Thermal expansion and spontaneous magnetostriction in R_2Co_7 intermetallic compounds

A.V. Andreev, M.I. Bartashevich, A.V. Deryagin, S.M. Zadvorkin, and E.N. Tarasov

A. M. Gor'kiĭ Ural State University (Submitted 27 May 1987)

Zh. Eksp. Teor. Fiz. 94, 218–229 (April 1988)

Thermal expansion in R_2Co_7 single crystals (R = Y, Nd, Gd, Tb) is investigated by x-ray dilatometry. The linear and volume magnetostriction deformations are deduced from the thermal expansion anomalies during magnetic ordering and spin-flip transitions. In conjunction with the temperature dependence of the magnitude and direction of the magnetic moment, these deformations can be used to calculate the anisotropic magnetostriction constants in the single ion model for all R_2Co_7 compounds in which the orbital moment of the rare-earth ion is nonzero.

INTRODUCTION

Because intermetallic compounds of the type R_2Co_7 (R denoting either yttrium or a rare-earth metal) form in R-Co alloy systems by a series of complex peritectic reactions, it is difficult to obtain single-phase alloys, let alone single-crystal specimens. These alloys have therefore been studied much less than related compounds such as RCo_5 or R_2Co_{17} . Yet they are of interest, as they have been found¹⁻⁶ to possess various types of magnetic anisotropy and to undergo spontaneous and induced spin-flip phase transitions; in addition, the magnetic moment becomes inverted at the temperature where the magnetic moments of the sublattices cancel, and the magnetic properties change radically when hydrogen is reversibly absorbed. Drawing an analogy with compounds of the type RCo₅ (Refs. 7–9), one anticipates that phase transitions (magnetic ordering and spin-flip) in R₂Co₇ should produce anomalies in the thermal expansion. The nature and magnitude of these anomalies can yield information on the magnetoelastic interactions, for which virtually no data is available for these compounds.

In the present work we use x-ray dilatometry to study the thermal expansion for single-crystal intermetallic compounds of the type Y_2Co_7 , Nd_2Co_7 , Gd_2Co_7 , and Tb_2Co_7 . The anomalies in the thermal expansion are used to find the linear and volume magnetostriction deformations of the crystal lattice, and the magnetostriction constants are calculated from the magnitude of the deformations and a knowledge of the temperature dependence of the magnitude and direction of the magnetic moments. The results are discussed in the framework developed in Refs. 10 and 11.

EXPERIMENTAL METHOD

The R_2Co_7 alloys, with R and Co pure to 99.9 and 99.99%, respectively, were prepared by alloying the components in an electric induction furnace in a helium atmosphere. The ingots were remelted in a resistance electric furnace to increase the grain size and were homogenized by holding them for 170 h at 1000 °C. The specimens were prepared from alloys containing less than 3% of extraneous phase (determined from x-ray and metallographic data). Single-crystal balls 2–3 mm in diameter were cut out from large grains in the ingots. We verified that specimens with subgrain misorientations less than 3° did not contain any satellite grains whose crystallographic axes deviated significantly from those of the principal grain. The temperature dependence of the magnitude and direction of the magnetic moments of the compounds was measured by a vibrating magnetometer in static fields <2MA/m between 4.2 and 800 K, by the induction method between 4.2 and 1000 K using pulsed fields to 8 MA/m, and also in a torque magnetometer between 77 and 320 K in static fields up to 2 MA/m.

The thermal expansion was investigated for T = 5-1000 K by analyzing the α_1 or β reflections recorded by the x-ray diffractometer in Fe and Cr K-radiation. For this purpose the specimens were ground perpendicular to the principal crystallographic axes. By using single crystals, we were able to get very strong reflections for all the diffraction angles of interest; in each specific case, the radiation was therefore selected to give reflections of the type $(h \ 00)$, $(hh \ 0)$, or (00l) for Bragg angles 70–80°. The relative error in measuring the lattice constants was less than 10^{-4} .

We used the formula¹²

$$T_{D} = \frac{h}{k} \left(\frac{9N}{4\pi V}\right)^{1/3} \left(\frac{1}{v_{\iota}^{3}} + \frac{2}{v_{\iota}^{3}}\right)^{-1/3}$$
(1)

for the Debye constant T_D for R_2Co_7 needed to calculate the phonon contribution to the thermal expansion. Here *h* and *k* are the Planck and Boltzmann constants, *N* is the number of atoms per unit cell, of volume *V*, and v_1 and v_1 are the mean propagation velocities for the longitudinal and transverse acoustic waves; v_1 and v_1 were measured at room temperature at 20 MHz by the pulse-phase technique in Ref. 13. For Y_2Co_7 , $T_D = 340$ K, while $T_D = 300$ K for the other compounds.

The linear magnetostriction deformations and the volume magnetostriction were determined to within 10^{-4} and $3 \cdot 10^{-4}$, respectively. The errors were estimated by extrapolating the temperature dependence of the lattice parameters for paramagnetic Th₂Co₇, with the same structure as the compounds R₂Co₇ studied here, from T > 600 K to 0 K. The error in measuring the rhombic distortions of the lattice symmetry was less than 10^{-4} .

