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A theory is derived for the nonlinear resonant rf hopping conductivity of a semiconductor. The 
region of fairly high frequencies, where the so-called two-site approximation can be used to 
describe the rf conductivity, is studied. Cases in which spectral diffusion plays an important role 
are examined. This diffusion results from dipole-dipole interactions between resonant pairs, 
which are responsible for absorption, and so-called thermal pairs, in which quantum transitions 
(jumps) cause resonant pairs to leave resonance. Expressions are derived for the shape of the 
burnt-out hole in cases in which spectral diffusion is important. 

1. INTRODUCTION 

As Pollak and Geballe have shown,' the rf hopping con- 
ductivity of a doped semiconductor is determined by hops of 
electrons within close pairs. Each such pair consists of a 
filled impurity center and a vacant impurity center, separat- 
ed by a distance r far smaller than the mean separation 
- 
r = (4n-N/3) 'I3, where N is the density of impurities. The 
two-site model is valid under the condition w $ u(O), where 
w is the field frequency, and u(0)  is the static conductivity of 
the sample (Refs. 2 and 3, for example). A study of the rf 
hopping conductivity yields information which supplements 
that found from research on the static conductivity. It can 
lead to conclusions regarding the state density correspond- 
ing to close pairs and regarding relaxation processes of im- 
portance to localized electrons. 

In this paper we examine the nonlinear resonant ab- 
sorption which is caused by transitions of electrons between 
levels of a pair of centers, accompanied by the absorption of a 
photon of an electromagnetic field. A similar situation arises 
in the resonant absorption of ultrasound, where the transi- 
tion is accompanied by the absorption of a phonon. 

A study of nonlinear absorption appears worthwhile for 
the following reason. In the impurity band of a doped semi- 
conductor there are wide distributions of both the difference 
between single-site energies, A = p, - p,, and the tunneling 
overlap integrals Z(r) of the wave functions of the compo- 
nents of the pair. A similar situation apparently prevails in 
several amorphous semiconductors. Accordingly, for any 
frequency w there exists a fairly large number of pairs for 
which the separation E between levels, given by 

(I, is an energy on the order of the binding energy, and a is 
the localization radius of the state), is quite accurately equal 
to fiw (we will call such pairs "resonant" pairs). 

Among these pairs, the only ones which contribute to 
the absorption are those which contain a single electron. 
Shklovskii and Efros have shown (Ref. 4; see also Ref. 2) 
that in order to calculate the number of such pairs we need to 
consider the Coulomb repulsion of the electrons (if two elec- 
trons are localized at the sites of a pair separated by a dis- 
tance r, an additional repulsive energy e2/&r arises, where E is 
the dielectric constant). We consider only the case in which 

this energy, for a pair with a characteristic distance r, 
between sites, is much greater than fiw and also much greater 
than the temperature T: 

In this case the real part of the rf hopping conductivity, 
which determines the linear absorption, is4 

where g is the density of one-electron states, and 

is the minimum "arm" of a pair with a distance fiw between 
levels [it is this quantity which plays the role of r, in the 
estimate ( 1.2)] . I '  The functional dependence o, (w) is thus 
smooth and carries no information on the relaxation time of 
the nonequilibrium pairs. The factor tanh(fiw/2T) is the 
difference between the populations of the lower and upper 
levels of the resonant pair. 

If the amplitude of the oscillating field, g o ,  is suffi- 
ciently high, this difference decreases, and the absorption 
falls off (i.e., there is a so-called saturation of the resonant 
absorption). Nonlinear experiments can thus yield informa- 
tion on the nonequilibrium population and relaxation of 
pairs in a narrow energy interval (unfortunately, nonlinear 
experiments have so far been rather rare5-'). 

We will discuss two types of such experiments: nonlin- 
ear resonant absorption proper (i.e., the dependence of the 
absorption coefficient a for a wave on the amplitude of this 
wave, go )" and "hole burning." In the latter case we will 
examine the frequency dependence of the absorption of a 
weak test signal in the presence of a pump signal with a fixed 
frequency w. The pump wave leads to saturation of the popu- 
lations of the resonant pairs; this saturation is in turn reflect- 
ed in both the absorption of the wave itself and the transpar- 
ency of the material for a test signal whose frequency w ,  is 
approximately but not exactly the same. A hole is burnt out 
of the energy distribution of the pairs which are responsible 
for the resonant absorption. In both of these phenomena, a 
group of nonequilibrium pairs with energies close to fiw ap- 
pears, and their state determines the magnitude of the effect. 

Estimates show that direct relaxation processes in reso- 
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nant pairs as a result of the emission and absorption of phon- 
ons can explain neither the order of magnitude of the nonlin- 
ear resonant effects nor their characteristic temperature and 
frequency dependences in most cases of interest. The reason 
is that these processes are usually complicated by spectral 
diffusion. Spectral diffusion was first discussed in Klauder 
and Anderson's magnetic-resonant theory. lo Corresponding 
ideas were pursued in a theory of the low-temperature prop- 
erties of glasses derived by Joffrin and LevelutL' and Hunk- 
linger and Arnold.12 This phenomenon can be outlined as 
follows: We consider some resonant pair, i.e., a pair for 
which the value of E/fi, where E is the distance between 
levels, is approximately equal to the frequency of the exter- 
nal field, w.  A resonant pair of this sort interacts with neigh- 
boring thermal pairs, i.e., pairs for which the distance 
between levels is less than or on the order of the temperature 
T. The distance between levels in a resonant pair depends on 
the strength of the interaction with the thermal pairs and 
(the most important point) on the particular state of the 
given thermal pair: ground state or excited state. In turn, the 
interaction with the phonons causes the thermal pairs to un- 
dergo transitions to the excited state and then back to the 
ground state at random times. As a result, the distance 
between the levels of a resonant pair turns out to be a random 
function of the time. Transitions between the levels of ther- 
mal pairs lead to a change in the distance between the levels 
of a resonant pair and thus disrupt the resonance. 

