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A field theory describing polymers with a frozen topological structure is constructed. Branched 
polymers with a frozen molecular-structure distribution are studied in detail. It is shown that, 
because of the strong polydispersity, a semidilute solution of such polymers cannot be described 
by means of the concept ofblobs. It is also shown that the swelling of a molecule with a tree-type 
structure in a good solvent occurs in a nonaffine manner, and the dependence of its swelling 
coefficient on the spatial scale is calculated. The dependence of the swelling coefficient of a cyclic 
molecule on the quality of the solvent is obtained. The swelling of an infinite polymer gel network 
with a fixed topological structure in a good solvent is considered separately. The thermodynamic 
and correlation functions of the gel network are calculated, and it is shown that in the scaling 
region such a network can be described in the framework of the concept of blobs, within which 
there exist correlations characteristic of isolated branched molecules. It is also shown that the 
equilibrium density of the swollen gel is determined by a condition on the threshold for overlap of 
such molecules. The results obtained make it possible to use the results of numerous papers 
devoted to the investigation of "ordinary" blobs. Other problems that can be considered in the 
framework of the proposed field theory are also mentioned. 

1. INTRODUCTION these correlation functions it is convenient to introduce the 

The use of field-theoretical methods'" has made possi- generating 

ble a complete theoretical description of polymer systems in 
equilibrium with respect to reactions involving the forma- 

F(slh)= & c s ' ~ c { h ) ,  
C ( 2 )  

tion and breaking of chemical bonds. An important point is 
that the polymer systems used in practice can be equilibrium 
systems only during the process of their synthesis, and by the 
end of this process the chemical bonds "freeze." The condi- 
tions of exploitation of polymers usually differ appreciably 
from the conditions of their preparation. By varying the tem- 
perature and the type of solvent it is possible to change the 
equation of state and the correlation length of the system, 
but the molecular-structural distribution (MSD) {n ,} re- 
mains unchanged, having been formed in the stage of synthe- 
sis (n, is the number of molecules of a given topology C). 

In the description of a system with a frozen MSD it is 
convenient to associate with each polymer configuration a 
graph G, each of the connected components of which corre- 
sponds to one of the molecules of the system (see Fig. la) .  
The probability P g' of configuration G is determined by the 
parameters of the initial system in which the polymers were 
obtained, while the free energy F, of configuration G is de- 
termined by the parameters of the final system in the condi- 
tions of its exploitation. The thermodynamic characteristics 
of this final system with a frozen MSD are completely deter- 
mined by the average value of the free energy of the system in 
a specified external field h ( x )  : 

F ( h )  3 E P ~ O ' F ~  {h) . 
G 

For a more detailed study of the behavior of polymer 
molecules one usually uses a dilute solution in which the 
interaction of different isolated molecules can be neglected. 
The correlation functions of the molecules are found by dif- 
ferentiating the free energy Fc{h} of macromolecule C with 
respect to the field h, and determine such characteristics as 
the size and radius of gyration of this molecule. To calculate 

where I is the number of monomers of molecule C. 
In the description of branched polymers the functional 

F (2 )  contains information both about the molecules of fi- 
nite size (the sol) and about the infinite macromolecule (the 
gel). Such a giant polymer network is obtained by equilibri- 
um polycondensation of monomers in the initial system. 
After the fixing of its topological structure and the subse- 
quent wash-out of the sol molecules it is placed in a low- 
molecular-weight solvent, in which it swells. The topologi- 
cal structure of the network remains unchanged in this 
process, having been formed in the process of preparation of 
the network. In the thermodynamic limit the free energy of 
such a network is equal to 

The first term in the right-hand side of (3)  is equal to the 
sum of the contributions of all the molecules, while the sec- 
ond is equal to the sum of the contributions of only the mole- 
cules of finite size. 

In this paper we propose a method of calculating the 
functionals ( 1 ) and (2)  that determine the characteristics of 
the finite molecules and the infinite molecule with a frozen 
topological structure. We shall consider a system consisting 
of the initial system and m replicas of the final system. Since 
all these subsystems have the same MSD, the configuration 
space of the system under consideration can be depicted by 
the graph G, which is obtained by "thickening" of the ver- 
tices and segments of the graph G (see Fig. lb) .  With a thick 
vertex of this graph we associate the set of coordinates 
Xi = (XI'), XI'), ..., xlm))  of monomer i, while with a thick 
segment we associate the set of bonds between the monomers 
i and j in the initial system and each of the replicas. 
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FIG. 1. Graphs associated with a configuration Gcontaining two polymer 
molecules; their vertices correspond to monomers, and their segments 
correspond to chemical bonds. a )  The graph G for the initial system; b) 
the graph G for the system consisting of the initial system and replicas of 
the final system with a frozen MSD; c )  graphs G for a system consisting of 
the initial system and replicas of the final system of a dilute solution of 
polymers. 