MEASUREMENT RESULTS AND DISCUSSION

Structurally, the R_2Co_7 compounds can be regarded as consisting of a combination of hexagonal RCo₅ elements (with the same structure as CaCu₅, space group P6/mm) and cubic RCo₂ elements (MgCu₂ structure, space group *Fd* 3*m*), the elements alternating along a common third-order axis. The repeating structural unit $2RCo_5 + 2RCo_2$ contains two R₂Co₇ formula units and has unit cell parameters $a \approx 0.5$ nm and $c \approx 1.2$ nm (hexagonal crystal derivation). A double-layer arrangement of the structural units ($c \approx 2.4$ nm) gives rise to the hexagonal modification of R_2Co_7 with the same structure as Ce_2Ni_7 (space group $P6_3/mmc$). A triple-layer packing ($c \approx 3.6$ nm) gives the rhombohedral modification of type $\operatorname{Gd}_2\operatorname{Co}_7(R\overline{3}m)$. The metals in the cerium subgroup generally give hexagonal compounds R_2Co_7 , while a rhombohedral structure is preferred for yttrium. It is found experimentally that the Curie temperature T_c and the molecular magnetic moment μ_m do not depend on whether the crystal lattice is hexagonal or rhombohedral,² but that the anisotropy does depend on the symmetry of the R_2Co_7 crystal.³ Our Nd₂Co₇ and Gd₂Co₇ crystals were hexagonal and rhombohedral, respectively, while both hexagonal and rhombohedral Y_2Cr_7 and Tb_2Co_7 crystals were used. The structure of the unit cell is easily established from the Laue diffraction pattern—if a 1/m symmetry plane is present the space group is $P 6_3/mmc$, otherwise it is $R \overline{3}m$.

Figure 1 shows $\mu_m(T)$ for the specimens; these curves were used to calculate the magnetostriction constants. Figure 2 shows the temperature dependence of the lattice constants *a*, *c* and of the unit cell volume $V = a^2c3^{1/2}/2$ for rhombohedral Y₂Co₇. Since yttrium has no magnetic moment, the results for Y₂Co₇ reflect the magnetostriction of the cobalt subsystem in R₂Co₇. The dashed lines in Fig. 2 show the phonon contribution to the thermal expansion. It was determined by extrapolating the temperature curves for *a*, *c*, and *V* from the paramagnetic to the magnetically ordered regions. The extrapolation was based on the following equations, derived from the Debye theory and Grüneisen's law (see, e.g., Ref. 14):

$$a_{0}(T) = a_{0}(0) + A_{1}TF(T_{D}/T),$$

$$c_{0}(T) = c_{0}(0) + A_{2}TF(T_{D}/T),$$

$$V_{0}(T) = V_{0}(0) + A_{3}TF(T_{D}/T).$$
(2)

Here $a_0(T)$, $c_0(T)$, and $V_0(T)$ are the extrapolated values, and the A_i are constants. The function F is defined by

FIG. 1. Temperature behavior of the molecular magnetic moments μ_m (divided by the Bohr magneton μ_B) for Y₂Co₇ (1), Nd₂Co₇ (2), Gd₂Co₇ (3), Tb₂Co₇ (4), (Tb_{0.8} Y_{0.2})₂Co₇ (5), (Tb_{0.6} Y_{0.4})₂Co₇ (6).

FIG. 2. Temperature dependence of the lattice parameters a, c and unit volume V for rhombohedral Y₂Co₇.

where C_V is the specific heat at constant volume (tabulated, e.g., in Ref. 15).

Figure 2 shows that for $T < T_c$, a, c, and V(T) for Y_2Cr_7 differ from the predictions of the Debye theory. The relative differences $\Delta a/a$, $\Delta c/c$, and $\Delta V/V$ between the measured and extrapolated values are equal to the spontaneous linear (λ_a, λ_c) and volume (λ_V) magnetostriction deformations during the magnetic ordering transition. The thermal expansion for hexagonal Y_2Co_7 is the same as for the rhombohedral modification: λ_a, λ_c , and λ_V are identical, i.e., the crystal lattice symmetry does not affect the spontaneous magnetostriction of the cobalt subsystem in R_2Co_7 .

Up to constants of fourth order, the linear magnetostriction for crystals with a distinguished symmetry axis (hexagonal, rhombohedral, and tetragonal crystal classes) is given by the formula¹⁶

$$\lambda = \lambda_{1}^{\alpha,0} (\beta_{x}^{2} + \beta_{y}^{2}) + \lambda_{2}^{\alpha,0} \beta_{z}^{2} + \lambda_{1}^{\alpha,2} (\beta_{x}^{2} + \beta_{y}^{2}) (\alpha_{z}^{2} - \frac{1}{3}) + \lambda_{2}^{\alpha,2} \beta_{z}^{2} (\alpha_{z}^{2} - \frac{1}{3}) + \lambda^{7,2} [\frac{1}{2} (\beta_{x}^{2} - \beta_{y}^{2}) (\alpha_{x}^{2} - \alpha_{y}^{2}) + 2\beta_{x} \beta_{y} \alpha_{x} \alpha_{y}] + 2\lambda^{\epsilon,2} (\beta_{x} \alpha_{x} + \beta_{y} \alpha_{y}) \beta_{z} \alpha_{z} + \lambda_{1}^{\alpha,4} (\beta_{x}^{2} - \beta_{y}^{2}) (7\alpha_{z}^{4} - 6\alpha_{z}^{2} + \frac{3}{3}) + \lambda_{2}^{\alpha,4} \beta_{z}^{2} (7\alpha_{z}^{4} - 6\alpha_{z}^{2} + \frac{3}{3}) + \lambda_{1}^{7,4} [\frac{1}{2} (\beta_{x}^{2} - \beta_{y}^{2}) (\alpha_{x}^{2} - \alpha_{y}^{2}) + 2\beta_{x} \beta_{y} \alpha_{x} \alpha_{y}] (\alpha_{z}^{2} - \frac{1}{7}) + \lambda_{2}^{7,4} [(\beta_{x}^{2} - \beta_{y}^{2}) (6\alpha_{x}^{2} \alpha_{y}^{2} - \alpha_{x}^{4} - \alpha_{y}^{4}) + 8\beta_{x} \beta_{y} \alpha_{x} \alpha_{y} (\alpha_{x}^{2} - \alpha_{y}^{2})] . + 2\lambda^{\epsilon,4} (\beta_{x} \alpha_{x} + \beta_{y} \alpha_{y}) \beta_{z} \alpha_{z} (\alpha_{z}^{2} - \frac{1}{7}) + \dots .$$
(3)