We pointed out in Ref. 13 that spectral diffusion can 
play an important role in nonlinear resonant absorption in 
semiconductors. However, we do not yet have a theory for 
this phenomenon, because the derivation runs into serious 
difficulties. These difficulties stem primarily from the fact 
that the random field created by quantum transitions of 
thermal pairs is a very complicated stochastic function with 
statistical properties which are definitely non-Gaussian. 

Our purpose in the present paper is to derive a theory 
for spectral diffusion under conditions of nonlinear resonant 
absorption in a semiconductor. 

To draw a clearer physical picture of the situation, let us 
examine which parameters will characterize this phenome- 
non. The interaction of an alternating field with a resonant 
pair is characterized by the matrix element W/2 ,  where the 
frequency F is related to the electric field amplitude Z?, by 

f iF=e8,r21  ( r )  lE,  

where r is the radius vector connecting the components of 
the pair (the "arm" of the pair). The quantity Fis none other 
than the Rabi frequency for a resonant pair. This quantity 
characterizes the frequency of coherent oscillations of the 
population of a pair driven by a resonant perturbation. l 4  If 
the interaction between pairs and the associated spectral dif- 
fusion are ignored, the resonant absorption coefficient a is 
determined by the relation between F and the intrinsic 
damping y of a resonant pair, which results from its interac- 
tion with phonons. 

The quantity y is none other than the reciprocal of the 
population relaxation time T I, which we discussed in Ref. 
13. The explicit expression for y depends on the particular 
mechanism by which the resonant pair interacts with phon- 
ons, and we will postpone moving to a more specific level in 
this regard. 

The absorption coefficient of a single resonant pair is 
proportional to the product of the difference between the 
populations of the lower and upper levels of the resonant 
pair, on the one hand, and the spectral width of its absorp- 
tion line, on the other. For F g  y, the population difference is 
independent of F in the zeroth approximation and is deter- 
mined by its equilibrium value t anh (h /2T) .  The absorp- 
tion line of a single resonant pair is Lorentzian with a width y 
in this case. The total absorption coefficient, in the same 
approximation, is given by the linear theory [see (1.3) 1. A 
correction on the order of the parameter (F /y)  'arises in the 
next approximation. 

If, on the other hand, we have F s  y, then the difference 
between populations falls off in inverse proportion to F2, i.e., 
the wave intensity; the width of the resonance region in- 
creases in proportion to F because of Rabi oscillations. As a 
result, the absorption coefficient turns out to be inversely 
proportional to 10. The critical amplitude F,, which deter- 
mines the nonlinear effects, is thus equal to y in this case. 
Correspondingly, the width of the burnt-out hole is on the 
order of y for F<F, or on the order of F for F s  F,. 

Spectral diffusion changes the picture fundamentally. 
Let us find the typical change in the energy of a resonant 
pair, E, due to transitions in a thermal pair positioned a dis- 
tance R from the resonant pair. This change is equal to the 
energy of the interaction of two electric dipoles with mo- 
ments er, and er,, where r, is the arm of the thermal pair 
which is separated by a distance R: e2r,rT/&R = A  / R  3.  The 
total energy of the interaction with all thermal pairs is on the 
order of A /& ', where is the mean distance between ther- 
mal pairs. As we will see below, the only pairs which contrib- 
ute to the spectral diffusion are those which can undergo 
transitions. As was shown in Ref. 13 [see also (9.2) 1,  the 
relaxation time of the pairs increases rapidly with increasing 
energy E if the latter is greater than a characteristic value E, 
= 2fiw/a, where w is the sound velocity. If the temperature 

satisfies T <  E,, the density of excited thermal pairs in- 
creases in proportion to the temperature: 

The quantity P, = 4n-g2(e2/&rT)ar$ plays the role of a 
sJate density of the thermal pairs. It depends weakly (logar- 
ithmically) on the temperature. 

If, on the other hand, we have T>  E,, we can assume 
that the transitions of thermal pairs with E >  E, occur so 
rarely that they have no effect on spectral diffusion. In this 
case we would need to replace the temperature Tby E, in the 
expression for P,. 

The quantity A / E 3  is an important characteristic of 
spectral diffusion. It tells us the width of the interval in 
which the deviation of the resonant pair from resonance, 
E - h ,  undergoes its random walk. To denote it we intro- 
duce a quantity with the dimensionality of a time, r,: A / 

'-fi/i/.r, [see (4.5)]. For T<E,  we have 

where 

In the case of a lightly doped semiconductor with an 
intermediate degree of compensation, we can use a more spe- 
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cific expression for the electron state density g (Refs. 2 and 
13), and we find 

To find the dimensionless parameter q T ,  we note that 
when the two-site model is applicable the quantities r ,  and 
r, should be substantially smaller than the average distance 
between impurities N-I". It thus follows from explicit 
expression (1.8) that where the two-site approximation is 
applicable we have 

There is also another mechanism which operates to 
change the distance between the energy levels of a resonant 
pair: a mechanism involving the elastic stress fields set up by 
the thermal pairs. Estimates showI3 that the contribution of 
this mechanism is smaller than ( 1.6) and ( 1.7 ) in order of 
magnitude. 