It is found that the thermodynamic potential 0, of this 
system in the presence of equilibrium with respect to the 
formation and breaking of thickened bonds determines the 
free energy ( 1 ) of the system with a frozen MSD: 

F {h) =dQ,(h) /dm I,=,. 
The functional (2)  is calculated analogously. In the equilib- 
rium system the generating functional Yo of the correlation 
functions of the individual molecules C is equal, by defini- 
tion, to the sum of their contributions with the factor s' 
(Refs. 5,6).  We shall show that to determine the functional 
(2)  it is sufficient to thicken the connected subgraphs Ccor- 
responding to the molecules over which this summation is 
performed (see Fig. lc):  

The relations (4)  and (5)  make it possible to reduce the 
problem of the description of a system with a frozen MSD to 
the analogous problem for the equilibrium system. Methods 
of solution of the latter were developed in Refs. 4-8, and we 
shall make use of them in this article. The results obtained 
for weakly fluctuating systems coincide with already-known 
results. For concentrated solutions (melts) they were found 
by perturbation-theory methods, 426 while for an infinite gel 
network they were found by field-theoretical  method^.^.^ In 
this article we shall concentrate attention on the description 
of strongly fluctuating systems, for which these methods are 
inapplicable. 

A central feature of the description of such systems with 
molecules with a frozen topological structure is the swelling 
critical exponent f introduced below. Whereas in weakly 
fluctuating systems the swelling of polymers occurs by uni- 
form (affine) dilation, in strongly fluctuating systems the 
swelling depends on the observation scale R. The exponent 6 
determines the dependence on R of the degree of swelling of 
polymers: 

Here R 'O' and R are the sizes of the regions occupied by the 
same particles in the initial and final systems. 

The relations (4)  and (5)  make it possible to apply the 
field-theoretical renormalization-group (RG)  method to 
the description of strongly fluctuating polymer systems. The 
solution of the RG equations, which are obtained in this 
article, determines the exponent 5. In the one-loop approxi- 
mation the latter coincides exactly with the result found by 
us in the framework of the Flory appro~imation. '~ Besides 
the characteristics of the sol molecules, the exponent also 
determines the characteristics of the giant gel macromole- 
cule in the fluctuation region. 

We shall show that such a strongly fluctuating polymer 
network can be described by means of the blob concept ori- 
ginally introduced by de Gennes' to describe a semidilute 
solution of polymer chains. Inside each such blob of a size 
equal to the correlation length {- I there exist correlations 
characteristic for a single branched molecule with 

~ B - P - ' ' ( ~ ~ - ' )  monomers. Herep is the density of the mon- 
omers of the gel and d is the dimensionality of space. On 
scales large in comparison with 5 the polymer network is a 
melt of blobs. We note that the concept of blobs, together 
with ordinary scaling, presupposes a high degree of univer- 
sality. In contrast to a gel in chemical equilibrium with sol 
molecules, the basic characteristics of the polymer network 
under consideration are described by a single exponent v. It 
is equal to v, = ( 1 + c)/4 for a gel obtained in a melt. 

The material of the article can be divided into two parts. 
In the first of these (Sec. 2)  we give a general derivation of 
field theories for the description of polymers with a frozen 
structure. In the Conclusion we discuss some of their gener- 
alizations. In the second part (Secs. 3-5) we use the example 
of very simple models of branched polymers to illustrate the 
basic physical ideas. The possibility of realization of these 
models is discussed in the Conclusion. 

2. THE METHOD OF REPLICAS: A FIELD THEORY FOR 
POLYMERS WITH A FIXED TOPOLOGICAL STRUCTURE 

The aim of this section is to prove the relations (4)  and 
(5 )  discussed in the Introduction and to use them to derive 
field theories for the description of polymers with a fixed 
topological structure. 

First we shall formulate a model of polymers, in the 
framework of which we shall establish the correspondence 
(discussed in the Introduction) between polymers and 
graphs. In this model the monomers are point particles with 
coordinates xi and mass m, and have f functional groups, 
between each two of which a chemical bond can be formed. 
We shall denote by A (xi - x, ) the conditional probability of 
finding the monomers of a bond at a distance /xi  - x, 1 from 
each other. The chemical bonds form the topological struc- 
ture of the molecules, the different configurations of which 
can be represented in the form of graphs of the type in Fig. la 
(see also the review Ref. 6).  For f = 2, only linear chains are 
formed, while the casefi3 corresponds to the formation of 
branched polymers, which can incorporate cyclic fragments. 
The spatial conformations of a molecule of a given topology 
are determined by the interaction of its monomers with each 
other. We shall describe these interactions by specifying the 
potential energy U(xi - x, ) of the interaction of an arbi- 
trary pair of monomers (i, j) . 

Following Refs. 4-6, we write the distribution function 
for the configuration of polymers specified by the graph 
G{X~ 1 in the form 
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Here Nis the number of monomers in this configuration, Tis 
the absolute temperature and A, is the thermal wavelength. 
With each segment of the graph G in (6)  we associate a 
factor g(xzi - xj ) = gA (xi - x, ) ( g  is the entropy charac- 
teristic of the bond). Integrating (6)  over the coordinates of 
all the monomers, we find the free energy of the configura- 
tion G: 

In the following we shall indicate quantities pertaining 
to the initial system by a superscript k = 0, and the index 
k = 1, ..., m used for labeling the different replicas of the final 
system can be omitted (it is assumed that the values of the 
physical quantities coincide for all such k #O). 

In the initial system, in chemical equilibrium, the poly- 
mers are statistical and do not possess any definite topologi- 
cal structure. The probability of a given configuration G in 
the framework of the grand canonical ensemble (GCE) is 
equal to 

where z is the activity of the monomers. The relations ( 1) 
and (6)-(8) determine the free energy of the system with a 
frozen MSD. 