Here β_i, α_i are the direction cosines for the magnetostriction and magnetic moment vectors, respectively. The zero-order constants $\lambda_1^{\alpha,0}$, and $\lambda_2^{\alpha,0}$ (in the basal plane and along the x axis, respectively) characterize the "exchange" magnetostriction, which depends on the strength of the magnetic moment. The remaining constants describe the deformations that depend on the direction of the magnetic moment (the anisotropic magnetostriction). The constants $\lambda_i^{\alpha,0}, \lambda_i^{\alpha,2}$, and $\lambda_i^{\alpha,4}$ appear because the lattice parameters can change even though the crystal symmetry remains the same (this is alpha-striction). The constants $\lambda_i^{\gamma,2}$ and $\lambda_i^{\gamma,4}$ describe the rhombic distortions (gamma-striction), and $\lambda_i^{\epsilon,2}$ and $\lambda^{\epsilon,4}$ describe monoclinic distortions. In most cases, only constants of zero and second order need be considered (in particular, they suffice to describe alpha-striction in R₂Co₇); however, we will see below that constants through fourth order are needed to describe the gamma-striction.

In Y_2Co_7 the magnetic moment lies along the *c* axis for temperatures below T_c . We therefore find from (3) that

$$\lambda_{a}(T) = \lambda_{b}(T) = \lambda_{1}^{\alpha,0}(T) + \frac{2}{3}\lambda_{1}^{\alpha,2}(T),$$

$$\lambda_{c}(T) = \lambda_{2}^{\alpha,0}(T) + \frac{2}{3}\lambda_{2}^{\alpha,2}(T), \quad \lambda_{V}(T) = 2\lambda_{a} + \lambda_{c}.$$
 (4)

Figure 3 compares the temperature curves for the magnetostriction deformations with the temperature dependence of the square of the magnetic moment for Y_2Co_7 . The linear deformations as well as λ_V are seen to be proportional to μ_m^2 , and λ_a and λ_c are enormous, roughly 10^{-3} . According to present theory, ^{10,11} such large linear deformations can arise only through exchange magnetostriction or through anisotropic magnetostriction of the single ion type. However, the temperature dependence of the single-ion magnetostriction must thus be responsible for the large λ_a and λ_c in Y_2Co_7 , and just as in the case of RCo_5 (Ref. 9) we conclude that the anisotropic alpha-striction of the subsystem contributes negligibly to λ_a and λ_c , i.e., $\lambda_a \approx \lambda_1^{a,0}$, $\lambda_c \approx \lambda_2^{a,0}$. The expression¹⁷

$$\lambda_{\rm v} = n_{\rm CoCo} \mu_{\rm Co}^2 + n_{\rm RCo} \mu_{\rm Co} \mu_{\rm R} + n_{\rm RR} \mu_{\rm R}^2 \tag{5}$$

for the magnetoelastic coupling coefficient $n_{\rm CoCo}$ gives the value $3.1 \cdot 10^{-3} \mu_B^{-2}$ for $\rm Y_2Co_7$ (we have used the fact that $\mu_{\rm R} = 0$ for $\rm R = \rm Y$), and it follows from Fig. 3 that $n_{\rm CoCo}$ is independent of T. The volume magnetostriction in $\rm Y_2Co_7$ is less than in YCo₅. This is because the cobalt magnetic moment is considerably smaller (at T = 0 K, $\mu_{\rm Co} = 1.37\mu_B$ for $\rm Y_2Co_7$ as compared with $\mu_{\rm Co} = 1.65\mu_B$ in YCo₅). However, $n_{\rm CoCo}$ is larger than the value $2.5 \cdot 10^{-3}\mu_B^{-2}$ for YCo₅.

We found previously^{18,19} that in RCo₅ compounds with tetravalent Ce and Th, the coefficients n_{CoCo} are also much larger than for YCo₅. These results indicate that the magnetoelastic coupling in the cobalt subsystem in R–Co compounds is enhanced when the *d*-band is filled by valence electrons from the rare-earth metal, partly because the effective valence of the R ions is increased, and partly because their concentration is higher.

The thermal expansion for Gd_2Co_7 is shown in Fig. 4; like Y_2Co_7 , this compound is magnetically uniaxial for all temperatures below T_c . The curves a, c, V(T) are therefore qualitatively the same also.

FIG. 3. Spontaneous linear (λ_a, λ_c) and volume (λ_V) magnetostriction deformations in Y₂Co₇ as functions of the square of the molecular magnetic moment μ_m .

FIG. 4. Temperature dependence of the lattice parameters a, c and unit cell volume V for Gd₂Co₇.

Figures 5 and 6 show how a,c, and V depend on T for Nd_2Co_7 and Tb_2Co_7 . In addition to the unusual behavior of the thermal expansion at T_c , two other anomalies not present for Y₂Co₇ are apparent. First, rhombic distortions set in at low temperatures. A third parameter b (identically equal to $a\sqrt{3}$ in the absence of distortions) is needed to describe the unit cell. Table I lists values for $\lambda_a, \lambda_b, \lambda_c, \lambda_V$ extrapolated to T = 0 K, in addition to the volume coefficient of thermal expansion α_{V} at temperatures for which the material is paramagnetic (T = 800 K). Second, the thermal expansion [particularly the curve c(T)] is influenced by spin-flip phase transitions. These two effects are both due to the anisotropic magnetostriction and will be discussed below. Let us first consider the volume magnetostriction. Figure 7 shows $\lambda_{V}(T)$ for the compounds we investigated. We see that in contrast to the case of R_2Fe_{17} (Ref. 20) and $R_2Fe_{14}B$ (Ref. 21), λ_V depends strongly on the rare-earth ion R, indicating that the R-Co interaction plays a significant role in

FIG. 5. Temperature dependence of a, c, V, and the rhombic distortions in Nd_2Co_7 .