In several interesting experimental situations the value 
of l /rd turns out to be significantly larger than y or F, so the 
dynamic broadening of the spectral line of a resonant pair is 
inconsequential, and spectral diffusion plays the leading 
role. 

As we will see, an important role is played throughout 
the phenomenon of spectral diffusion by the relation 
between l/rd and the characteristic frequency of transitions 
of the thermal pairs, To. The frequency of transitions in a 
pair depends on the distance between the levels of the pair, so 
y and To are different quantities, and the product r0rd is a 
function of the temperature. Expressions for To for various 
interaction mechanisms are given in Ref. 13 and also in the 
final section of the present paper. 

The appearance of the dimensionless parameter T,T, in 
the theory can be explained in the following way. At early 
times, t g  r, I, the excursion of a resonant pair from reso- 
nance increases linearly with the time3': 

To see the origin of this relationL0 we consider a volume 
with linear dimensions on the order of R, around a resonant 
pair. This volume contains =1 ( R , / R ) ~  thermal pairs with 
characteristic transition frequencies of order To.  In this vol- 
ume, by the time t, a jump of at least one thermal pair occurs 
with a probability of order unity if R, satisfies the condition 
( R , / R ) ~ T , ~ = ~  1. The characteristic change in the energy of 
the resonant pair which corresponds to this jump is 

Relation ( 1.10) follows immediately. The time scale T, for 
the phase relaxation of the wave function of a resonant pair is 
thus given by 

This expression is valid if the time T, is shorter than the time 
scale between jumps of thermal pairs, T, ': 

If, on the other hand, the relation Tord $1 holds, the 
phase of the wave function of a resonant pair will have time 

to change by only a small amount over the time interval 
t 5 T, '; i.e., there will be essentially no phase relaxation. In 
this case the time scale of the phase relaxation is therefore T, 

) T, I .  On the other hand, after a long time t$  T, ' the 
typical value of the difference (E( t )  - E(0)  ( ceases to de- 
pend on the time, since this difference cannot exceed fi/r, in 
order of magnitude. In other words, the difference under- 
goes a random walk over an interval fi/rd in this case. Corre- 
spondingly, the phase relaxation time is determined by the 
spectral width of this interval and is given in order of magni- 
tude by T, ZT, > T o  I.  

It is apparent from this discussion that there are two 
regions-of high and low temperatures-in comparison 
with the characteristic temperature T,. The latter is deter- 
mined by equating the characteristic parameter Tord to uni- 
ty. Its value depends on the particular parameter values of 
the semiconductor. Ordinarily, T,T, is an increasing func- 
tion of the temperature, and the high-temperature case 
T$ T, corresponds to the condition Tord $1, and the low- 
temperature case T< Td to the condition rord < 1. 

Let us find the characteristic (critical) amplitude ( F , )  
for the saturation of the resonant absorption, and also the 
width of the burnt-out hole, in cases in which spectral diffu- 
sion is important. Under the conditions T > T, and 1 / ~ ,  % y, 
because of the frequent jumps of thermal pairs, all the reso- 
nant pairs from a spectral interval of width fi/r, are away 
from equilibrium. The typical rate of change of the popula- 
tion is F2r,, and the rate of relaxation due to thermal phon- 
ons is y. A comparison of these quantities yields the estimate 

while the width of the burnt-out hole is evidently I/T,, 
which is in turn much larger than F,. 

At T <  Td we can distinguish two limiting cases in 
which spectral diffusion is important: 

In the first of these cases the critical amplitude is found 
from the condition that over a time 1/F, on the order of the 
period of the Rabi oscillations, the energy E of a resonant 
pair deviates by an amount of order W a s  the result of spec- 
tral diffusion, according to ( 1.10). We then find the estimate 

An estimate of the width of the burnt-out hole is then 
found on the basis of the following considerations. As a reso- 
nant pair crosses a resonance region with a width on the 
order of fi(r0/r, ) 'I2, it is excited at F 2  Fc with a probabil- 
ity of order unity. It then leaves the resonance region in ac- 
cordance with ( 1. lo ) ,  remaining in an excited state for yet 
another time interval t- y-' < T, I .  Substituting this time 
into ( 1. lo) ,  we reach the conclusion that the width of the 
burnt-out hole is of order T0/yrd. 

In the second case-( 1.16)-the critical intensity can 
be estimated on the basis of the following qualitative pic- 
ture.I5 The region of the random changes in the energy of a 
resonant pair, fi/rd is much greater than the width of the 
resonance, fi(r,/r,) 'I2, in this case. During random 
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changes in the energy E, a resonant pair returns repeatedly 
to the resonance region. On each occasion, its population 
increases by a small amount 

The total number of such returns over the lifetime l/y is To/ 
y )  1, so the total change in the population over this time is 
(F'T~/~,,) ( ro /y) .  Equating this quantity to unity, we find 
an estimate of Fc, 

which is the same as the estimate at high temperatures. The 
width of the burnt-out hole is on the order of l / rd .  

The detailed calculation carried out below shows that 
the exact expressions for Fc actually differ from estimates 
( 1.14), ( 1.17), and ( 1.18) by large logarithmic factors, 
which depend on the temperature T, the frequency w, and 
the parameters of the semiconductor. 