To calculate this free energy we shall consider the GCE 
for a chemically equilibrium system consisting of the initial 
system and m replicas of the final system (see the Introduc- 
tion and Fig. lb) .  Since such subsystems do not interact with 
each other, the distribution function for the configuration 
specified by the graph G{Xi )  factorizes: 

and the partition function of this GCE takes the form 

FdO' {h'O') F ,  {h) - m--1 T 

Differentiating ( 10) with respect to m, we find the identity 
(4) discussed in the Introduction which makes it possible to 
reduce the problem of the calculation of the free energy of a 
system with a frozen MSD to the problem of the equilibrium 
GCE of polymers in a space of effective dimensionality 
d( 1 + m ) .  According to (9)  and (6),  with each segment of 
the graph G in this prob!em we associate a chemical-bond 
factor: 

,n 

A representation of the partition function ( 10) in the form of 
a path integral can be found analogously. 4v5 For this we note 
first that the distribution function (9) can be represented in 
the form 

a(G{Xi) Ih(k))=(9',b(G{Xi) Ih(k)+~(k')),(n). (12) 

Here and below, the subscript cb means that only the pres- 
ence of the chemical bonds is taken into account, and the 
interactions of the monomers are completely ignored ( U'k' 
= 0). The averaging in ( 12) is to be understood in the sense 

of a field theory with a quadratic Lagrangian: 

According to ( 12), to calculate the partition function of the 
GCE it is sufficient to find it for U'k' = 0 and then average 
over the field vCk' .  The absence of interaction greatly simpli- 
fies the calculations. In particular, according to the first 
theorem of Mayer," the thermodynamic potential in ( 10) is 
equal to a sum of contributions from the connected graphs C: 

- a m .  {h"') - - z, eXP[- F:"' {h'"} -2 ] T c ~ ( 0 )  
k- 1 

We shall make use of this relation below in an analysis of a 
dilute solution of polymers. Following Ref. 4, we shall find 
one further representation of the partition function of the 
system for Vk' = 0: 

+ z* j d~ e r p  (--&(k)/~(k) ) 

1 
L, (9) = -.fj dX dXr (9-I) (X-Xr ) cp (X) lp (X') . 

2 

Performing the averaging of ( 15) over the fields v ' ~ '  ( 13), 
we finally find 
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s m  = L ~  {p) -n.{~; Z. exp [ - z h(*) ( x ( * ) )  / T i k ) ]  
k=O 

The functional n-, is calculated in the Appendix. It contains 
information about the interaction of the particles both in the 
initial and in the final system, and is expressed in terms of 
thermodynamic functions of the corresponding systems of 
broken links (b1),6p'2 i.e., in the absence of chemical bonds. 
For m = 0, 

and the expression ( 16) goes over into that found in Refs. 4- 
6. 

We now consider a dilute solution of polymers. The re- 
lation (12) makes it possible to write the generating func- 
tional of the correlation functions of the individual "mole- 
cules" with thickened bonds (see the Introduction and Fig. 
lc) in the form 

For an equilibrium system the relation ( 18) for m = 0 was 
first obtained in Ref. 5 ,  and its detailed derivation is given in 
Ref. 6. The functional T,,,, is equal, by definition, to the 
sum of the contributions of the connected graphs C with 
weight s' : 

Substituting (19) into (18) and averaging over the fields 
 we find the relation 

Differentiating (20) with respect to m, we find the second 
important relation ( 5 )  discussed in the Introduction. 

To find a field-theoretical representation of the func- 
tional Y, , we note that, upon the replacementz+zs in ( 14), 

- a m , c b  {h'k')  /T= W,,,b { s ]  h'!')). (21) 

Following Ref. 5, we write the left-hand side of (21) in the 
form 
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The replica limit n + O  is taken at the end of the calculations. 
We substitute (22) and (21) into ( 18) make use of the 
representation of the partition function ( 15) in the form of a 
path integral. Averaging ( 18) next over the fields L J ' ~ '  , we 
finally find 

where g,,g,,(~'~'), pi -pi ( X )  ( i  = 1, ..., n )  is the field of 
the replicas, and the action S,,, is given by the expression 

For m = 0 the expressions (24) and (23) go over into those 
found in Refs. 5 and 6 for the generating functional Yo of the 
individual molecules. 

The expressions ( 16) and (23), together with our proof 
of the relations (4)  and (5),  are the main result of this sec- 
tion. 

3. SYSTEM WITH A FROZEN MSD 

In such a system different molecules can overlap 
strongly and interact with each other. Therefore, the main 
interest lies in the calculation of its overall characteristics, 
which is performed in this section on the basis of the rela- 
tions (4)  and ( 16). 

In the self-consistent field (SCF) approximation the 
field @ is determined by minimizing the action S,  ( 16), and, 
in the absence of external fields, @ =p/ (  1 -p )  (p is the 
conversion, equal to the ratio of the number of bonds in the 
system to their maximum possible number Nf /2). For the 
equation of state of the system in this approximation we ob- 
tain the expression 

which is in agreement with the results of the diagram tech- 
nique of Refs. 4 and 6. In contrast to the latter papers, the 
field theory (16) makes it possible to go beyond the frame- 
work of perturbation theory. 

