, which guarantees that j = pv. A relationship similar to 
Eq. ( 4 )  applies also to a gas. 

In general, we must allow also for the dependence of a 
on the chemical potential of surfactant molecules. General- 
ization of our procedure to this case presents no difficulty. 
However, we shall assume that practically all the surfactant 
molecules are concentrated on the surface (which corre- 
sponds to real experimental situations), so that the depend- 
ence mentioned above can be ignored. 

The set of variables which govern the surface tension a 
is determined by the film symmetry. In the case of a liquid 
film the surface tension a is a function of the surface tem- 
perature T,, chemical potential p , ,  velocity v,, and chemical 
potential of the surfactant v, .  The thermodynamic identity 
for a is 

H e r e ~ , ~ , p , ,  , j,, and n ,  are the surface densities of the entropy, 
mass, momentum, and number of surfactant molecules. We 
note that the surface mass density appears in the identity 
(5) .  It vanishes only when a is independent o f p , ,  which is 
true, for example, in the case of an equilibrium between a 
liquid and its own vapor. However, in our case there is no 
justification for such an assumption. In view of the Gallilean 
invariance, we have 

In the case of a crystalline film we have to allow for the 
dependence of the surface tension a on the strain tensor, 
which is equivalent to a dependence on V Wo, where the in- 
dex assumes two values and the meaning of the functions 
Wo is that they are (independent) phases of the density 
modulation, i.e., the equations W0 = const (taken separate- 
ly) govern the positions of some of the atomic layers. We 
shall consider Wo as a function of a three-dimensional radius 
vector, whereas physically WO is defined only at  the inter- 
face. This means that a can depend only on a combination 
which is invariant under the substitution 
Wo -- Wo + fO (Q).  Such a combination is Vf WO, where 

A unit vector 1 along the normal to the surface is defined by 
Eq. (1 ) .  

We shall assume that under equilibrium conditions the 
interface coincides with the z = 0 plane. We can investigate 
the deviations of a crystalline film from an equilibrium posi- 
tion by selecting (for the sake of convenience) the function 
@ in the form 

@=z-u,(x, y ) .  ( 8 )  

Here, u, represents the displacement vector of the film along 
the z axis. The quantity u, in Eq. ( 8 )  is not generally as- 
sumed to be small. 

Following Eq. (8 ) ,  we can similarly represent the func- 
tion W,: 

Here and later the Greek indices have the values x or y. 
The first term on the right-hand side of Eq. (9)  gives the 
equilibrium value of W, corresponding to the undeformed 
state of a two-dimensional crystal. The second term in Eq. 
( 9 )  appears as a result of deformation (strain) and repre- 
sents the displacement vector of the crystal lattice in the xy 
plane. In the case of small deviations from equilibrium the 
elastic energy of the film with the hexagonal symmetry can 
be represented by 

Here, E , ~  is a two-dimensional antisymmetric tensor 
and B,,, are the elastic moduli. The number of such moduli 
decreases on reduction in the symmetry of a crystalline film. 

A film with modulation of the density only along one of 
the directions can be assumed to exhibit smectic ordering. In 
this case there is only one density modulation phase which 
we shall denote by W. By definition, the equation W = const 
specifies the position of a smectic layer on a film. In the case 
of a smectic film the surface tension a depends on V: W. It is 
well known that in the case of a three-dimensional smectic 
the expression for the energy cannot be limited to the de- 
pendence on the first derivative V W because of the absence 
of the shear modulus of layers relative to one another. This is 
exactly the situation in the case of a two-dimensional smec- 
tic. Therefore, we have to allow also for the dependence on 
VI2 w .  

The leading terms of the expansion of a in terms of the 
gradients of Wcan be described as follows: 

where B and K are the elastic moduli and the wave vector 
go = qo(ps  T,v, ) determines the density modulation period. 
Under equilibrium conditions, we have I V = W 1 = go; we 
shall assume that W = g,$, i.e., that smectic layers are paral- 
lel to they axis. In the case of deviation from equilibrium, we 
have 

where u, plays the role of a displacement of smectic layers 
along the x axis. In the quadratic approximation, we have 

As is known, in the three-dimensional case we can ex- 
pect fluctuations of the displacement of smectic layers to 
give rise to a logarithmic renormalization of the moduli B 
and K (Ref. 6 ) .  These fluctuations are manifested even more 
strongly by a film which is a two-dimensional system. Fluc- 
tuations of the displacement of the interface play no signifi- 
cant role, so that in studies of the fluctuation effects we can 
assume that the interface is plane. In this case we can apply 
anisotropic scaling. The indices of the moduli B and K can be 
estimated using the E expansion7 in three-dimensional space. 

