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A nonlinear microscopic theory of the low-temperature nonmagnetic phase of singlet magnets is 
constructed, which makes it possible to calculate the spectrum of collective oscillations, the spin 
correlation functions, the asymptotic behavior of the thermodynamic functions, the magnitude of 
the critical field and the criterion for ferromagnetism. 

1. INTRODUCTION 

It is well known that many magnetic compounds con- 
sisting of ordered arrays of magnetic ions which interact via 
an exchange interaction of fixed sign and intensity neverthe- 
less remain nonmagnetic at all temperatures down to T = 0. 
The reason that magnetic order is absent in these cases is the 
existence of a single-ion anisotropy (SIA) which is strong 
compared to the exchange force. 

As was shown in Ref. 1, these structures are spin-or- 
dered despite the absence of magnetic order; furthermore, 
this ordering has tensor characteristics. For this reason, the 
properties of such structures differ from those of pure (dis- 
ordered) paramagnets (PMs); in particular, their properties 
are found to be close to those of antiferromagnets (AFMs) 
(specifically, uniaxial AFMs in a field parallel to the anisot- 
ropy axis). In order to describe such tensor structures, a 
generalized Maleev-Dyson transformation was proposed in 
Ref. 1 and a spin-wave theory was developed; however, in 
view of its crudeness, this theory can only be regarded as a 
first step in the investigation of such systems. 

The goal of this article is to construct a first-principles 
microscopic theory of these PMs at low temperatures, which 
correctly takes into account the quasiparticle interactions. 
The model we will investigate is a spin structure with iso- 
tropic exchange and an "easy plane" (EP) SIA in an exter- 
nal field perpendicular to the EP. This structure is described 
by the Hamiltonian 

A .  
J 

(1)  
(The sign of D is chosen so that the ground state of an isolat- 
ed ion is a singlet). For the case that the ratio { = D /Wo 
(Jo = 2, J0 ) exceeds some critical value tC, (in the molecu- 
lar-field approximation lC, = 1 when S = 1), this model 
gives rise to a nonmagnetic quadrupole-ordered (QO) 
ground state in the region of fields 0 < h < h,, (see Fig. 2 
below). 

In this paper we will determine the spin correlation 
function, the spectrum of collective oscillations, the low- 
temperature asymptotic behavior of the free energy, the 
magnetization, the specific heat, the value of the critical field 
h,, and the criterion for ferromagnetism for this model. 

In order to calculate temperature-dependent anhar- 
monic corrections, we use the Born approximation; it is well- 
known that this level of approximation correctly includes all 
the qualitative characteristics of the temperature behavior. 
Calculations at T = 0, where the system properties are espe- 

cially quantum-mechanical, must be carried out more care- 
fully; in particular, we must take into account the very large 
renormalizations of the bare spin-wave values which follow 
from calculations in the first Born approximation. Toward 
this end, we set up a formalism involving a nonunitary self- 
consistent u-u transformation; the self-consistency allows us 
to obtain an exact integral equation for the functions which 
generate this transformation. We then set up an iterative 
scheme to solve this equation. 

The calculation is carried out for S = 1, which is the 
minimum value of spin for which tensor structures can exist; 
consequently, the quantum features appear with special 
clarity for this case. 

Note that two different approaches are used in the 
course of these calculations, both of which are applicable to 
the description of spin structures with tensor-vector order 
parameters: a quasiparticle approach based on the general- 
ized Maleev-Dyson transformation,' and a diagrammatic 
technique based on Wick's theorem for Hubbard operators, 
with a view to comparing these results. (Specifically, in this 
paper we set up a low-temperature variant of the diagram- 
matic technique for Hubbard operators which is close to the 
standard technique used for Bose systems.*) Both ap- 
proaches imply a prior transition to local coordinates, be- 
cause the simple connection between the Hubbard operators 
and the Bose systems proposed in Ref. 1, and also Wick's 
theorem for the Hubbard operators, hold only in these co- 
ordinates. 

The concept of local coordinates for a system with ten- 
sor interactions and the technique for transforming to them 
are described in detail in Ref. 1. It was shown there that 
when investigating the nonmagnetic phase of a magnetic in- 
sulator described by the Hamiltonian ( 1 ), the local coordi- 
nates coincide with the original coordinates. Therefore we 
can use the connection between spin operators and Hubbard 
operators which obtains in local coordinates, and which for 
S = 1 takes the form: 

and substitute them into ( 1 ), to obtain the required Hamil- 
tonian in local coordinates in terms of Hubbard operators: 
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3. LOW-TEMPERATURE MODIFICATION OF THE 
DIAGRAMMATICTECHNIQUE FOR HUBBARD OPERATORS 

A. Rules for the diagram technique 

It is well-known that in the presence of tensor interac- 
tions, in particular SIA, Wick's theorem for spin opera- 
tors-which lies at the base of the Vaks-Larkin-Pikin 
(VLP) technique-does not hold; however, an analogous 
theorem holds for Hubbard operators under the condition 
that the Hamiltonian of the system can be written in local 
coordinates. The diagrammatic technique of Refs. 3,4 is 
based on this modified Wick's theorem. 