FIG. 6. Temperature dependence of *a*, *c*, *V*, and the rhombic distortions for hexagonal (\bigcirc) and rhombohedral (\bigcirc) Tb₂Co₇.

the exchange magnetostriction in R_2Co_7 . The linear magnetostriction deformations differ somewhat for hexagonal and rhombohedral Tb₂Co₇, evidently because the anisotropic magnetostrictions differ, as λ_{ν} is the same in both cases. The lattice symmetry thus does not affect the Co–Co and R–Co magnetoelastic interactions associated with exchange effects.

We made the following assumptions in calculating the coefficients $n_{\rm RCo}$.

1. $n_{\rm RR} = 0$; this follows from the familiar fact that the R-R magnetoelastic interaction contributes negligibly to the exchange magnetostriction in 4f-3d compounds.

2. The magnetic moment μ_{Co} in R_2Co_7 is the same as for $Y_2Co_7.$

3. If differences in the compressibilities are neglected, n_{CoCo} for R₂Co₇ is the same as for Y₂Co₇.

4. The compressibility is proportional to α_V in the paramagnetic region, so that it suffices to consider the ratio of α_V for R₂Co₇ and Y₂Co₇.

The resulting values n_{RCo} and n_{CoCo} are shown in Table I. We see that although n_{RCo} is an order of magnitude less than n_{CoCo} , the contribution from the R-Co exchange interaction is extremely large owing to the large magnetic moment μ_R . The sign of n_{RCo} differs for the various compounds, possibly because the magnetic ordering between the R- and Co-sublattices is different: it is ferromagnetic for light R (Nd) and ferrimagnetic for heavy R (Tb, Gd).

FIG. 7. Temperature dependence of the spontaneous volume magnetostriction λ_{ν} for Nd₂Co₇ (\bigcirc), Gd₂Co₇ (\bigcirc), and Tb₂Co₇ (\bigcirc).

As we have noted above, thermal expansion anomalies and rhombohedral distortions of the lattice are both present for Nd_2Co_7 and Tb_2Co_7 ; the latter distortions arise because the easy axis of magnetization (EA) for these compounds is not parallel to the c axis at low temperatures. The spin-flip transition in Nd₂Co₇ and Tb₂Co₇ may be attributed to competition between the uniaxial anisotropy of the cobalt sublattice, dominant at high temperatures, and the multiaxial anisotropy of the rare-earth sublattice, which dominates at low temperatures. The spin-flip transition for hexagonal Nd₂Co₇ and Tb₂Co₇ occurs in the intervals 226–290 and 423–450 K, respectively. Figure 8 shows how the angle φ between the c and EA axes depends on T. In the "planar" region the easy axis in Nd₂Co₇ lies in planes of the type ac, while in Tb₂Co₇ they lie in the planes bc, as predicted by the single-ion magnetostriction model.

Unlike the RCo₅ compounds studied previously,^{7,8,22} in which the R-ions occupy only a single crystallographic position, the direction of the easy axis in R₂Co₇ is also determined by competition between the magnetic anisotropies of R ions occupying inequivalent sites in the lattice and possessing local environments with different symmetries (cubic for RCo₂, hexagonal for RCo₅). The spin-flip transition in Nd₂Co₇ is thus shifted to lower temperatures than for Nd₂Co₅, even though the rare-earth metal concentration in Nd₂Co₇ is higher. Rhombohedral Tb₂Co₇ exhibits a complex type of triaxial anisotropy; the easy axis lies in the basal plane only in the special case when T = 330 K—at all other temperatures below 450 K, the angle φ differs from 90° (Fig. 8).

To determine the constants for the anisotropic alpha-

TABLE I. Spontaneous magnetostriction deformations $\lambda_a, \lambda_b, \lambda_c, \lambda_V$ (all at 0 K), volume thermal expansion coefficient α_V (at 800 K), and magnetoelastic coupling coefficients $n_{\text{CoCo}}, n_{\text{RCo}}$ for several compounds R_2 Co₇.

R	$\lambda_{a}, 10^{-3}$	λ _b , 10-3	$^{\lambda}c^{,\ 10^{-3}}$	λ_V , 10 ⁻³	$^{\alpha_V}_{10^{-5}}$ K ⁻¹	$n_{COCO},$ 10-3 μ_B^{-2}	$n_{\rm RCO},$ 10 ⁻³ μ_B^{-2}
Y Nd Gd Tb	$\begin{array}{c c} 1.2 \\ -0.3 \\ 2.7 \\ 0.9* \\ \hline 1.0 \end{array}$	$ \begin{array}{r} 1.2\\ 2.1\\ 2.7\\ 4.0*\\ \overline{3.9} \end{array} $	$ \begin{array}{r} 3.4 \\ 3.2 \\ 5.6 \\ 3.1* \\ 3.0 \end{array} $	$5.8 \\ 5.0 \\ 11.0 \\ 8.0$	$4.3 \\ 4.4 \\ 5.2 \\ 4.2$	3.1 3.2 3.7 3.0	$ \begin{array}{c} 0 \\ -0.2 \\ 0.4 \\ 0.3 \end{array} $

*The upper and lower values are for hexagonal and rhombohedral unit cells, respectively.