At high intensities, FSF,,  the power Q absorbed by the 
resonant pairs in a unit volume does not depend on F in  any 
case in which spectral diffusion is important, as is shown 
below in Sec. 8. It follows that the absorption coefficient a 
falls off with increasing intensity in proportion to F- 2, i.e., in 
inverse proportion to the intensity. In the absence of a spec- 
tral diffusion we would have a -F- '; ie., the absorption 
coefficient would be inversely proportional to the square 
root of the intensity. 

2. BASIC EQUATIONS AND LIMITING CASES 

The coefficient of the absorption by resonant pairs with 
a level separation E close to h is given by the density matrix 

In the resonant approximation, the equations for the ele- 
ments of this matrix are 

Here 

no= [exp (EIT) + I ]  -' (2.4) 

is the equilibrium population of the upper level of the reso- 
nant pair, W / 2  is the matrix element for a transition of this 
pair driven by a periodic external field of an electromagnetic 
wave, y is the total damping of the resonant pair due to the 
emission and absorption of phonons of energy E (the phon- 
ons are assumed to be in equilibrium ), 

E ( t )  =E+t iAo ( t ) ,  (2.5) 

W, is the energy of the interaction of a resonant pair with the 
1 th thermal pair, and 6, is a random function of the time, 
described by a so-called telegraphic process. It alternately 
takes on the values + 1 and - 1 at random times. The aver- 
age frequency of these jumps is T I .  We assume that the dif- 
ferent functions g, are uncorrelated, so that we can carry out 
independent averaging steps over these functions. Here we 
can directly see the validity of our earlier assertion that the 

random process described by the function A w ( t )  is non- 
Gaussian. 

The absorption of the oscillating field by a resonant pair 
is determined by the imaginary part of the susceptibility, 
ImxE (a), which is related to a nondiagonal component f of 
the density matrix by 

Here the angle brackets denote an average over realizations 
of all the telegraphic processes 6, ( t ) .  The total susceptibility 
is determined by the sum of the contributions (2.7) of all the 
resonant pairs in a unit volume ( Vis the volume): 

We assume that the arrangement of the thermal pairs 
and also the transition frequencies of these pairs, r,, are 
uncorrelated with the parameters of the resonant pairs. In 
this case expression (2.8) becomes 

m 

I m x ( w ) =  -- IPm J d ~ .  ~ e  ((f),).. (2.9) 
F " 

where 

plays the role of an effective state density of the resonant 
pairs, and (. . .), means a configurational average over the 
parameters and arrangement of the thermal pairs. 

Strictly speaking, we should have also taken an average 
over the tunnel transparencies I ( r )  of the resonant pairs, on 
which the quantities F and y depend. However, it can be 
verified directly that this average leads to nothing funda- 
mentally new, and we have omitted it to avoid making the 
equations overly complicated. 

3. ITERATIONS IN THE FIELD AMPLITUDE 

The solution of Eq. (2.2) for the filling of the upper 
level n of the resonant pair can be written formally as 

rn 

n=no -I dt'e-7'  R e f ( t - t ' ) .  (3.1) 
0 

Substitution of this solution into (2.3) yields the following 
integral equation for 

2 
T O ) =  R e f  ( t )  : P (2no- 1 )  

where 

R ( t ,  t ' )  = exp ( - y t 1 / 2 )  cos [zt' - 4 w  ( 1 " )  dt"] , (3.3) 
1 - 1 '  

and 

Z=o-EIA 

is the deviation from resonance. 
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Taking iterations of (3.2) in powers of p, we find 

q'O' = J dt' R (t .  t ')  , 
0 

q") ( 1 )  = -F2 jdt' R(t ,  t J )  j dt" c-T'" I dt"' H (I-tf-t"-I"'). 

In addition to the nonlinear absorption, we are interest- 
ed in the problem of the shape of the burnt-out hole. We can 
write a correction to the population of the resonant pairs, 
which we need in order to solve this problem: - c., 

= -F (no  - -t) j dtl e-:' 5 d t n ~ ( t - - t l ,  t"). (3.7) 
0 0 

Substituting (3.4) into (2.9), and integrating over E, 
we find the following result in the resonant approximation 
(which allows us to carry out the integration over z from 
- w to + w):  

where 
m m 

F -  = J J T r  e x - r  K T ,  , (3.9) 

K ( r ,  r ' )  = (eos [- BW ( t f )  dt' + .f A m  ( t l )  dt' 1) . 
t - T  t-2%-,' E 

(3.10) 

The quantity K is now independent of the time t. In 
calculating the average over the telegraphic processes, it is 
convenient to set t = 27 + T' and to write the function 
K(T,T')  in the form 

2r+zS  

K ( T , T ' ) = ( c ~ ~  [ J ~ o ( t ) v ( t ) d t ] )  , (3.11) 
0 

where 

The function K(T,T') becomes equal to unity, and we 
have Ff = f ,  if Am(t) does not depend on the time. This 
result reflects the fact (which we mentioned back in the In- 
troduction) that only those thermal pairs which are capable 
of undergoing transitions contribute to the spectral diffu- 
sion. 

Let us examine the function 
t 

which is related to (3.11) by 

K ( r ,  r ' )  =Re $ ( ~ T + T ' ) .  (3.14) 

Since the contributions of the thermal pairs to Ao(t) are 
additive, the average value (3.13) can be broken up into a 

product of averages over independent telegraphic processes 
in each of the thermal pairs: 

We will thus first calculate the average value in the case 
of a single telegraphic process: Am(t) = Jg(t)  (we omit the 
index I). 