I t  follows from Ref. 6 that in the 3 - E space the moduli 
Band K have renormalization group equations, which in the 
single-loop approximation are 

Here, L = ln(Ar, ), where A is the cutoff wave vector and r 
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is the characteristic scalar along they axis. In  the case of an 
invariant charge g, Eq. ( 14) yields the proportionality: 

It follows from Eqs. ( 14) and ( 15) that the following 
scaling laws apply at the point g = 2 d 5 :  

Substitution of& = 1 into Eq. ( 16) shows that the modulus B 
of a film decreases very rapidly, whereas the modulus K rises 
on increase in the scaling length. 

Spontaneous breaking of the rotational symmetry of a 
film may result in structures with the symmetry D,, D,, and 
D,. In the case of the symmetry D, it is natural to refer to a 
hexatic film, whereas for D, we are dealing with a two-di- 
mensional nematic. This state is characterized by a director 
n, which is tangential to the film: n,l = 0. Inhomogeneous 
strains n can be described conveniently with the aid of a 
nonholonomic angle p, the variation of which is found as 
follows 

6q=2 [nl] 6n. ( 17 )  

We can readily show that the commutation function of var- 
iations of the angle p is of the form 

Similarly, we can define a nonholonomic angle p which sat- 
isfies the commutation rule ( 18) and can be introduced also 
for phases with the D, and D, symmetry. 

The angle p is considered as a function of W ,  and it is 
defined at the interface, so that a should depend only on the 
combination VLp. In the case with the D, symmetry the 
leading term of the expansion of a in terms of the parameter 
Vp can be represented as follows: 

Here, A and A ,  are the orientation moduli. In the case of 
phases of the symmetry D, and D, the orientational energy 
has a form similar to Eq. (19)  but with A i  = 0, i.e., it is 
basically isotropic. 

In the case of a two-dimensional system containing a 
film of the kind described above it is found that fluctuations 
of the director n play an important role. In studies of the 
fluctuation effects associated with n it has been usual to as- 
sume that the film is plane. I t  is demonstrated in Ref. 8 that 
in this situation we could expect fluctuations to result in 
logarithmic renormalization of the orientational moduli A 
and A ,  in Eq. ( 19).  In the one-loop approximations there 
are no corrections to the modulus A ,  whereas the modulus 
A ,  decreases in accordance with the following scaling law: 

where r is the characteristic scaling length. This is also true 
of other terms of the expansion of a in terms of Vp  for all the 
phases mentioned above when the rotational invariance 
breaks down. 

I t  follows that an increase in the scaling length causes 
isotropization of the orientational energy. In other words, 
the phases exhibiting the "unrenormalized" symmetry D,, 
D,, and D, acquire an asymptotic symmetry D, . This does 

not exclude the possibility of experimental observation of 
the anisotropy of a nematic Langmuir film, since in the case 
of finite scaling lengths the modulus A ,  remains finite. 

It follows from general thermodynamic relationships5 
that the potential fl can be used to determine the energy E of 
the system under investigation. I t  follows from Eq. ( 2 )  that 

E =  Jd3r[e0(-cD)fe.6(0) IV@I-Ce'B(@)I. (21 

Here, we have the energy density E in a liquid, deduced in 
accordance with the definition 

e=pp+Ts+vj-P, ( 22 )  

from which we obtain the following standard thermodynam- 
ic identity: 

ds=ydp+Tds+vdj. ( 23 )  

This is also true of a gas. In  the case of a film we derive 
an expression for the surface energy which is similar to Eq. 
(22):  

ed=p.p.+ T,s,+v.j,+vdnd+a. (24)  

The explicit form of the surface energy differential de- 
pends on the film symmetry. For example, in the case of a 
crystalline film, we have 

It should be noted that in the last differential we cannot 
simply transpose d and Vf W, 

DYNAMIC EQUATIONS 

The hydrodynamic equations for a liquid are well 
known and have the following form3: 

Here, we have the dissipative fluxes 

q=-xV In T, 

where K is the thermal conductivity, whereas 7 and 6 are the 
first and second viscosities.The dissipative function R is giv- 
en by 

Exactly the same equations apply to a gas. 
We now have to derive equations for the surface vari- 

ables noting that some of these equations represent simply 
the boundary conditions for the three-dimensional problem. 
We shall divide this derivation into two stages: we shall first 
obtain the equations that ignore the liquid and gas adjoining 
a film and then add the terms induced by the bulk. 