FIG. 8. Temperature dependence of the angle between the easy axis and the [001] axis for hexagonal Nd₂Co₇ (1), Tb₂Co₇ (2), and rhombohedral quasibinary (Tb_{1-x}Y_x)₂Co₇ with x = 0 (3), 0.2 (4), and 0.4 (5).

striction, one can use the technique we employed previously to study RCo₅ compounds, for which the structure is not appreciably distorted.^{7,8} This is because in the present case, the rhombic distortions disappear before the onset of the spin-flip transition in hexagonal Nd₂Co₇ and Tb₂Co₇ crystals, while for rhombohedral Tb₂Co₇ they disappear before one reaches the temperatures at which $\varphi(T)$ changes most strongly (i.e., for which the curves a(T) and c(T) become anomalous), so that $\lambda_a \approx \lambda_b$. One finds that the additional magnetostriction deformations accompanying rotation of the easy axis are proportional to $\cos^2 \varphi$ (Fig. 9). According to Eq. (3), this indicates that as in the case of RCo₅, the contribution from the anisotropic alpha-striction to the anomalous thermal expansion can be described by constants of second order: $\lambda_1^{\alpha,2}$ and $\lambda_2^{\alpha,2}$. Since there is no anomaly caused by volume magnetostriction, we have $2\lambda_1^{\alpha,2} = -\lambda_2^{\alpha,2}$. Calculating $\lambda_1^{\alpha,2}$ and $\lambda_2^{\alpha,2}$ at the midpoint of the spin-flip interval as described in Refs. 7 and 8, we obtain $\lambda_1^{\alpha,2} = -0.4 \cdot 10^{-3}$, $\lambda_2^{\alpha,2} = 0.8 \cdot 10^{-3}$ for Nd₂Co₇ at T = 250 K and for hexagonal Tb₂Co₇ at T = 430 K. The values for rhombohedral Tb₂Co₇ at T = 430 K are essentially the same.

 $\begin{array}{c} \mathbf{B} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{C} \\ \mathbf{$

FIG. 9. Linear magnetostriction deformation $\Delta l / l_0$ as a function of the angle φ between the easy axis and the [001] axis for Nd₂Co₇ (a) and Tb₂Co₇ (b); O, hexagonal unit cell; \bullet , rhombohedral unit cell. $\Delta l / l_0$ was found by extrapolating the temperature curves for the lattice parameters (from the region of planar anisotropy for the hexagonal crystals, and from the magnetically uniaxial region for rhombohedral Tb₂Co₇, respectively).

In view of the results of our investigation of the spontaneous magnetostriction for Y_2Co_7 , indicating that the anisotropic striction in the cobalt subsystem is negligible, we used the single-ion magnetostriction model to extrapolate the above values of $\lambda_1^{\alpha,2}$ and $\lambda_2^{\alpha,2}$ for Nd₂Co₇ and Tb₂Co₇ to T = 0 K, and then calculated $\lambda_1^{\alpha,2}(0)$ and $\lambda_2^{\alpha,2}(0)$ for all the R₂Co₇ compounds with magnetic ions (i.e., ions with nonzero orbital moment), as was done previously for RCo₅ in Ref. 8. The results of the calculation are shown in Table II. These values of the anisotropic alpha-striction constants for Nd₂Co₇ and Tb₂Co₇ were used to analyze the exchange alpha-striction, also shown in Table II.

By comparing the magnetostriction constants for RCo_5 (Ref. 8) and R_2Co_7 we conclude that the exchange magnetostriction constants decrease and the anisotropic magnetostriction constants increase with increasing R-ion concentration. This is yet another indication that in rare-earth metallides containing metals in the iron group, most of the

TABLE II. Magnetostriction constants for R_2Co_7 at T = 0 K.

R	$\lambda_{1}^{\alpha, 2}, 1, 10^{-3}$	$\lambda_2^{\alpha, 2}, 10^{-3}$	$\lambda_{1}^{\alpha, 0}, \frac{0}{10^{-3}},$	$\lambda_{2}^{\alpha, 0}, 10^{-3}, 10^{-3}$	λγ, 2 10-3	$\lambda_1^{\gamma, 4}, 10^{-3}$	$\lambda_2^{\gamma, 4}, 10^{-3}$
Pr	-2.0	4.0			$\frac{1.1*}{1.3}$ 0.9*	$\frac{27.8 *}{37.2}$ 16.7 *	0.6 * 0.8 0.5 *
Sm	-1.4 2,3	2.8 4.6	0.6	3.8 —	$\frac{1.0}{-1.2*}$	$ \begin{array}{r} 22.6 \\ -4.5 * \\ -6.1 \end{array} $	-0.6 -0.1* -0.1
Tb **	-3.2	6.4	1.6	4.7	$\frac{1.7*}{2.1}$	-16.7* -22.0	$\frac{-0.5 *}{-0.6}$
Dy	-3.0	6.1	-		$\frac{1.6*}{2.0}$	$\frac{20.5 *}{27.4}$	$\frac{0.6}{0.6}$
Ho	-1.2	2.3	. —	-	$\frac{0.6*}{0.8}$	$\frac{14.2}{19.0}$	
Er	1.1	-2.2	-	-	$\frac{-0.6}{-0.7}$	$\frac{-13.1+}{-17.5}$	$\frac{-0.4}{-0.5}$
Tm	2.7	-5.4	-	-	$\frac{-1.4}{-1.7}$	$\frac{-17.4}{-23.4}$	$\frac{-0.3}{-0.6}$

*Upper and lower values are for hexagonal and rhombohedral unit cells.

**Experimental. All other values were calculated using the single-ion magnetostriction model.

FIG. 10. Temperature curves for gamma-magnetostriction in hexagonal Tb₂Co₇ (a), Nd₂Co₇ (b) and rhombohedral $(Tb_{1-x}Y_x)_2Co_7$ (c). The points and dashed curves give experimental and calculated results, respectively. The calculations were based on the single-ion magnetostriction model and included only the second-order constants $\lambda^{\gamma,2}$; the solid curves include both the second- and fourth-order constants $(\lambda^{\gamma,2},\lambda_1^{\gamma,4})$, and $\lambda_2^{\gamma,4}$).

contribution to the anisotropic magnetostriction is from the single-ion interaction of the 4f-shell of the rare-earth metal with the crystal field, while the magnetoelastic interaction among the collectivized 3d-electrons gives the dominant contribution to the exchange magnetostriction.