As was shown in the book by Klyatskin,I6 the function 
k( t)  satisfies the integrodifferential equation 

I 

dk r 
-=- J2v( t )  dt' exp{ -2I ' ( t - t f ) }u( t ' )k ( t ' ) .  (3.16) 
dt U 

This equation is equivalent to the differential equation 

d2k --+ 121- - ':;(') ] $ + Izv2 ( t )  k=0 (3.17) 
dt2 

with the initial conditions 

k (0)  =1, dkldt I t=o=O. 

According to (3.12), v(t) is a piecewise-constant func- 
tion. At those points where it is discontinuous, the function 
k ( t )  is continuous, and its derivative is found from integral 
equation (3.16). We have 

J2 
-t --- exp { -~I ' (T+T ' ) )  sh2 [ (rZ-J2) 'h T I .  

P-J2 

(3.19) 

We wish to stress that expression (3.19) is valid for 
both T > J and T < J. It is real in both cases, so the sign 
specifying the real part can be omitted from (3.14). The 
reason for this result is that the average value of a functional 
which is an odd function on the telegraphic process {(t) is 
zero. 

4. CONFIGURATIONAL AVERAGE 

Our problem thus reduces to one of calculating the 
average of the quantity K(r , r f )  over the configurations of 
the thermal pairs. This quantity is in turn the product of 
average values over telegraphic processes characterizing dif- 
ferent thermal pairs. 

The effect of a thermal pair on a resonant pair is deter- 
mined by two factors: the distance to the thermal pair, R, 
and the frequency of its jumps, T. Finding the configuration- 
al average thus actually reduces to taking an average over 
these two quantities. With regard to the average over R, we 
assume that all the spatial positions of a thermal pair are 
equally probable. The distribution in I? [i.e., actually the 
distribution in the tunnel transparency I ( r )  ] is of the form 
1/T( 1 - 'I2, where l?, is the maximum frequency of 
the jumps of the thermal pair. For simplicity, we replace the 
expression in parentheses by unity; this simplification has no 
substantial effect on the results. 

Using Holtmark's method to calculate the average (see, 
for example, the review of Chandrasekhar"), we find 
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Using 

til=A/R3, 

we can put (4.1 ) in the form 

and 

is the characteristic width of the region of spectral diffusion. 
This width is equal in order of magnitude to the typical 
change in the energy E due to the effect of a thermal pair at a 
characteristic distance E. 

5. STUDY OF LIMITING CASES 

The quantity (K(r , r t  ) ), given by (4.3) depends on the 
ratio between the characteristic value of r (equal to To ) and 
the characteristic value of J (equal to l / rd  ). It is thus natu- 
ral to consider the two limiting cases r0rd $1 and rord < 1. 
Just which of these cases is realized depends on the relation 
between the temperature Tand its characteristic value Td, at 
which we have r0rd = 1. 

At high temperatures ( T )  Td ) we have r0rd $ 1. In 
this case, the integration over r in (4.4) can be extended to 
infinity. As a result we find 

We will not need the explicit functional dependence 
a(0) below; all that we will need are the following proper- 
ties of this dependence. In the limit 0-0, the function a(0) 
tends toward a constant limit on the order of unity, while at 
0% 1 we find the following result from (4.4), to logarithmic 
accuracy: 

Using (5.1 ), and substituting (4.3) into (3.9), we find 
m m 

Introducing the new integration variableP= rl/r ,  and 
integrating over T, we find 

cc 

The integral (5.4) can be analyzed easily in two limiting 
cases. For y$ l/rd, spectral diffusion is unimportant, and 
we have Fc = y. In the opposite limit, 

values Pz (yrd ) -'ln(yrd ) - I  contribute to integral (5.4), 
and we have, at a logarithmic accuracy level, 

The origin of the factor of l / rd  in the argument of the 
logarithm can be illustrated by the following discussion. 
Thermal pairs close to a resonant pair can be classified as 
"fast," "intermediate," or "slow," depending on the fre- 
quency of their jumps, T. We classify as "fast" pairs for 
which we have r %  l/rd .-AS is clear from the calculations 
above, these pairs play only a minor role in spectral diffu- 
sion. What is happening here is that their effect is being aver- 
aged out (in a way similar to the effect which occurs during 
dynamic line contraction in magnetic resonance theory la). 

The very slowest thermal pairs, for which the jump fre- 
quency is much smaller than y, are also unimportant, since 
over the decay time of a resonant two-level system they do 
not have time to undergo even a single jump. In other words, 
they represent a frozen configuration from the standpoint of 
the resonant pair. 

We thus see that the "intermediate" pairs, for which the 
jump frequency lies between y and l/rd, are the effective 
ones. Accordingly, there is a large logarithm in expression 
(5.6). 

We now turn to low temperatures T g  Td (rord < 1 ) . 
Calculations yield 

To 

Hence 
m m 

F.-' = JdT j drr erp {-l ( 7 + T 1 )  

0 0 
I-. 

In this region there are three characteristic frequencies: 
y,To and (rO/rd ) ' I2 )  r O .  Correspondingly, there are three 
limiting cases. For y $ (ro/rd ) ' I 2 ,  T and T' values on the 
order of l /y play a role in integral (5.8),  and the second 
term in braces can be ignored in comparison with the first. 
This statement means that spectral diffusion plays no role, 
and we have Fc = y. 

In the interval 

the exponential function in the brackets can be expanded. 
The double integral can then be evaluated easily; we find 

This result agrees .to within the large logarithm with the 
qualitative estimate ( 1.17). 