The nondissipative part of the hydrodynamic equations 
is best found by the Poisson bracket m e t h ~ d . ~  In view of the 
time inversion invariance the only brackets which are not 
equal are those containing the momentum density. There- 
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fore, in the derivation of the nondissipative equations for the 
dynamics of a film we need to know the Poisson brackets 
which contain the surface density of momentum j,. The ex- 
plicit form of these brackets can be found using the expres- 
sions for the brackets containing the three-dimensional mo- 
mentum density j. 

With this in mind we shall find it convenient to use the 
representation ( 8 )  for the function @ and to regard j, as 
function ofx and y. In this case the following representation 
is valid: 

where the integration is carried out near the interface. On 
the other hand, the expression for the three-dimensional 
bracket is well known: 

Integrating this expression with respect toz, and z, near the 
interface, we find the following expressions for the Poisson 
brackets: 

{ l V @ l j s u ( r i ) ,  I V @ l i a d r ~ ) )  
= I  V@Ijsp(r l )  V a ( 6 ( x i - x 2 ) 6 ( y l - y Z ) )  
+~P(~(x~-x~)~(Y~-~~))(V@(~.~(P~), ( 3 2 )  

{I V@Iiaa( r i ) ,  I V @ l j . r ( r z ) )  
= I  V @ l j . z ( r i )  V a ( B ( ~ i - ~ 2 ) 6 ( y i - ~ z ) ) .  ( 3 3  

We recall that the indices identified by Greek letters have 
two values: x and y. Proceeding similarly and reducing the 
three-dimensional brackets, we obtain the expressions 

In the case of a three-dimensional smectic, we obtain the 
following expressionlo: 

o h ) ,  W ( r 2 ) ) = - V i W 6 ( r l - r 2 ) .  ( 3 6 )  

In the case of a Langmuir film with a smectic ordering the 
function W is specified only at the interface and the expres- 
sion for the bracket { j,, W} is obtained from Eq. ( 3 6 )  by 
integration with respect to z, near the interface: 

There is another similar bracket 

where W, are the phases of the density modulation in a crys- 
talline film. The film itself can be regarded near the interface 
as one smectic layer, because @ for this film is described by a 
relationship analogous to Eq. ( 3 6 ) .  Hence, we obtain 

v @ l i d f ( r l ) ,  @ (rZ))=-Vi@6(xl-x2)G(yl-yZ). ( 3 9 )  

The expression for the three-dimensional bracket 

(r ( r z ) )  = - \ ' ~ ( F ~ ( P I - ~ L ) - E I ~ ~ V ~ ~ ( P L - ~ L ) L ~ ( ~ ~ )  ( 4 0 )  

was found in Ref. 1 1 .  Hence, the surface density is given by 

We must mention that in the case of a nematic film (with the 
D, symmetry) the right-hand side of Eq. ( 4 1  ) contains also 
additional anisotropic terms. Their presence gives rise to 
corresponding anisotropic terms in the equations for the dy- 
namics of a film. However, these equations "die out" over 
large scaling distances because of large fluctuations of the 
director. In other words, isotropization of not only static, 
but also of dynamic characteristics of the system takes place. 
Therefore, we shall ignore the anisotropic terms on the right- 
hand side of Eq. ( 4 1  ). 

We now have all the necessary brackets for the deriva- 
tion of the nondissipative equations of film dynamics (with- 
out allowance for the effects of the adjoining gas and liquid). 
They are the Liouville equations with a Hamiltonian in the 
form of the surface energy E,. Using Eq. (8), we can write it 
down in the form of a two-dimensional integral: 

In the derivation of the dynamic equations for the surface 
variables, they should be regarded as functions of x and y. 

The explicit form of the equations for the surface vari- 
ables can be found using Eq. ( 2 4 )  and the thermodynamic 
identity for E, of the (25) type which follows from it. We 
thus obtain 

a@ld t={E , ,  @) =-u,iVt@, ( 4 3 )  

d W / a t =  {E, ,  W )  =-u, ,ViW,  ( 4 4 )  

a ~ , l d t =  {E, ,  m 7 a ) = - v , i ~ i ~ , ,  ( 4 5 )  

d d d t = ( E 8 ,  cp) = - u , , V , ~ - ~ , , , l ~ V ~ v , , ,  ( 4 6 )  

a ( I v @ I ~ s ) l d t = { E ~ ,  I V @ I p , ) = - V i ( I V @ I j , i ) ,  ( 4 7 )  

a ( I v @ I s . ) / a t = { E , ,  ) V @ J s , ) = - V i ( l V @ I s . u S i ) ,  ( 4 8 )  

a ( I ~ @ I n ~ ) l d t = { E , ,  I V @ I n , ) = - V i ( I V @ I n , u , , ) .  ( 4 9 )  