In the low-temperature limit, the diagrammatic tech- 
nique for Hubbard operators can be simplified and is close to 
the diagrammatic technique for Bose  system^.^ Just as in the 
low-temperature variant of the technique for spin opera- 
t o r ~ , ~  this simplification is possible because the contribution 
from diagrams containing disconnected elements in blocks is 
found to be exponentially small at low temperatures, and we 
need take into account only diagrams containing Green's 
function lines which are continuously linked with each oth- 
er. The difference lies in the fact that these Green's functions 
are defined by Hubbard operators and not by spin operators. 
In what follows, the following matrix Green's function will 
be important: 

with components 

Gb.(l, T; I', T ' ) = < T X , ~ ' ( ~ ) X ~ ~ ~  (a') >, 
G,,(l, T; l', T') =(TXlO' (T)X,.'O(T') >. ( 5  

In zero-order approximation its Fourier transform equals 

where 

There are also different diagrams of vertex-block type which 
in the present case are determined by pairing of the Hubbard 
operators. 

On the whole, the topology of diagrams and general 
rules of the diagrammatic technique are found to be close to 
those for the low-temperature modification of the VLP tech- 

nique. These rules are as follows: 
1. Each diagram is made up of lines corresponding to 

the Green's function (7)  linked continuously with each oth- 
er and included in a block. 

2. A factor b, or b, is associated with the block, de- 
pending on the subscript of the Green's functions standing at 
the right end of the link. 

3. Within the block all the lines are "thick," i.e., each 
bare Green's function, as determined by Eqs. (7) ,  is replaced 
by a spin-wave function. The equations for the Green's func- 
tion in the spin-wave approximation take the form 

where the spin-wave frequencies and functions u, , u, equal 

they are ̂ obtained from the relation between the Green's 
functiosG(k, w, ) and Larkin's diagrams for the irreducible 
part of Z(k, w, ): 

The form of the interaction matrix is 

[The potentials V "" , V "', V '", V bb are ̂ defined by Eq. 
( 3 )  ] and the zero-order approximation for Z (k, w, ) : 

30) (k, on )  = & ( O '  (k, on). 

In this case, we introduce through the relations 

G,, Gab K,, K,, 
( Gba Gbb)=(Kb., Kbb )( ! l) (11) 

the Green's function K,, defined without the factors b,, bb 
which are characteristic of the block as a whole. The Green's 
function (8)  is represented by boldface continuous lines 
with subscripts p ,  v at their ends ( p , ~  = a,b) . 

4. Wavy lines with subscripts denote the interactions 
V," ( p v  = a,b) or V" as defined by the Hamiltonian (3).  

5. The types of vertex blocks are detemined by all possi- 
ble pairings in the SU(3) algebra. There are three types of 
vertices: vertices with one entering or leaving line, vertices in 
which two lines intersect and finally vertices in which three 
lines intersect. Since the internal vertices, i.e., vertices of the 
latter two types, are always linked by interaction lines in the 
low-temperature technique, by indicating the subscripts of 
the latter we simultaneously and unequivocally indicate the 
types of operators corresponding to a given internal vertex. 
The type of operator corresponding to an external vertex is 
determined by the Green's function subscript. 

6. A factor of 2 goes with vertices in which three 
Green's functions of the same type ( p = v = v') converge, 
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while for all the others this factor is 1 .  
7. For low T the relations b, =: - l , b b  -- 1 are approxi- 

mately valid. 

B. Green's function and polarization operator in the Born 
approximation 

Taking into account the quasiparticle inte~actions leads 
to a renormalization of the Green's function K(k ,w ,  ), de- 
fined as usual by the Dyson equation 

h 

where K is the matrix of the unperturbed spin-wave Green's 
function (8) ,  and fi is the matrix polarization operator 
whose components n,, are described as usual by graphs 
which cannot be divided along a single spin-wave line, and 
which have entering vertices of typep and exiting vertices of 
type v. The solution to the Dyson equation is 

The explicit form of the graphs for components of the 
polarization operator I I , ,  , I I , ,  in Born approximation is 
shown in Fig. 1 .  To it correspond the analytic expressions 

The equations for I I , ,  and n,, are easily obtained from the 
equations for no, and II , ,  respectively by replacing the sub- 
script a by the subscript b and conversely. The correlation 
functions entering into ( 13) are defined by the relations 

nP = i  K ( o n w ,  Np = l i m z  Kbb (p, on) eimnr, 
r-0- 

0" 
r-0' 

"'" 

pp = l i m z  K,(p. on) siun' = lim Z Kba(p ,  on) rim" 
7-0-  

0" 
r-0' 

"n 

and equal 

C. Spectrum of collective excitations, critical field and 
criterion for ferromagnetism in Born approximation 

The spectrum of collective excitations renormalized by 
the Born _approximation is determined by the zeroes of the 
function R - ', which is related to the polarization operator 
by Eq. ( 12),  or in explicit form by the equation 

FIG. 1. Graphical representation of components of the polarization oper- 
ator in Born approximation. 