In the case 

the integral (5.8) is dominated by values r 5; T,, and we have 
7' 5; y-'. In other words, the characteristic values of 7' are 
much greater than 7. The integral over r depends logarith- 
mically on 7'. Carrying out the integration, we find the fol- 
lowing expression for F,, with logarithmic accuracy: 
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the second term in (5.12) is greater than the first, and for Fc 
we find 

FCZ= (ny12~~)ln (rely). f 5.14) 

This result agrees to within the large logarithm with the 
qualitative estimate ( 1.18) 

where the summation is over all the resonant pairs, E ( t )  
= E + fiAw (t) ,  and AQ is a macroscopic quantity. To with- 

in small fluctuations which are of no importance here, this 
quantity is equal to its mean value, which we will also calcu- 
late (the average is taken over the thermal surroundings of 
each resonant pair and over all possible realizations of the 
telegraphic processes describing transitions in thermal 
pairs). We thus have 

6. THEORY OF THE BURNT-OUT HOLE 

The change AQ in the absorption of a weak test signal of In the resonant approximation, the frequency deviation 
frequency a, in the presence of a Strong signal, which causes ,, = , - ,, is assumed to be small in comparison with the 
a population change An"' is fundamental frequency w, so we have replaced w, by w in 

AQ = - n w , ~ - ' Z  h2F:An(')(t)B (hot-E ( t )  ), (6.1) front of the summation. Substituting in An"' from (3.7), we 

res 
find 

where B is shorthand for the quantity 

Since the average over 6 of a functional which is an odd 
function of the telegraphic process {(t) vanishes, we can 
write AQ as - - 

where 
1-1 

L (a, a') = (exp [iabu (t) - i A W  (t') dt' 1) . (6.6) 
t -z -z '  E 

Since the results of the averaging do not depend on t, we 
set t = 0. We then proceed as in the derivation of (3.19). 
Specifically, we make use of the additivity of the contribu- 
tions of the thermal pairs to Ao ( t ) ,  and we first calculate the 
mean value (6.6) in the case of a single telegraphic process: 

I + T '  

.p (a, TI) = ( exp [ i ~ r i  (0) - i l  J g (t) dt]) . 
I E 

(6.7) 

Here we have made use of the circumstance that for the 
telegraphic process f ( t )  there is no preferred direction for 
time, so it can be assumed to be an even function of t  during 
the averaging. We introduce the auxiliary function 

~ ( t )  = (exp [-iJ J E (tf) ul (tg)dtr 
0 

(6.8) 

where the function v, ( t )  is equal to 1 at T ' < ~ < T  + T' and 0 in 
the interval O<t < T'. The symbol I s c o ,  means that the mean 
value is calculated at a fixed value of {(O). For a single tele- 
graphic process, the expression for ~ ( T , T ' )  takes the form 

where the average is taken over the value of {(O), which has 
the values + 1 with probabilities of 1/2. 

The equation for the function M ( t )  is the same as 
(3.17), and the conditions at the point t = T' are 

Solving this equation, we find 

M(t+a') =e-rr {ch [ (r2-J2)'12T]+r (r2-J2) --%h [ (r2-12)'h T I  
-iE(0)J(rZ-1%)-'"exp(-2rz')sh [ (I'2-12)'h~]). 

(6.11) 

Substituting this expression into (6.9), and then taking 
an average over the initial value {(O), we find 

T(T, a') =e-rr cos IT {ch[ (I'2-J2)'ha] 

Taking the configurational average by the procedure de- 
scribed in the derivation of (4.3), we find 

(L(T, a') ),=exp [-V(a, T ' ) /T~] ,  (6.13) 

where - FO 

7. SHAPE OF THE BURNT-OUT HOLE: STUDY OF LIMITING 
CASES 

At high temperatures T$ Td (r,~, >) I ) ,  the upper lim- 
it on the integral over r on (6.14) can be replaced by co : 
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We will not need the explicit functional dependence v(/3).  
The only results of importance to an analysis of limiting 
cases are 

Substituting (6.13) into (6 .5 ) ,  we find 

FIG. 1. 1-Shape of the burnt-out hole under the conditions T ( T d ,  
r o ( y (  (r,,/rd 1 ' I 2  [ ~ - ' ( ~ z - T , , / T ~  ) ' I 2  = 101; 2-~orentzian shape with 
the same asymptotic behavior and the same area: 

We introduce the new integration variablep = r l / r ,  and we 
integrate over 7: 

It follows from (7.11 ) that, the shape of the burnt-out hole is 
characterized by two energy scales (Fig. 1 ). In the region 
I Y I  < ( r o / r d  ) ' I 2  we have a plateau at a level 

For y )  l / r d ,  the spectral diffusion is unimportant, and we 
have 

If, on the other hand, we have y( l / r d ,  then large values of 
/3 are important in integral ( 7 . 4 ) ,  and we have As ~ Y I  is then increased, the quantity A Q  increases 

logarithmically, reaching a value on the order of - B r d / r O  
at I Y I z r o / y r d .  As the deviation 1 vl is increased further, A Q  
tends toward zero -Y - '. The characteristic size of the Lor- 
entzian wings is again r o / y r d .  The effective width of the 
burnt-out hole is therefore T0/yrd  (we are ignoring loga- 
rithmic factors). The physical meaning of these characteris- 
tic sizes can be summarized as follows: The first, fi(ro/ 
rd ) ' I 2  , is the width of the resonance region in which the 
pump field causes a significant change in the population of a 
resonant pair. According to ( 1 .  l o ) ,  the time scale for the 
crossing of this region by a resonant pair is ( r d / r 0 )  ' I 2  [i.e., 
T+, ; see ( 1.12) 1. In the case at hand, this transit time is far 
shorter than the lifetime y - ' .  Accordingly, after traversing 
the resonance region the pair remains excited for another 
time interval y -  I .  Over this time, the energy of the pair 
reaches the value firo/ yrd ) f i (  r 0 / r d  ) ' I 2 ,  according to 
( 1.10). This is the second characteristic size, and we call it 
the "width of the burnt-out hole." 