In general, because independence of the variables z is implied 
in the derivation of these equations, it follows that the terms 
with d / d z  in Eqs. ( 4 4 ) - ( 4 9 )  vanish. It is worth noting that 
the proposed system of equations is, as demonstrated below, 
independent of the method used to continue the surface vari- 
ables to the third dimension. 

The equation for the surface density of the momentum 
j, seems much more complex than the equations given above 
and, moreover, the actual form of this equation depends on 
the film symmetry. However, the right-hand side of this 
equation can always be represented in the form of the total 
divergence: 

The derivative d /dz is introduced into the above equation 
with the same aim as before, i.e., to make the form of the 
equation independent of the method of continuation of the 
surface quantities to the third dimension. 

We shall now give the stress tensor for films of different 
symmetry, which occurs in Eq. ( 5 0 ) :  
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Here the liquid, crystalline, smectic, and nematic films are 
labelled liq, cr, sm, and or, respectively. We recall that in the 
case of a nematic film we ignore the explicit dependence of a 
on the director, in view of the fluctuation isotropization dis- 
cussed above. 

We shall now supplement the new nondissipative equa- 
tions with dissipative terms. These dissipative terms are ab- 
sent from Eq. (47) forp,, because due to the Gallilean invar- 
iance the mass flux density should be identical with the 
momentum density. The dissipative terms are also missing 
from Eq. (43) for @, because it simply states that a film 
travels at a velocity u. It should be noted that Eq. (47) can be 
derived as the condition of invariance of Eq. (47) under the 
transformations p, -pS (I, +fi ( @ ) )  and 
js +jS (ri  +fi.(@) 1. 

In the equation for the other variables we have to in- 
clude the dissipative terms. For example, the right-hand side 
of Eq. (50) should be supplemented with 

where 7, and gS are the surface viscosities. The equation for 
the angle becomes 

where r is a positive kinetic coefficient. In Eq. (48) for the 
values of s, we have to allow for the dissipation associated 
with the thermal conductivity, whereas in Eqs. (44) and 
(45) describing Wand W, we have to include the terms 
describing percolation, whereas in Eq. (49) for n, we need to 
allow for the term describing the diffusion of surfactant mol- 
ecules. Moreover, in these equations there are many cross 
kinetic terms. However, these terms will not be needed later 
and, therefore, we shall not consider their explicit form. 

Equations (47)-(50) have the form of the laws of con- 
servation of the surface mass, entropy, number of surfactant 
molecules, and momentum. It is understood that the indi- 
vidual laws of conservation of the surface quantities do not 
exist. Therefore, these equations must be corrected by sup- 
plementing the right-hand sides of the fluxes of the corre- 
sponding quantities from the bulk to the surface. We thus 
obtain 

The left-hand sides of Eqs. (57)-(59) are simplified by 
dropping the surface kinetic terms. They are of higher order 
in the gradient than the terms retained in Eqs. (57)-(59) 
and, therefore, they are unimportant in the long-wavelength 
limit. 

In general, the equation for n, should also contain the 
flux of surfactant molecules to the surface. However, we 
shall assume that all the surfactant molecules are concen- 
trated at the surface. In this approximation there is no flux of 
surfactant molecules from the bulk to the surface and we 
return back to Eq. (49). 

Equations (57)-(59) represent essentially the bound- 
ary conditions for the three-dimensional problem of hydro- 
dynamic motion of a liquid and a gas. In addition, there are 
many other boundary conditions that relate the bulk and 
surface quantities.I2 These conditions [together with Eqs. 
(43)-(45), (49), and (57)-(59) ] should ensure the energy 
conservation law ( 2  1 ) and the positive definite nature of the 
entropy production process the corresponding term should 
be added in Eq. (48) for the surface entropy 1.  These require- 
ments dictate the kinetic relationships between the fluxes of 
the mass, entropy, and momentum from the bulk to the sur- 
face and the corresponding generalized forces, which are the 
quantities 

We shall not give the explicit form of these relationships. We 
shall simply note that the contributions to the dissipative 
function associated with the longitudinal (i.e., along the z 
axis) fluxes of the momentum and mass are indistinguish- 
able because of the Gallilean invariance. Therefore, the dif- 
ferences u, - u ,  and us, - u: do not occur in Eq. (60) as the 
generalized forces. 