The SCF approximation works well for the initial sys- 
tem if the polymers are obtained in the melt,5 but may be 
violated for the final system when the latter is sufficiently 
dilute. Since in the following we shall be interested in scales 
that are large in comparison with the bond length a,  we set 

In the new coordinates r the bond length is equal to 
c = ag'Id. To investigate the fluctuation regime we expand 
the action ( 16) to terms of third order in $ = g, - @: 
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In the case of a concentrated initial system we have cd 
=p'o'ad 5 1, and the SCF approximation is applicable for its 
description. In this approximation, for m = 0, 

h=O, ~ = 2 ( f - 2 ) / ( f - I ) ,  t=l-plp,<l, Ax2B(T)/g. 

Herep, = v- 1 ) - ' is the critical value of the conversion, 
at which an infinite gel molecule first appears, and B( T) is 
the effective virial coefficient of the interaction of the mon- 
omers in the final system. 

In the region of weak fluctuations, for the Fourier com- 
ponents of the correlators of the initial and final systems we 
find the expressions 

Here V"' and V are the volumes of the corresponding sys- 
tems. The conditions T:" = 0 and 7, = 0 determine the posi- 
tion of the spinodal transition' in these systems. It is not 
difficult to show that when fluctuations in the initial system 
are neglected the perturbation-theory expansion is an expan- 
sion in the parameter x: 

Thus, the upper critical dirnensi~nal i t~ '~ d, = 8. 
We shall show that for d < d, in the region x 9 1 the 

density fluctuations are described by the single index { de- 
fined in the Introduction. For this we write out the RG 
transformation r'k' +r (k)  exp I ( k '  for the parameters of the 
action (25 ) in general form: 

T ( ~ ) = T  esp  21"', w(l)=w exp(3-d/2)1("J, 

Combining (28), we find theequation 8 ( 1 - < ') = d + f for 
the fixed point y = y* of the RG transformations. In the 
one-loop approximation the functions f and { ' are easily cal- 
culated: 

whence, for the swelling index, there follows the expression 

We shall assume that a solution of the equation for y* exists 
for all the dimensions d < 8 of interest to us. Stopping the RG 
transformations at x (I  *) = 1 (see (27) ), we find an expres- 
sion for the correlation length: 

where the parameter 7, = exp [ - 21 "'* ] that we have intro- 
duced is found from the solution of the equation 

The results (3  1 ) and (32) follow from the very fact of 
the existence of a fixed point of the RG transformations 
(28), but for the calculation of the index 6 in real space it is 
necessary to find the functions (29) in all orders in y. The 
expression (30) corresponds to the approximation f = 26 '. 
As shown in Ref. 14, this one-loop approximation gives good 
accuracy for d = 3, in contrast to the results of the usual E- 

expansion. l 3  

We now discuss the physical meaning of the results. 
With change of the quality of the solvent the correlation 
length varies nonmonotonically and reaches a maximum at 
B = B,,, , where 

( B  mar / a d ) - d 6 / ( 8 - d ) = p a " 3 - f l l + E > / 2  p=p(o)v(o)/v. 

In the case of weak repulsion of the monomers (BgB,,, ) a 
dilute solution of polymers is realized (see the next section) 
and the characteristic size 6 of the polymer coils grows as the 
repulsion becomes stronger. The decrease of 6 with increase 
of the repulsion for B% B,,, is connected with the screening 
of this interaction in a semidilute solution of polymers. In 
this limit the parameter T determining the maximum degree 
of polymerization I, r rP2 of the sol molecules (which have 
size R 2' = 6"' = ~ 1 r ( - ' / ~ ~ a I  r- the number of mole- 
cules with 1% I, is exponentially small) drops out of the rela- 
tion (32). Thus, in a semidilute solution the thermodynamic 
quantities are determined entirely by the local characteris- 
ticsp and B( T) of the system. 

In the initial system the correlation length & (3  1 ) corre- 
sponds to the scale R $'=uT;"~. In the dilute limit 
BgB,,, we find R F' = R f),  i.e., the quantity 6 ( 3  1) deter- 
mines the size of the branched molecules with degree of poly- 
merization I = 1, in the dilute solution. For B Z B,,, such 
molecules of the maximum size begin to come into contact 
with each other, and, because of the screening effect, 
R y' 5 R 2'. In the semidilute limit BSB,,, these mole- 
cules overlap strongly. For the average number I< =pld of 
monomers in a fluctuation cell we find from (3  1 ) the expres- 
sion Ig ET; 3, to which corresponds R $' =a1 r. Since the 
size of isolated treelike molecules with degree of polymeriza- 
tion 1 is equal to R j0' =a1 ' I " ,  this dependence of R $' sug- 
gests that the fluctuation cell is a more compact formation, 
incorporating a large number of molecules. Inside each large 
molecule in a semidilute solution is a set of smaller mole- 
cules. In fact, as is known for the Flory distribution,I5 the 
overwhelming number of molecules of the system have de- 
gree of polymerization I- 1, and these molecules determine 
the thermodynamic quantities of the system. Because of this 
strong polydispersity of the system under consideration a 
semidilute solution of branched polymers, in contrast to a 
semidilute solution of linear chains, cannot be described in 
the framework of the blob concept.' 