Finally, for 

where 

At low temperatures T( Td ( Tord ( 1 ), calculations 
yield 

I'n 

and 

For y )  ( l ? O / ~ d ) 1 ' 2 ,  the quantity r z r ' z y - I  plays a 
role in integral (7 .9 ) ,  and the second term in braces can be 
ignored. This result means that spectral diffusion plays no 
role, and we find the result ( 7 . 5 ) .  

Under the conditions 

values r z  r d / l n ( r 0 / y )  dominate integral ( 7 . 9 ) .  These val- 
ues are far smaller than the characteristic values r ' z  y-I. 
We can thus ignore T in comparison with rf in the argument 
of the exponential function, and we have 

we can expand the exponential function in brackets in (7 .9 ) ;  
it then becomes a simple matter to evaluate the integral over 
T'. We have 

where 

w 
exp (- ?tr,,~~/zr~) A Q = - B  I d roosv r  

o r + (nrrolzd) Let us compare the width of the burnt-out hole with the 
size of the corresponding critical amplitude F, .  We see that 
in all cases in which spectral diffusion is important the width 
of the hole is far greater than F,. At high temperatures, with 
y  4 l / r d ,  we have 
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Fc= ( y / ~ d )  

[see (5.6) 1 ,  while the width of the burnt-out hole is 

Avxl/zdBF, 

[see (7.6) 1. At low temperatures, with 

we have, in order of magnitude, 

Fern ( r o / ~ d )  litr 

[see (5.10) 1 ,  and we also have A v z r O / y r d  $Fc [see 
(7 .11)] .  In the case y ( r o < ( ~ 0 / ~ d ) 1 1 2  we have ~ ~ - - ( y /  
7, ) ' I 2  [see (5.14) ] and A v z  l / r d  $ F,. In all of the cases 
listed above, the width of the burnt-out hole is related to the 
critical amplitude F, by 

Fc= ( y A ~ ) ' i ' .  (7.15) 

The physical picture of the nonlinear resonant absorp- 
tion and of the burnt-out hole in a situation with spectral 
diffusion is thus much more diverse and complicated than 
would follow from the theory based on the Bloch equations 
and the assumption that the relaxation time 0, of the non- 
diagonal component of the density matrix is on the order of 
T d .  

8. REGION OF A STRONG NONLINEARITY (Fg F,) 

We can now draw a qualitative picture of the behavior 
of the absorption at high intensities ( F $  F, ). The time aver- 
age of the power absorbed per unit volume by resonant pairs 
is 

res 

Using (2 .2) ,  we can put this expression in the form 
rn 

Q=fioy~. I d~ ( (n-no) )f. (8.2) 
0 

This expression is actually a consequence of energy conser- 
vation. The nonlinear behavior of Q is therefore determined 
by the characteristic width of the region of the integration 
over E and by the value of the mean ( n  - no) ,  in this region. 

We will consider only those limiting cases in which 
spectral diffusion is important. In other cases, the nonlinear 
behavior is described by solutions of the Bloch equations 
with longitudinal and transverse relaxation times 0, and 0,, 
respectively, with 0, = 2 0 ,  = 2/y .  

At high temperatures ( S o r d  $ 1 ) the case y 4 l / r d  is 
interesting. As we have seen, the characteristic size of the 
region of the integration over E (the region of the burnt-out 
hole) is of order WT,, and the mean value ( n  - no) for 
F$ F, is equal to 1/2 - no. We then have 

where we have F, z ( y/rd  ) ' I 2 ,  according to (5.6).  The ab- 
sorption coefficient a is found by dividing (8.3) by the ener- 
gy flux density, which is proportional to F2. Corresponding- 
ly, for F$Fc, we have 

~ ~ z a o ( F ~ l F )  ', (8.4) 

where a, is the absorption coefficient of the linear theory, 
given by 

and c is the velocity of light. At high intensities the absorp- 
tion coefficient is therefore inversely proportional to the in- 
tensity. 

As we will see, the same comment holds in other limit- 
ing cases in which spectral diffusion plays a role, which we 
will discuss below. On the other hand, in those cases in 
which spectral diffusion does not play a role we have 
a z a o ( F c / F )  ; i.e., the absorption coefficient is inversely 
proportional to the square root of the intensity. 

~t low temperatures in the case T ,  (< y  4 (To/?-, ) ' I 2 ,  

the width of the region of the integration over E is on the 
order of the characteristic width of the region of spectral 
diffusion, WT,. The value of ( n  - no) ,  can be estimated on 
the basis of the following considerations. We have seen that a 
resonant pair undergoes a change in population in a reso- 
nance region of width f i (r0/rd  ) ' I 2 ,  which is crossed in a 
time ( r d / r 0 )  ' I 2 .  It exists in an excited state for a time 

y- ' $ ( r d / T o )  ' I 2 ;  it then reverts to the ground state, emit- 
ting a phonon. For all the rest of the time (while it is travers- 
ing the region of spectral diffusion, of width z f i / r , )  we 
have n = n,, for this pair. It returns to the resonance region 
after a time z S ,  ' $ y I .  The fraction of the time which a 
resonant pair spends in the excited state (i.e., with n = 1 /2 )  
is therefore S,/y< 1 in order of magnitude. Hence 

Using this result and the expression (5.10) for F, in the case 
of interest here, we find the estimate (8 .3 ) .  