Figure 10 shows the temperature dependence of the gamma-striction for Nd_2Co_7 and Tb_2Co_7 deduced from the rhombic distortions for crystals with a distinguished axis of symmetry using the following formulas:

$$\lambda^{\gamma} = \lambda_a - \lambda_b = \lambda^{\gamma,2} \sin^2 \varphi + \lambda_1^{\gamma,4} \sin^2 \varphi (^{\theta}_{7} - \sin^2 \varphi) - 2\lambda_2^{\gamma,4} \sin^4 \varphi,$$
(6a)

$$\lambda^{\tau} = \lambda_{b} - \lambda_{a} = \lambda^{\tau,2} \sin^{2} \varphi + \lambda_{1}^{\tau,4} \sin^{2} \varphi (\frac{6}{7} - \sin^{2} \varphi) + 2\lambda_{2}^{\tau,4} \sin^{4} \varphi,$$
(6b)

which follow from (3). The first holds when the easy axis lies in the (100) plane, as in Nd_2Co_7 , the second when the easy axis is parallel to (010), as in Tb₂Co₇. The large value of λ^{γ} testifies to the single-ion nature of the gamma-striction, since we have already pointed out, none of the other magnetostriction mechanisms currently known can lead to anisotropic strictions greater than 10^{-4} . The results of our investigation of rhombic distortions in the quasibinary compounds $(Tb_{1-x}Y_x)_2Co_7$ presented below also point to a dominant single-ion contribution to λ^{γ} . Since the anisotropic alpha-striction is accurately described by second-order constants, it seems plausible that λ^{γ} should be describable in terms of the constant $\lambda^{\gamma,2}$. However, the single-ion model predicts that $\lambda^{\gamma,2}$ should have the same sign for Nd₂Co₇ and Tb₂Co₇, whereas one finds experimentally that λ^{γ} is negative (resp., positive) (Fig. 10). In addition, λ^{γ} falls off as T increases much faster than predicted by the single-ion model neglecting the contribution from cobalt to λ^{γ} .

As in the RCo_2 compounds, the cobalt subsystem plays an important role in the anisotropic magnetostriction. Indeed, the R_2Co_7 crystal lattice contains "fragments" of the RCo_2 cubic structure, and it would seem, judging from the available evidence, that these portions of the crystal are responsible for the enormous magnitude of the gamma-stricClearly, the fourth-order magnetostriction constants $\lambda_1^{\lambda,4}$ and $\lambda_2^{\gamma,4}$ are also needed to describe the gamma-striction in R₂Co₇ [see Eq. (3)]. According to the single-ion model, these constants have opposite signs for Nd₂Co₇ and Tb₂Co₇ and should decrease in absolute value much faster than $\lambda^{\gamma,2}$ with increasing temperature.

The measurement results for Y_2Co_7 cannot be used to estimate the magnitude of the cobalt contribution to the gamma-striction because T_2Co_7 (as noted above) is uniaxial, so that the rhombic distortion in this compound must vanish in principle even though the gamma-striction constants may be large. We therefore analyzed rhombic distortion in the related quasibinary compounds $(Tb_{1-x}Y_x)_2Co_7$ with a rhombohedral structure (x = 0, 0.2, 0.4). All these materials exhibit the same kind of magnetic anisotropy. Dilution of the terbium sublattice by nonmagnetic yttrium ions causes the angle φ at T = 0 K to become smaller, and the transition temperature T_2 to the uniaxial state also drops [see the curves $\varphi(T)$ in Fig. 8]. In our analysis we assumed that the dependence of $\mu_{\rm Co}$ on the reduced temperature T/ T_c for $(Tb_{1-x}Y_x)_2Co_7$ is the same for all x; $\mu_{Tb}(T)$ for compositions with different x is then equal to the difference between μ_m for x = x and x = 0 at a fixed reduced temperatur T/T_c . We assumed further that the cobalt contribution to the gamma-striction is independent of x and describable, like the magnetic anisotropy of the cobalt sublattice, using second-order constants. Finally, we postulated that the constants $\lambda_{Tb}^{\gamma,2}$, $\lambda_{1Tb}^{\gamma,4}$, and $\lambda_{2Tb}^{\gamma,4}$ behave as predicted by the single-ion model, i.e., they depend linearly on x and vanish when x = 1, and that the temperature dependence is given by the formula²²

$$\lambda_{l}(T)/\lambda_{l}(0) = \mathscr{L}_{l}^{J}(\sigma), \qquad (7)$$

where l is the order and $\mathcal{L}_{1}^{J}(\sigma)$ (tabulated in Ref. 22) is a modified normalized Bessel function involving the total momentum quantum number J.

With the above assumptions, we can substitute our experimental values for $\lambda^{\gamma}(T)$ and $\varphi(T)$ into (3) and solve for the gamma-striction constants. We find that $\lambda_{Co}^{\gamma,2}$ is less than $2 \cdot 10^{-4}$, i.e., is at least an order of magnitude less than λ^{γ} , and may thus be neglected.

For rhombohedral Tb₂Co₇ we obtain $\lambda^{\gamma,2} = 2.1 \cdot 10^{-3}$, $\lambda_1^{\gamma,4} = -22 \cdot 10^{-3}$, and $\lambda_2^{\gamma,4} = -0.5 \cdot 10^{-3}$ at T = 0 K. Figure 10 shows that the curves $\lambda^{\gamma}(T)$ for the various compositions $(Tb_{1-x}Y_x)_2Co_7$ agree closely with the experimental data. However, if these values are used to calculate λ^{γ} for hexagonal Tb₂Co₇, we get a value $4.2 \cdot 10^{-3}$ which is 50% larger than the experimental result. The constants $\lambda^{\gamma,2}$ and $\lambda_i^{\gamma,4}$ thus differ for the hexagonal and rhombohedral modifications. The lattice symmetry therefore significantly influences the gamma-striction constants for R₂Co₇, but not the exchange and anisotropic alpha-magnetostrictions, which are independent of the symmetry.