The most informative, from the point of view of estab- 
lishment of the symmetry of a film, is the boundary condi- 
tion (59). This is because it includes the surface stress tensor 
T,,, , which according to Eqs. (51 )-(54) contains terms spe- 
cific for each type of symmetry. The condition (59) also 
demonstrates that fluctuations of the surface parameters are 
necessarily related to fluctuations of the velocity in the bulk. 

SPECTRUM OF SURFACE MODES 

Linearized dynamic equations are needed in the study 
of the oscillation spectrum. These linearized equations for 
three-dimensional hydrodynamics are well known and we 
shall not give them explicitly. Their solutions describe an 
acoustic mode associated with oscillations of the irrotational 
component of the velocity, a relaxation mode associated 
with the rotational component of the velocity, and a thermal 
diffusion mode associated with relaxation of the specific en- 
tropy. 

The boundary conditions for linearized three-dimen- 
sional equations are obtained by linearizations of Eqs. (43) 
and (57)-(59). We shall now drop from these boundary 
conditions the terms associated with the gas. Inclusion of 
these terms does not alter qualitatively the spectrum, but 
simply gives rise to small (because of the low gas density) 
corrections to the dispersion laws . We also recall that under 
the conditions of Eqs. (57)-(59) the surface kinetic terms 

944 Sov. Phys. JETP 67 (5), May 1988 E. I. Kats and V. V. Lebedev 944 



are omitted. These terms are unimportant in the long-wave- 
length limit, but they may play some role in real experiments 
if the corresponding kinetic terms are for some reason anom- 
alously large. l 3  

In linearization of the boundary conditions we shall still 
assume that under equilibrium conditions the interface lies 
in the z = 0 plane. In this case the deviations of the shape of 
the surface from equilibrium are described by a displace- 
ment vector u (x, y ) given by Eq. (8).  Assuming also that all 
the surface quantities are functions of x and y, we obtain the 
following linearized conditions: 

Moreover, we have to linearize the conditions relating 
the fluxes of the mass momentum, and entropy on the sur- 
face, on the one hand, to the quantities in Eq. (60) on the 
other. In the long-wavelength limit we can ignore the fluxes 
u n d ~  these conditions. Ignoring also the viscous stress ten- 
sor n, we find very simple mutual relationships:. 

The expression for the surface stress tensor TSaD occur- 
ring in Eq. (65) is given, depending on the film symmetry, 
by one of the formulas (5 1 )-(54). Explicit expressions for 
the derivatives of a occurring in Eqs. (52)-(54) are ob- 
tained using Eqs. ( lo) ,  ( 11 ), and ( 19). The orientational 
energy of Eq. ( 19) includes only the first term, because the 
second term in Eq. (19) "dies out" over long distances be- 
cause of fluctuations of the director. As a result of substitu- 
tion and some cancellations, we obtain the following rela- 
tionships for films of different symmetry: 

Equations (67)-(70) contain the combination a"', 
which is obtained as a result of linearization of a with respect 
to deviations of the quantities p,, T,, and v, from equilibri- 
um. In the case of a crystalline film we have to include in a'" 
the terms which are proportional to these deviations and 
which appear as a result of linearization of the elastic part of 
the tensor T, due to the dependence of the wave vector q, 
(governing the density modulation period) on p,, T,, and 
"s 

In the derivation of Eqs. (67)-(70) we linearized the 
surface stress tensor for all the variables, with the exception 
of the smectic variable W. In Eq. (69), which is valid for a 
smectic film, there are terms nonlinear in respect of A W. 
This is because both in dynamics and statics the fluctuations 
of W modify significantly the long-wavelength behavior of 
the system. In a study of the effects associated with these 
fluctuations we have to retain in the dynamic equations the 

principal terms nonlinear in W. Among all the terms nonlin- 
ear in Wonly those retained in Eq. (69) are important. 

These boundary conditions should be supplemented by 
the linearized equations (44), (45), (49), and (56). Using 
the notation of Eqs. (9 )  and ( 12), these become: 

Following the above procedure, we wrote down the equa- 
tions for q, including only the first (isotropic) term in the 
orientational energy of Eq. (19). It should be noted that in 
the linear approximation the angle q, can be regarded as ho- 
lonomic, since the right-hand side of Eq. ( 18) is quadratic in 
the displacement vector u,. 