The density-density correlation function is equal to 

The important point is that it does not have singularities at 
the gel-formation pointp = p, . An exception is a dilute solu- 
tion, considered in detail in the next section. The presence of 
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a gel in such a system can be established only in "kinetic" 
experiments (e.g., on the passage of a ball of size exceeding 
the size of the gel cycles). 

4. DILUTE SOLUTION OF POLYMERS 

In this section we shall consider the characteristics of 
molecules offinite size only; i.e., in (2) we must sets# 1. The 
average value of the field pi in (24) is equal to 

where in the case s- 1 we have @+ = @- for p <p, and 
@+ > @- forp >p,. In the limit n -0 we find from (23) the 
contribution of the sol molecules: 

Here is the effective-action f~nc t i ona l ' ~ .~  for the 
field theory (24), and takes into account the contribution of 
fluctuations ofpi  about the classical field q i .  The magnitude 
of this field is found by minimizing the functional Si;. The 
expression (34), together with (5),  completely determines 
the characteristics of the sol molecules in a dilute solution. 

As in the preceding section, we shall assume that the 
initial system is a melt; this makes it possible to neglect fluc- 
tuations of its density. In such a system, as shown in Refs. 4 
and 5, the final molecules have, in the main, a treelike struc- 
ture, and topological couplings with each other are absent. 
After the topological structure is fixed by rapid cooling, such 
molecules can be separated from each other by placing them 
in an appropriate solvent. The osmotic pressure of such non- 
interacting treelike molecules for p <p, is equal to 

( p, is the density of bonds), in agreement with the fact that 
the average degree of polymerization of the system is of or- 
der unity. 

In the SCF approximation we have Szt = Sn,, where 
the action Sn, is defined in (24). From (34) and (5),  for the 
correlation functions of the individual molecules there fol- 
low the same expressions as in the initial ~ y s t e m . ~  More- 
interesting results are found in the scaling region. 

We shall consider first the behavior of a "statistical- 
average" molecule with a fixed structure in a dilute solution 
by settings = 1 in (23). When the density fluctuations in the 
initial system are neglected the average values of the fields pi 
are equal to pi = p/( 1 - p) .  We shall expand the action 
(24) in powers of $i = p, - @, . In analogy with Ref. 5 one 
can show that the fluctuations of the field 

"1 

are small, since they are connected with the density fluctu- 
ations in the initial system. Integrating over the field $with 
neglect of these fluctuations, we find an effective action that 
depends only on the replica fields $i ( i  = 1, ..., n) : 

+-[U 6 t=l dr$:- (EJ d r g i ) 3 ] }  
i=l 

For m = 0, after diagonalization of the quadratic part this 
action goes over into the action of the n-component Potts 
model, in the strong-fluctuation region ] T I  47, - c  -'' 
'6 - d ,  describing bond percolation. 1 7 9 ' 8  We shall be interest- 
ed in the opposite case 171 s ~ , ,  when one can neglect the 
cyclization of a statistical-average molecule. For m -0 the 
RG equations have the same form as the RG equations (28) 
in a system with a frozen MSD. Stopping the RG transfor- 
mations at ~ ( l * )  = 1, we find the size of molecules with de- 
gree of polymerization I = I, r T - 2: 

in complete agreement with the dilute limit (34). According 
to (361, the quantity D, = v; ' determines the fractal di- 
mension19 of a treelike molecule that has swollen in a good 
solvent. It differs substantially both from the quantity 
D 1°' = 4 for such a molecule in a melt (because of effects of 
the nonaffine character of the swelling) and from the value 
D r' = Y; for an isolated cyclic molecule. In the one-loop 
approximation, from (30) we find D, = 2(d + 2)/5, while 
for a cyclic molecule in this approximation one can obtain 
from Ref. 8 the value DAO' = 4(d  + 1)/9. Thus, a cyclic 
molecule is a less compact formation (D  hO' < D, < D 1°'), 
although its difference from a molecule with a treelike struc- 
ture is rather small. 

We now consider the characteristics of cyclic molecules 
with a fixed structure in a dilute solution. The number of 
such molecules in the initial system considered by us is ex- 
ponentially small in I, whereas the sizes have only a power- 
law dependence on I. Therefore, one can neglect the intersec- 
tion of such molecules with each other, and they too can be 
separated from the other molecules of the system as the sys- 
tem is diluted. 

To describe molecules with a specified degree of poly- 
merization I one must set s = e t >  1 in (24); the case I> 1 
corresponds to t g  1. The most important change in the ac- 
tion ( 35 ) for t # 0 is the appearance in it of an extra term (see 
also Ref. 7)  : 

An action of this form for m = 0 has also been obtained in 
the problem of a dilute solution of polymers in a state of 
chemical eq~il ibr ium.~ In this case the parameter A''' (37) is 
proportional to the virial coefficient B 'O'( T'O') of the interac- 
tion of the monomers of this system. Thus, for m -0, as well 
as the problem of the behavior of cyclic molecules obtained 
in the melt, the action (35 1, ( 37) describes the swelling of a 
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branched molecule with a fixed structure, obtained in a di- 
lute solution. 