Equations (6) simplify greatly for hexagonal Nd₂Co₇ and Tb₂Co₇ at the temperatures for which the rhombic lattice distortions are appreciable, because in this case $\varphi = 90^\circ$. For Nd₂Co₇ (easy axis parallel to [100])

$$\lambda^{\gamma} = \lambda_a - \lambda_b = \lambda^{\gamma,2} - \frac{1}{7} \lambda_1^{\gamma,4} - 2\lambda_2^{\gamma,4}.$$
(8a)

while for Tb_2Co_7 (easy axis parallel to [120])

$$\lambda^{\tau} = \lambda_b - \lambda_a = \lambda^{\tau, 2} - \frac{i}{2} \lambda_i^{\tau, 4} + 2\lambda_2^{\tau, 4}.$$
(8b)

Substitution of the experimental values into (8) yields $\lambda^{\gamma,2} = 0.9 \cdot 10^{-3}$ for R = Nd and $1.7 \cdot 10^{-3}$ for R = Tb at T = 0 K. The ratio of $\lambda^{\gamma,2}$ for Nd₂Co₇ and Tb₂Co₇ agrees closely with the ratio of the quantities $\alpha_J J (J - 0.5) \langle r_{4f}^2 \rangle$ for the ions Nd³⁺ and Tb³⁺, which is evidence for the validity of the assumptions made in the calculations (α_J is the Elliot-Stevens constant and $\langle r_{4f}^2 \rangle$ is the mean square radius of the 4*f*-shell).

Because φ is constant for the temperatures for which rhombic distortions are present, while $\lambda_1^{\gamma,4}$ and $\lambda_2^{\gamma,4}$ depend in the same way on temperature, (8) yields only a linear combination of the fourth-order constants. To find $\lambda_1^{\gamma,4}$ and $\lambda_2^{\gamma,4}$ separately, we exploit the fact that the products $\beta_J J (J - 0.5) (J - 1) (J - 1.5) \langle r_{4f}^2 \rangle$ for Nf³⁺ and Tb³⁺ have the same magnitude but opposite sign (β_J is the Elliot-Stevens constant), and these products determine the singleion fourth-order magnetostriction constants. It follows that

$$\lambda_{1 \text{ Nd}}^{\tilde{\gamma},4} = -\lambda_{1 \text{ Tb}}^{\tilde{\gamma},4}, \quad \lambda_{2 \text{ Nd}}^{\tilde{\gamma},4} = -\lambda_{2 \text{ Tb}}^{\tilde{\gamma},4}.$$

We then obtain $\lambda_1^{\gamma,4} = 16.7 \cdot 10^{-3}$ and $\lambda_2^{\gamma,4} = 0.5 \cdot 10^{-3}$ for Nd₂Co₇ at T = 0 K; the corresponding values for Tb₂Co₇ have the same magnitude but are negative. The curves $\lambda^{\gamma}(T)$ obtained using these values for hexagonal Nd₂Co₇ and Tb₂Co₇ agree closely with the experimental data (Fig. 10). It is evident by comparing the gamma-striction constants for hexagonal and rhombohedral Tb₂Co₇ that the uniaxial magnetoelastic interaction is enhanced at the lower (rhombohedral) symmetry.

Just as we did above for the anisotropic alpha-striction, we can use the values of $\lambda^{\gamma,2}$, $\lambda_1^{\gamma,4}$, and $\lambda_2^{\gamma,4}$ to calculate the gamma-striction constants at T = 0 K in the single-ion model for all compounds R₂Co₇ in which the R ions have an anisotropic 4*f*-shell. The results are shown in Table II.

CONCLUSIONS

For compounds with a large magnetic anisotropy the determination of the magnetostriction constants, which are an important characteristic of magnetic materials, poses serious technical difficulties. For one thing, it is not easy to obtain single-crystal specimens large enough to suit the standard methods for investigating magnetoelastic properties. For another, one must work with very strong magnetic fields comparable to the anisotropy fields, which may be as strong as 50–100 T. Furthermore, the external field deforms the starting magnetic structure in highly anisotropic magnets, and because of the strong magnetoelastic interactions, the housing of the sensor recording the change in the sample shape and dimensions may significantly alter the values obtained for the magnetostriction deformations. Finally, there is no practical method for measuring the constants associat-

ed with exchange effects. Because of these difficulties, the magnetoelastic properties of the rare-earth intermetallides are much less known that the magnetic moments, the magnetic-ordering transition temperatures, or the anisotropies. Although the sensitivity of the dilatometric technique employed in this paper is quite low $(1 \cdot 10^{-4})$, it is perfectly adequate for studying magnetostriction in the rare-earth intermetallides, for which the magnetostriction may be as large as 10^{-3} - 10^{-2} .

In conjunction with measurements of the magnitude and direction of the magnetic moment, our x-ray studies of thermal expansion in R_2Co_7 single crystals make it possible for the first time to obtain data on all the magnetostriction constants (except epsilon-striction). We may summarize our work as follows.

1. Magnetic ordering in R_2Co_7 is accompanied by a large positive volume magnetostriction due to primarily to the Co-Co magnetoelastic interaction. The magnetoelastic coupling coefficient for the R-Co interaction is an order of magnitude weaker; however, due to the large magnetic moments of the rare-earth ions, the R-Co interaction also contributes significantly to the volume magnetostriction. The crystal symmetry has no effect on volume magnetostriction in R_2Co_7 .

2. The magnetostriction for the cobalt subsystem in R_2Co_7 is describable in terms of the constants $\lambda_1^{\alpha,0}$ and $\lambda_2^{\alpha,0}$, which are of exchange origin. The contribution from cobalt to the anisotropic alpha- and gamma-strictions (which leave the crystal symmetry unchanged and reduce it, respectively) is negligible compared to the contribution from the rare earth subsystem.