We shall now investigate the spectrum of surface modes 
assuming that all the quantities are expanded in the Fourier 
series in terms oft,  x, and y and considering a harmonic of 
frequency w with a wave vector k, along the surface. We 
shall consider separately the dependences of the bulk quanti- 
ties on z.  

In the course of excitation of surface modes near an 
interface we can expect oscillations of the rotational and ir- 
rotational components of the velocity. For all the modes un- 
der consideration the frequency can be regarded as low com- 
pared with the acoustic frequency (for the same wave 
vector), so that the potential $of the irrotational component 
of the velocity is given by 

We recall that the variable part of the pressure is related 
simply to the potential $: 

For the majority of the modes we can assume that 
p w )  ~k 2. In this case the dependence of the rotational com- 
ponent of the velocity on z is of the form 

It should be noted that it follows from Eq. (62) that v, = v,, 
applies to all the modes under consideration. Using also Eq. 
(60), we can conclude that the velocity of transport of a film 
v,, can be regarded as identical with the limiting value of the 
bulk velocity v i  in the limit z-0. 

We shall first consider an ordinary capillary wave 
which is characterized by w a x .  In this case it follows from 
Eq. (72) that k, us, = 0, which also implies that us, = 0 is 
satisfied by this wave. Consequently, us,, = - ik, 4,. Sub- 
stituting this value in Eq. (76) using Eq. (74), we find from 
Eq. (61) that 

Under the conditions of Eq. (65) it is sufficient to retain the 
leading terms, which on the strength of Eq. (75) make a 
contribution 
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akzu==ipo$,. 

Comparing the above equalities, we find the dispersion law 

This is the usual dispersion law for capillary waves in the 
presence of a surface film. 

In addition to a conventional capillary wave, there is a 
further low-frequency surface mode (even in the case of a 
liquid film), but the existence of this mode has been ignored 
completely. This mode is associated with oscillations of the 
surface density of surfactant molecules. It follows from Eq. 
( 7 2 )  that 

We may assume that only the rotational velocity is excited in 
this mode and, in accordance with Eq. ( 7 6 ) ,  its value is 
found assuming that v,,, = us,. The boundary condition 
( 6 5 )  together with Eq. ( 6 7 )  gives for this case the following 
first-approximation expression: 

da l+ i  - !sans = - - (qpa) L ~ b a ,  

an. 

Comparing the above equalities, we find the dispersion law: 

The boundary conditions that follow from Eq. ( 6 0 )  demon- 
strate that the derivative of a with respect to n, in Eq. ( 7 8 )  
should be taken at constant values ofp, and T,. 

The range of validity of the dispersion law ( 7 8 )  is limit- 
ed on the low-frequency side. This is because it is derived on 
the assumption that the law of conservation of the number of 
surfactant molecules on the surface is satisfied and this gives 
rise to an additional Goldstone mode. At the lowest frequen- 
cies we have to allow for the exchange of surfactant mole- 
cules between a film and the bulk, which suppresses this 
mode. 

We can similarly consider the surface modes which are 
associated with a crystalline film. Once again the rotational 
velocity is excited mainly in these modes. The relationship 
between the velocity component and the variables n, and u ,  
describing the mode is given by Eqs. ( 7  1 ) and ( 7 2 ) .  There is 
one further relationship that can be obtained from Eq. ( 6 6 )  
and in this case we have to ignore the first term and substi- 
tute Eq. ( 6 8 ) .  We thus obtain a system of equations describ- 
ing oscillations which are longitudinal and transverse to the 
wave vector k and obey the following dispersion laws: 

Here, B, = B, - n,da"'/dn,. 
The dispersion laws ( 7 9 )  and ( 8 0 )  apply directly to 

crystalline films with the hexagonal symmetry. In the case of 
films of lower symmetry the situation is basically the same: 
there are two modes with the dispersion laws ( 7 9 )  and ( 8 0 ) .  
These modes cannot be simply interpreted as longitudinal 

and transverse and, moreover, the dispersion laws become 
anisotropic. It should be stressed that these modes are asso- 
ciated with the spontaneous breaking of the translational 
symmetry of the film and, therefore, the range of their exis- 
tence is not limited on the low-frequency side, which distin- 
guishes them from the mode considered above in the case of a 
liquid Langmuir film. It should be pointed out that in the 
range of frequencies where the exchange of surfactant mole- 
cules between the bulk and the surface becomes important, 
we can simply replace g,  in Eq. ( 7 9 )  with B . 