The change of symmetry of the action with A(O'#O 
leads to the appearance of a new fixed point of the RG trans- 
formation. Near this fixed point the relevant variables are 
y'k' = K d A ( k ) ~ 2 / ~ d ,  and in the one-loop approximation for 
m - 0  the renormalization-group equations can be written in 
the form 

'3 
s 7 ( 0 ) =  (8-d) 7c0) 61(0J -- (y("))261("), 

2 

y2 61, 

The equation for y"' is independent of the other equations, 
and this reflects the obvious fact that the conditions of prep- 
aration of the polymers are independent of the conditions of 
their exploitation. It was first obtained in Ref. 8. With the 
initial condition y"' ( 0 )  = 0  we find also y"' (1"') = 0 ,  and 
the system of the other equations in ( 3 8 )  is simply the differ- 
ential form of the RG equations ( 2 8 ) .  We shall consider now 
the general case Y ' ~ ' # O .  Equations ( 3 8 )  have the first inte- 
gral 

I; 
1-1'0' = - y ( O )  y ( 0 )  

8-d ln [ y ( I )  (0) 1 
where the critical index < is calculated in ( 2 9 ) .  At large 
scales y") and y  reach a universal asymptote 

According to ( 3 9 ) ,  this implies that the swelling of such 
molecules is affine. The correlation length { determines the 
size R ,  of the molecule in dilute solution, and for the degree 
of swelling of the molecule we find from ( 3 9 )  the expression 

Thus, the swelling index {also characterizes the degree 
of swelling of a cyclic molecule upon dilution of the system. 
The relation ( 4 0 )  can be used to determine { experimentally. 
We shall make use of this relation to calculate < in the Flory 
approximation l o :  

Comparing ( 4 0 )  and ( 4 1 )  we find < = ( 8  - d ) / ( d  + 2 ) ,  
which coincides with the result ( 3 0 )  of the RG calculation. 
It is not difficult to verify that the dependence of ( 4  1 ) on 1 is 
the same as the dependence ( 3 6 )  for treelike molecules. Cy- 
clic molecules have a sparser structure (see Fig. 2 ) ,  and this 
leads to a change of the index v ,  in comparison with v , .  This 
change is not picked up by the Flory approximation. In the 

FIG. 2. Topological structure of branched molecules of degree of poly- 
merizarion I = 10. The treelike molecule ( a )  _consists of short chains of 
length I- 1, while for the cyclic molecule (b) 1% 1. 

one-loop approximation for d = 3 the difference D, - D,  
= 2/9,  and can be detected experimentally ( D ,  has the ex- 

act value 2 ) .  
By compression ( V( VO')  of a system with a frozen 

MSD one can realize the interesting case in which molecules, 
obtained in dilute solution, begin to overlap each other. 
Since in the initial strongly fluctuating system they have 
largely the same degree of polymerization 1, r t  - ' 
( t  = r - T,, ),8.20 the semidilute regime can be described in 
the framework of the blob concept. A tree structure of such 
molecules can be obtained by polycondensation of mon- 
om,ers ABf- , , when chemical reactions are permitted only 
between groups A  and B.15,20 The main difficulty in the prep- 
aration of such a system arises from the long time of estab- 
lishment of thermodynamic equilibrium in the system. 

ATHE BLOB CONCEPT IN THE THEORY OF POLYMER 
NETWORKS 

In this section we present a theory of the swelling of a 
polymer network with a fixed topological structure, ob- 
tained by equilibrium polycondensation in the melt. Since 
the molecules of the sol have a mainly treelike structure, they 
can be separated easily from the gel network. A method of 
describing a gel in a chemically equilibrium system was de- 
veloped in Ref. 5, and we shall use this method here to calcu- 
late the characteristics of a swollen polymer network. 

According to Refs. 5 and 6  for s = 1 ,  beyond the gel- 
formation point ( p  > p ,  ), besides the replica-symmetric 
ground state ( 3 3 )  the field theory ( 2 4 )  has states j = 1, ..., n 
for which this symmetry is spontaneously broken: 

Summing the quasiaverages" in each of these equivalent 
states, we find the contribution of the gel molecule to the 
functional V, ( 2 3 ) :  

Substituting (43 ) into ( 5  ) and ( 3  ), we find the free energy of 
the gel molecule: 

The osmotic pressure of such a swollen gel is equal to 

In the SCF approximation, for the thermodynamic potential 
of the gel we find an expression that coincides with the 

expression obtained in Ref. 9. This agreement is not surpris- 
ing, since, essentially, in Ref. 9  the property of self-averaging 
of the gel free energy was used. This property has been well 
studied for the example of the condensed (globular) state of 
a random heteropolymer chain, and is connected with the 
fact that in the SCF approximation a spatially uniform self- 
consistent field p* acts on the particles (see the Appendix). 