3. The anisotropic magnetostriction for the rare-earth sublattice in R_2Co_7 is described by the single-ion model. Second-order constants suffice to describe the alpha-striction, but gamma-striction requires constants through fourth order as well. Although the entire rare-earth sublattice contributes to the alpha-striction, the gamma-striction is due almost completely to the rare-earth ions at the quasicubic sites. The gamma-striction constants depend on the symmetry of the R_2Co_7 unit cell and are larger for less symmetric crystals.

4. We used the anomalous characteristics of the thermal expansion near the spin-flip transition, in addition to measurements of the rhombic distortions, to find the anisotropic magnetostriction constants $\lambda_1^{\alpha,2}, \lambda_2^{\alpha,2}, \lambda^{\gamma,2}, \lambda_1^{\gamma,4}$, and $\lambda_2^{\gamma,4}$ for Nd₂Co₇ and Tb₂Co₇. The constants for all the other compounds R₂Co₇ with magnetic ions R were then deduced using the single ion model.

¹A. V. Deryagin, N. V. Kudrevatykh, and E. N. Tarasov, Splavy Redkikh i Tugoplavkikh Metallov c Osobymi Fizicheskimi Svoĭstvami (Alloys of Rare Earth and Refractory Metals with Unusual Physical properties), Nauka, Moscow (1979), p. 142.

²N. V. Kudrevatykh, E. N. Tarasov, A. V. Deryagin, et al., Splavy Redkikh i Blagorodnykh Metallov s Osobymi Fizicheskimi Svoĭstvami. Redkozemel'nye i Blagorodnye Splavy (Alloys of Rare and Noble Metals with Unusual Physical Properties. Rare-Earth and Noble Alloys), Nauka, Moscow (1983), p. 54.

³A. V. Andreev, E. N. Tarasov, A. V. Deryagin, and S. M. Zadvorkin, Phys. Stat. Sol. (a) **71**, K245 (1982).

⁴M. I. Bartashevich, A. V. Deryagin, N. V. Kudrevatykh, and E. N. Tarasov, Zh. Eksp. Teor. Fiz. **84**, 1140 (1983) [Sov. Phys. JETP **57**, 662 (1983)].

⁵A. V. Deryagin, N. V. Kudrevatykh, and E. N. Tarasov, Zh. Eksp. Teor. Fiz. **88**, 959 (1985) [Sov. Phys. JETP **61**, 564 (1985)].

⁶A. V. Deryagin, N. V. Kudrevatykh, and E. N. Tarasov, Pis'ma Zh. Tekh. Fiz. **8**, 856 (1982) [Sov. Phys. Tech. Phys. Lett. **8**, 370 (1982)]. ⁷A. V. Andreev, A. V. Deryagin, and S. M. Zadvorkin, Phys. Stat. Sol. (a) **70**, K113 (1982).

⁸A. V. Andreev, A. V. Deryagin, and S. M. Zadvorkin, Zh. Eksp. Teor. Fiz. **85**, 974 (1983) [Sov. Phys. JETP **58**, 566 (1983)].

- ⁹A. V. Andreev, A. V. Deryagin, and S. M. Zadvorkin, Fiz. Met. Metalloved. **59**, 339 (1985).
- ¹⁰K. P. Belov, R. Z. Levitin, S. A. Nikitin, and V. I. Sokolov, "Anomalously large magnetostriction in rare-earth and uranium compounds," State Register of Inventions of the USSR, No. 225; Byul. Izobret. No. 33 (1980).
- ¹¹K. P. Belov, G. I. Kataev, R. Z. Levitin, et al., Usp. Fiz. Nauk 140, 271 (1983) [Sov. Phys. Uspekh. 26, 518 (1983)].
- ¹²J. Alers, Physical Acoustics, Vol. 3B, p. 13 (Russian translation).
- ¹³G. M. Kvashin, Candidate's Dissertation, Phys. -Math. Sci., Sverdlovsk (1986).
- ¹⁴N. Ashcroft and N. Mermin, *Solid State Physics*, Saunders College, Philadelphia (1976).
- ¹⁵E. Jahnke, F. Emde, and F. Lösch, *Tables of Higher Functions*, McGraw-Hill, New York (1960).
- ¹⁶G. F. Clark, B. K. Tanner, and S. Ferrant, J. Magn. Magn. Mater. 29, 71 (1982).

3

¹⁷E. W. Lee and F. Pourarian, Phys. Stat. Sol. (a) 33, 483 (1976).

- ¹⁸A. V. Andreev, A. V. Deryagin, S. M. Zadvorkin, and G. M. Kvashnin, Fiz. Tverd. Tela 27, 3164 (1985) [Sov. Phys. Solid. State 27, 1905 (1985)].
- ¹⁹A. V. Andreev, A. V. Deryagin, S. M. Zadvorkin, *et al.*, Zh. Eksp. Teor. Fiz. 87, 2214 (1984) [Sov. Phys. JETP 60, 1280 (1984)].
- ²⁰A. V. Andreev, A. V. Deryagin, S. M. Zadvorkin, et al., Fizika Magnitnykh Materialov (Physics of Magnetic Materials), Kalinin State Univ. (1985), p. 21.
- ²¹A. V. Andreev, A. V. Deryagin, S. M. Zadvorkin, and S. V. Terent'ev, Fiz. Tverd. Tela 27, 1641 (1985) [Sov. Phys. Solid State 27, 987 (1985)].
- ²²A. V. Andreev, A. V. Deryagin, and S. M. Zadvorkin, Fiz. Met. Metalloved. 60, 730 (1985).
- ²³A. A. Kazakov, Kvantovaya Teroiya Magnitnoĭ Anizotropii Redkozemel'nykh Metallov i Ikh Intermetallicheskikh Soedineniĭ (Quantum Theory of Magnetic Anisotropy in Rare-Earth Metals and Intermetallides), Ural State Univ., Sverdlovsk (1977) (VINITI 18.07.77, Dep. No. 3310-77).

Translation by A. Mason

ŝ