In the case y 4 I?, 4 (rO/rd ) ' I 2  a resonant pair returns 
to the resonance region many times during the lifetime y - I .  

Each time it returns, its population increases by a small 
amount F2< = F 2 r d / r 0 .  Consequently, the number of re- 
turns must be high (on the order of 1/F2<) if the level 
populations are to become equal. This situation is reached in 
a time of order 1 / T Z 2 < .  On the other hand, we have 

where F, -- ( y/rd ) ' I 2  [see (5.14) 1 .  For F>>F,, the pumping 
time is thus significantly shorter than the lifetime of the reso- 
nant pair in its excited state, y- I .  In other words, the reso- 
nant pair is excited over the greater part of its lifetime. As a 
result, we have ( n  - no) ,  =: 1/2 - no. The characteristic in- 
terval of the integration over E is again on the order of WT,. 
As a result, we again find the estimate (8 .3) .  

9. DISCUSSION OF RESULTS 

To see which of these cases is realized at a given fre- 
quency w and a given temperature Tin  a specific semicon- 
ductor, we should compare the values of To, y, and T,, which 
figure in the theory. The first two of these quantities are 
expressed in terms of the relaxation time of the correspond- 
ing pairs, r ( E , r )  ( E i s  the distance between the energy levels, 
and r is the arm of the pair), as follows: 

where 

r==a ln (2101T), r,=a ln (210/Ea). 
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The relaxation time r(E,r) is given byI3 

TABLE I. 
- 2 -  

1 E 412 (r) cth (E/2T) 
-- = B.En~.(C.) ---- 
r (E, r )  [I + (EIE,) '1' (9.2) 

Interaction mecha- 
nism 

Here E, = 2fiw/a and E, = fiw/r. The exponent n, the coef- 
ficient p,, and the function a, depend on the particular 
mechanism by which the pairs interact with phonons; these 
quantities are listed in Table I for a deformation interaction 
(for two cases: that in which the deformation potentials of 
the components of the pair are different, and that in which 
they are the same) and for a piezoelectric interaction with 
acoustic phonons. Table I uses the following notation: D l , ,  
are the deformation potentials of the components of the pair, 
p is the density of the semiconductor, /3 is the piezoelectric 
modulus (calculations were carried out for the case of cubic 
symmetry To r  T, ), E is the dielectric constant, w, (w, ) is 
the longitudinal (transverse) sound velocity, and DA and 
PA represent the deformation acoustic and piezoacoustic 
interactions, respectively. 

We see that there are two characteristic values of E 
which determine the relaxation of pairs through interaction 
with phonons. The first of these values, E,, corresponds to 
the condition that the wavelength of a phonon with an ener- 
gy E, be equal to the localization radius of the state, a. For 
E > E,, the deformation field which results from phonons 
with an energy E oscillates rapidly over a length scale a, and 
the probability for a transition of a pair from one state to the 
other falls off sharply with increasing E. The second value, 
E, 4 E, , corresponds to the condition that the wavelength of 
a phonon with an energy E, is of order the arm of the pair, r. 
For E < E,, the deformation field varies smoothly over a dis- 
tance corresponding to the size of a pair; this circumstance 
has a major influence on the results if the deformation poten- 
tials of the components of the pair are approximately equal. 
In this case an interaction arises only to the extent to which 
the values of the phonon-induced deformation at the differ- 
ent sites making up the pair are different. The situation is 
precisely the same in the case of the piezoelectric interaction. 

The reason for the difference between the expressions 
for r, in (9.1) in the cases T <  E, and T >  E, is that pairs 
with energies greater than Ea interact extremely weakly 
with phonons; transitions occur only rarely; and these pairs 
accordingly play almost no role in the spectral diffusion. 
Correspondingly, we have 

where 7, is given by ( 1.7), and 7, differs from 7. in that r, 
is replaced by r, . 

, 

We have thus presented all the information required in 
order to understand which of the limiting cases we have dis- 
cussed will actually be realized in some particular semicon- 
ductor or other. 

All the discussion above has been based on the idea that 
the pairs of levels are well-determined, i.e., that the follow- 
ing relation holds for the characteristic energies: 

0, (X) 

P,, 

For the case of a deformation interaction with Dl # D,, this 
condition is violated if we have E, > E, =PC at tem- 
peratures between E, and E, . A corresponding region also 
exists in certain piezoelectric semiconductors, as can be veri- 
fied. In regions with r, > Tor  y>  h, the theory construct- 
ed here does not apply. The boundaries of the corresponding 
regions can be found on the basis of the expressions given 
above for the relaxation time of pairs and the particular pa- 
rameter values of the materials. 

It can be seen from the expressions given here that the 
critical intensity and the width of the burnt-out hole depend 
strongly on the frequency w, the temperature T, and the pa- 
rameter values of the semiconductor. These values can span 
an extremely wide interval. For example, with T=: 1 K and a 
frequency w/27r--, 1 the critical amplitude go, can range 
from lo-' to V/cm, depending on the particular mate- 
rial. 

An experimental study of nonlinear resonant defects at 
low temperatures yields the important characteristics of 
semiconductors in the regime of hopping conductivity. 

We sincerely thank S. V. Maleev for a useful discussion 
of some of these questions. 
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