In the following we shall be interested primarily in the 
strong-fluctuation region, which cannot be considered in the 
framework of the approach of Ref. 9. To describe a network 
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that has swollen in a good solvent, we make use of the action 
(35) obtained above. In the volume approximation the func- 
tions $, are constant inside the volume occupied by the gel, 
and equal to each other outside it. Their values for m = 0 
($+ = 0, $- = 21rl/w) determine the density of the gel in 
the initial ( p"' = 21rl/wg) and final ( p =p'O'V'O'/V) sys- 
tems. Calculating the osmotic pressure with the aid of (45) 
in the SCF approximation, we find 

Herep@' is the conversion of the gel macromolecule. For the 
Fourier components of the correlation functions of the gel in 
the respective systems we obtain the expression 

where the parameter T, = r + 2AV(O)/V characterizes the 
distance from the spinodal, on which the correlation length 
{=a(  lrlrs ) - ' I4 diverges. The results (46) and (47) coin- 
cide with those obtained in Refs. 5,6, and 9. We note that in 
the model under consideration collapse of the network (7, 

= 0 )  occurs when ?r> 0 (see also the Conclusion). The re- 
gion of applicability of the SCF approximation is determined 
by the condition x 4 1, where 

and we have made use of the expression (43). 
In the region of strong fluctuations x )  1 the relations 

(46) and (47) are valid for the renormalized parameters of 
the action (35). By means of the RG transformations (28) 
we shall perform this renormalization up to the scale at 
which %(I*)  = 1. We shall show that in the case r ,  
(I * ) ) Ir(l* ) I the gel network can be described in the frame- 
work of the blob concept. 

Following Ref. 1, we shall call a fluctuation cell of a size 
equal to the correlation length { a blob. It is not difficult to 
convince oneself that the number of monomers per blob is I, 
= p p ,  i.e., the network is a close-packed system of blobs 

that are not interacting with each other. For the correlation 
length we find the expression 

Comparing (48) with (36), we find that inside a blob there 
exist correlations typical of a branched single molecule. 
From scaling arguments at scales x 3: g, for the number I(x) 
of monomers inside a sphere of radius x there follows an 
expression analogous to (48 ) : 

The probability of finding two gel monomers at a specified 
distancex 56 from each other, equal to P(x)  = l(x)/xd, de- 
termines the density-density correlation function of the gel: 

Using (49) and the renormalized relation (47), for the 
Fourier component of this correlator we obtain the expres- 
sion 

Carrying out the renormalization of the action (35) for the 
determination of the effective-action functional (43 ) , we 
find the osmotic pressure (45 ) of the swollen gel: 

This formula is a consequence of the blob concept.' For 
d = 8 it goes over into the result (46) of the SCF theory. The 
characteristic size of the region that was occupied by the 
particles belonging to one blob in the initial system is equal 
to R r ' zsa l  L'4, in complete correspondence with the fact 
that, on scales small in comparison with {"', the gel has a 
largely treelike structure. The condition for applicability of 
the blob concept to the description of polymer networks can 
be represented in the form R r' 5{'O'. In other words, the 
structure of the network should be self-similar on all scales 
up to the correlation length J. In studying such networks we 
can make use of the well-known results of the theory of semi- 
dilute solutions.' For example, the surface tension of a gel on 
a boundary with a repulsive wall is equal to c- T{' -d. 

It is clear that the applicability of the concept of blobs to 
the description of a swollen gel is not restricted by the struc- 
ture of the SCF. In the general case, for R F' 5 {''I, in (48)- 
( 5 1 ) the index v = v(O)( 1 + g), where v"' and [ are critical 
exponents for the given structure (and solvent). The most 
interesting case is that of a percolation structure, which has 
fractal dimension DF' = [v:'] -' = (d  + 2 - vp )/2 
( d  < 6), where qp is the anomalous-dimension index. For 
d < d 2" = 6 the swelling index differs from that obtained 
in (30), but the RG calculation of it is made difficult by the 
difference in the upper critical dimensionalities d, = 8 and 
d rO' = 6. In the framework of the Flory methodL0 the size R 
of the percolation cluster is found by minimizing its free 
energy: 

The index go describes the "swelling" of such a cluster when 
the interaction between its links is switched off. By making 
use of the analogy' with the calculation of the conduc- 
tivity of a percolation network, we find 1 + c0 = p12vp, 
where p, determines the conductivity critical index 
t = (d  - 2)vp + p l .  Finally, ford < 6 we obtain 

The fact that a is negative implies elastic expansion of 
the polymer network. We note that the asymptotic form 
(52) corresponds to the nonphysical region (da/dp < 0)  of 
the equation of state of the gel. It makes it possible to find the 
maximum (equilibrium) volume V,,, occupied by the gel in 
the given solvent. This is determined by the condition 
dF'g'/dV = 0, which, by means of (45), can be rewritten in 
the form a = 0. Comparing (51) and (52) we find that this 
condition implies that R T'zzg'O'. Thus, the equilibrium 
density of the swollen gel is determined by a condition on the 
threshold of overlap of single branched molecules with de- 
gree of polymerization I, = I, rrP2: 
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Equation (53) is analogous to the well-known Flory 
theorem on gels.1591 Increase of the repulsion of the mon- 
omers leads to a decrease of the quantity p,,, i.e., to swell- 
ing of the network. We note that the structure of the blobs 
differs essentially from that considered in Ref. 15. The quan- 
tity ~ ( l * )  5 1 determines the effective conversion of a gel 
consisting of such blobs, and, at the equilibrium density 
(53), r ( l*)-1.  

Because of lack of space we cannot dwell in detail on the 
description of the elastic properties of such a gel. We note 
only that the analogy indicated above makes it possible to 
carry over a considerable proportion of the results of Ref. 15, 
1, and 21 to the polymer systems under consideration. 
Flory's approachL to the description of a swollen gel near the 
gel-formation threshold has been developed in Ref. 22. 