An analysis of a mode associated with spontaneous 
breaking of the rotational invariance of a film is very simple. 
Estimates indicate that in the calculation of the spectrum of 
a mode described by oscillations of the angle g, we can ignore 
the terms with the velocity in Eq. ( 7 3 ) .  This gives the follow- 
ing dispersion law: 

We recall that this dispersion law is obtained without 
allowance for the anisotropy. In the case of a nematic film we 
find that, in addition to the term described by Eq. ( 8  1 ), the 
dispersion law contains an anisotropic term proportional to 
k2 + 5, where 6 = T /47rA. 

We shall now consider the spectrum of surface modes of 
a smectic film. In general, this spectrum can be found by the 
same method as for a crystalline film. This can be done using 
a surface stress tensor ( 6 9 ) ,  which is linearized in terms of 
the displacement vector u, introduced in Eq. ( 12 ) .  As a 
result, we obtain a dispersion equation describing the two 
modes. One of these modes is determined by the dispersion 
law ( 7 8 )  and it is related, as in the case of a liquid film, to the 
oscillations of n,. The range of existence of this mode is cor- 
respondingly limited on the low-frequency side. 

A second mode typical of a smectic film has the disper- 
sion law 

This mode is related to spontaneous breaking of the transla- 
tional invariance and, therefore, the range of its validity is 
not limited on the low-frequency side. In the range of fre- 
quencies where the mode with the dispersion law ( 7 8 )  is 
missing, we can replace ky / k  with unity on the right-hand 
side of Eq. ( 8 2 ) .  

The dispersion law ( 8 2 )  is strongly anisotropic and 
leads tow - 0  in the limit k ,  + 0 or ky - 0. At low values of ky 
we have to modify the right-hand side of Eq. ( 4 4 )  by inclu- 
sion of a kinetic term describing percolation. This term lim- 
its the range of validity of the dispersion Eq. ( 8 2 )  at low 
values of ky . Much more interesting is the range of small 
values of k, ,  because it is in this wave vector range that the 
main fluctuation effects take place. Therefore, in studies of 
this range we cannot ignore the nonlinear terms in Eq. ( 6 9 ) .  
Moreover, at low values of k ,  we have to include the last 
term in Eq. ( 6 9 ) ,  although it was omitted in the derivation of 
the dispersion law ( 8 2 ) .  

At low values of k,  a characteristic smectic mode is 
very soft, so that it obeys an inequality pw < q k  2. Therefore, 
in a study of this mode we can assume that the velocity in the 
surface layer depends in the following way on z:. 
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u,=vai esp ( k z )  . 

Combining Eq. (44) with the x component of Eq. (64) and 
dropping the unimportant terms, we obtain the following 
equation: 

In the linear approximation this equation leads to the follow- 
ing dispersion law: 

Equation ( 83 ) contains the main nonlinearity neces- 
sary for the investigation of dynamic fluctuation effects. In 
such an investigation it is convenient to use a diagram tech- 
nique described in Ref. 14. In the case under discussion this 
diagram technique yields the effective action with a Lagran- 
gian deduced on the basis of Eq. (83) :  

where E = 1 and p is an auxiliary field. 
The action with the Lagrangian (85) is renormalizable 

at E = 0 in the three-dimensional space.15 We shall therefore 
seek the scaling behavior of its parameters in the two-dimen- 
sional case by the method of E expansion from the three- 
dimensional space. The correctness of this procedure should 
be tested by an additional investigation, because in the E # O  
case the Lagrangian (85) is not local. We shall assume, how- 
ever, that the proposed method makes it possible to draw 
quantitative conclusions on the long-wavelength dynamics 
of the system. 

The renormalization group equations for the moduli B 
and K derived using Eq. ( 85 ) in the one-loop approximation 
are naturally identical with the static equations ( 14). The 
viscosity 77 in Eq. (85) is described by the following equation 
obtained as a result of the E continuation of the equations of 
Ref. 15: 

Here, 7 is the unrenormalized value, 7 ,  is the renormal- 
ized value, and q is the characteristic wave vector. Substitut- 
ing g = 2 ~ / 5  in Eq. (86),  we obtain 

Therefore, the effective viscosity is constant and it 
differs only by a factor from the unrenormalized viscosity. 