To conclude this section we note the presence of the 
parametrization (x(x'O') of the monomers by their coordi- 
nates in the initial system. Specification of the function 
x = f(x(O)) for a certain fraction of the surface monomers 
makes it possible to describe the sticking of the surface of a 
gel to walls, and also to describe the case of partial adsorp- 
tion of polymers on a surface. 

6. CONCLUSION 

We have given a brief description of a method that 
makes it possible to reduce the problem of the theory of poly- 
mers with a frozen structure to a certain field-theoretical 
problem. Besides the problems considered, it can be used to 
study the behavior of individual molecules of a system with a 
frozen MSD in the concentrated and semidilute regimes, and 
also the behavior of mixtures of polymers of various compo- 
sitions. 

The investigation of heteropolymers with molecules of 
a fixed topological structure is of special interest. In the pres- 
ence of competition of the interactions of links of different 
types such polymers can form domain ~tructures,,~ which 
can also be described in the framework of the method pro- 
posed in this paper. 

In random heteropolymers with molecules of a fixed 
structure problems associated with the presence of disorder 
in the arrangement of monomers of different types over the 
molecule arise. Such topological disorder can lead to strong 
statistical fluctuations of physical quantities from molecule 
to molecule; see, e.g., Ref. 24. To describe these, one must 
divide the replicas into two subgroups: 

The statistical correlator of the average density of the parti- 
cles is equal to 

T GZF{h'"} 
(p (x) >(p (x') > = - lim - I rn,,r+0 mtm2 &hi (x) Ghz (x') hi,,-!I 

In the condensed state of polymers such fluctuations are 
small in the parameter N - ' I 2 .  

We now discuss the possibility of physical realization of 
the polymer models considered in the article. A small value 
of the Ginzburg number T,, such as is necessary for treelike 
sol molecules to be obtained, is realized most simply by the 
joining of linear chains byf-functional monomers. We shall 
discuss briefly the field theory for this model and the differ- 

ences between the results obtained from consideration of this 
theory and the results obtained above. The function g (6)  
associated with each segment of the graph of Fig. la has the 
meaning of the correlation function of the ends of a chain. In 
a system of chemical bonds we associate with the thickened 
segments in Figs. lb  and l c  a function Q given by 

Q-' (X-X') = Q o - I  (X-X') 

where Qo is defined in ( 11 ) and z, is the activity of the links 
of the chains. We emphasize that (54) corresponds to a fixed 
number of links of the chains. After substitution of (54) into 
( 15) the averaging over the fields v ' ~ '  is easily carried out. 

In effect, the results of these calculations reduces to a 
renormalization of the parameters of the system considered 
in this paper. The physical meaning of this renormalization 
is obvious. In a melt of chains the quantity a is equal to the 
mean-square distance between their ends. In a semidilute 
solution each chain consists of ordinary' blobs. Taking these 
blobs as the structural units, we return to the melt situation. 
The result obtained from the above-discussed renormaliza- 
tions in a swollen gel is the most important. The case when 
over a scale { there is only one blob corresponds to the usual 
Flory theory. 15,' Such a situation obtains for gels far from the 
gel-formation threshold. We consider the opposite case 

\ T I (  1 ( r  = 1 - p / p ,  ), when the number of such blobs is 
large. For long chains in the SCF approximation it is not 
difficult to show that the condition T = 0 (see (46) ) deter- 
mining the equilibrium density of the gel is fulfilled up to the 
spinodal point. In the scaling region the renormalizations 
considered here are unimportant. 

Thus, the method proposed in this paper makes it possi- 
ble to give a complete theoretical description of polymer sys- 
tems in which the molecules have a frozen topological struc- 
ture. 

The author expresses his deep gratitude to S. P. Obuk- 
hov for discussion of the results obtained. 

APPENDIX 

Calculation of the functional m, (16), (24) 

We shall calculate the functional average 

exp n,{F', z*)=(exp (-H{v(~)}) )Z)(~l, ('4.1) 

where the averaging operation is defined in ( 12) and 

For this we shall make use of the Feynman variational prin- 
ciple 

where the functional T: and the average are calculated with 
a trial action H, + H t r ,  and we choose Htr  in the form 
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The functions z ' ~ )  are found by maximizing the right-hand 
side of the inequality (A.3). After straightforward calcula- 
tions we obtain 

Here PLf'(p'k') and p'k' are the equation of state and 
chemical potential, respectively, of the corresponding sys- 
tem. In place of the functions dk' we have introduced the 
densities P ' ~ ' ,  which should be found by maximizing the 
right-hand side of (A.5). In the differentiation it is conven- 
ient touse therelationSP * =pap*. According to (A.5), the 
function p *  has the meaning of the self-consistent field act- 
ing on the monomers. Calculating explicitly the maximum 
with respect top'0', we finally find 

where the functional .ir, is given in ( 17).  
In the case of constant F* and z* the average (A.  1 ) can 

be calculated exactly, and in the thermodynamic limit the 
result of these calculations goes over into (A.6). Thus, the 
variational approach neglects those fluctuations of the ther- 
modynamic parameters of the system of broken links that 
are small in the parameter N - ' I 2 .  
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