Fluctuations with the dispersion law describe by Eq. 
(84) are responsible for the renormalization group of the 
modulus B also in the range of validity of the dispersion law 
(82).  We can show that in the renormalization group equa- 
tion ( 14) the main cutoff factor is in this range the frequency 
w .  Therefore, in the first (with respect to E )  approximation 
the modulus B in Eq. (82) obeys the following scaling law: 

We can also show that in this range there are no fluctuation 

corrections to 71, so that the unrenormalized value occurs in 
Eq. (82).  

DIPOLE INTERACTION 

Surfactant molecules themselves have a dipole moment 
so that the dipole moment of a Langmuir film is directed 
along the film normal. This gives rise to an additional dipole 
contribution to the energy of an inhomogeneous deforma- 
tion of the film. However, the corresponding contribution is 
small compared with the usual surface tension, so that the 
dipole interaction is not reflected in the long-wavelength 
properties of an isotropic film. 

The situation is different in a nematic film. In this case 
the dipole moment may have a component tangential to the 
film and directed along the vector n, which depends on the 
structure of the ground state of the film. If we ignore fluctu- 
ations of the displacement of the film, the corresponding 
dipole energy is 

The existence of this energy gives rise to additional dipole 
terms in the pair correlation function and ( p p  ) in the dis- 
persion law of the orientational mode [Eq. (81 ) 1 .  These 
dipole terms "harden" the correlation function (pq, ) and 
suppress the fluctuations of n. Therefore, even in the long- 
wavelength limit we cannot ignore the second term to Eq. 
( 19). The dispersion law ( 8  1 ) now becomes 

" k Z ]  AkZ+A,(k,2-k,Z)+ -2- . 
4 k  

(90) 

We recall that the x axis is directed along the equilibrium 
position of n and the parameterp, describes the dipole inter- 
action. 

The tangential dipole moment of a smectic film can be 
directed either along the vector V  W  or along [ I  X V  W]. In 
the latter case the dipole contribution is unimportant. How- 
ever, in the former case the dipole interaction "hardens" the 
pair correlation function (u ,  u, ), which suppresses the fluc- 
tuation effects. This means, in particular, that in the long- 
wavelength limit the modulus B in the dispersion law (82) 
remains constant. At low values of k ,  we obtain instead of 
Eq. (84) the dispersion law 

In the calculation of Eq. (91) we shall use the explicit 
expression for the dipole energy (89) and substitute in it 
n = V W / I V W I .  

We can readily show that the presence of a tangential 
dipole moment in crystalline Langmuir films does not affect 
their long-wavelength spectrum. 

CONCLUSIONS 

We investigated theoretically the spectrum of surface 
modes of a liquid in the presence of a Langmuir film at an 
interface with a gas. We found that the spectrum of capillary 
waves is not very sensitive to the film symmetry. On the 
other hand, there are other surface modes which are very 
sensitive to the film symmetry. 

Even in the case of a liquid film the spectrum includes a 
surface mode with a very special dispersion law [Eq. (78) 1 
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and this mode exists in the range of frequencies where we can 
assume that the number of surfactant molecules on the sur- 
face is conserved. In the case of a crystalline film the spec- 
trum includes two surface modes with similar dispersion 
laws Eqs. (79) and (80) 1. However, we must stress that in 
contrast to the above-mentioned mode for a liquid Langmuir 
film, the mode with the dispersion laws (79) and (80) are 
true Goldstone modes associated with the elastic properties 
of a film. 

In the case of a smectic film the spectrum has a charac- 
teristic smectic mode which is described by a strongly aniso- 
tropic dispersion law of Eq. (82). The modulus B in this law 
falls in the low-frequency limit in accordance with a power 
dependence and this is due to fluctuations of smectic layers. 
The power exponent in this dependence can be estimated 
from Eq. (88). The existence of a dipole moment along the 
normal to a smectic film suppresses the fluctuation effects. 
In particular, the modulus B in Eq. (82) remains constant. 

Finally, in the case of a film with a broken rotational 
invariance the spectrum has one orientational mode and its 
dispersion law is of the diffusion type. Fluctuations of the 
director of a nematic film results in isotropization of the 
dispersion law of an orientational mode. The presence of a 
dipole moment in such a film suppresses fluctuations of the 
director and gives rise to a more complex anisotropic disper- 
sion law (90). 

We ignored gravity in our analysis. However, the sys- 
tem can be readily generalized by including the gravitational 
energy. It is known that the force of gravity alters, compared 
with Eq. (77), the spectrum of capillary waves at very low 
frequencies.'~~ However, the spectrum of specific surface 
modes discussed by us above is not affected by the force due 
to gravity. 

We would hope that all these modes could be observed 

experimentally in view of their low-frequency nature. 
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