Substituting the values of the components of the polarization 
operator, we obtain explicit expressions for the two branches 
of the spectrum in the Born approximation, which we write 
out in the limit of small quasimomentum: 

{1f-6("HC1 ( T )  1. ( 1 7 )  

The constants entering into ( 17) equal 

.6(')HCl ( T )  = -- I I { ( 3 - W . )  (u.'+u-.l) +6ypupup)  
2 5 N  
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The remaining symbols are: y, = Jk/J , ,  H + h /D. The 
meaning of the notations in Eq. ( 1 7 )  becomes clear if we 
note that the condition for softening of the frequency w, for 
k = 0  determines the line of critical fields: 

i.e., a line of second-order orientational phase transitions 
(OPTS) from the nonmagnetic phase to the angular ferro- 
magnetic (FM, ) phase (see Fig. 2 ) .  

The numerical value of the correction S ( f )  to the bare 
critical field H,, at T = 0  depends on a single parameter f ,  
which decreases monotonically as f  grows on the interval 
(&, , 03 ). The bare value ccr is f ::' = 1 .  Since S( ) = 0 ,  
and S ( 1 ), which we have calculated for a simple cubic (SC) 
lattice, equals 

6 ( I )  =0.261, ( 2 1 )  

we obtain the upper and lower estimates O<S(f )  ~ 0 . 2 6 1 .  
The value (21 ) allows us to determine more accurately 

the value oftC, itself in Born approximation. In fact, accord- 
ing to (18) and the condition a,, ( 0 )  = 0  for f  = fc , ,  we 
have 

l c r  = f 7 ' ( f c r  ). ( 2 2 )  

FIG. 2. Phase diagram at T = 0. 1-second-order OPT line h  = i,, ( 0 )  
between th_e nonmagnetic QO phase and the FM, phase, as described by 
Eq. (18)  (h,, ( 0 )  r DH,, ( 0 )  ), 2-the second-order OPT line h  = h,, ( 0 )  
between the angular a_nd collinear (FMII  ) ferromagnetic phases, de- 
scribed by the equation h C 2 / J ,  = 2{, see Ref. 1 (h ,  ( 0 )  = h,  ( 0 )  ) . A  is the 
multicritical point with coordinates (0 ,  lc, ) .  

Using estimate (21 ) at f = 6 bz', we obtain the Born approx- 
imation value 

a value which differs considerably from the bare fc,. We 
must then ask how accurate this value is; a discussion of this 
question will be presented in Sec. 4. 

Let us note that the value of fc, is an important charac- 
teristic of the system. First of all, it constitutes a more pre- 
cise criterion for ferromagnetism, i.e., it is the value of 
f = D /2J0 above which ferromagnetism is absent all the way 
down to T = 0  (in the absence of an external field). Second- 
ly, this quantity determines the critical point of the phase 
diagram (point A of Fig. 2 ) ,  i.e., the point of nonanalyticity 
of the spectrum at k  = 0 ,  T  = 0 .  

In point of fact, it follows from ( 17) that at the point 
where g,, ( 0 )  = 0  the dispersion law of the soft mode is lin- 
ear in k  for small k, whereas at the other points on the phase 
line, say, point 1 where a,, ( 0 )  #0,  it is quadratic in k  as 
k - 0 .  (The nonanalyticity of the spectrum leads, e.g., to the 
fact that the values of such quasiparticle characteristics as 
the sound velocity, scattering amplitude etc. depend at this 
point on the order in which the limits k - 0 ,  Af = f c r  - f - 0  
are taken; this question will be discussed in detail in Sec. 4 . )  
What is important for us now is that the different qualitative 
character of the dispersion law for H,, - H g a k g H , ,  and 
H,, <ak< + 1 determines the different character of the 
thermal corrections to the spectrum and the critical field in 
the two limiting cases: for 8% H,, , where they equal 

and for H,, - H < 6 <  H,, , where Eqs. ( 17) reduce to 

and SA - ( T )  , AA ( T )  equal 

((( p) is the Riemann zeta function, a = ( 1 - Sk ) / k  2 ) .  For 
all the remaining cases the thermal corrections are exponen- 
tially small in T. 

It also follows from ( 2 4 ) ,  ( 2 6 ) ,  and ( 2 0 )  that far from 
the point A the thermal corrections to the critical field are - T3", whereas near this point we have 

H c , ( T ) - T .  ( 2 7 )  
D. Born corrections to the free energy and thermodynamic 
functions 

The basic spin wave corrections to the free energy are 
given by closed-loop graphs, with which is associated the 
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standard expression for the free energy of noninteracting 
quasiparticles 

PF'-' = ~n [ I  - exp (- PWY,)I. 
k)L 

The correction due to interaction in the first Born approxi- 
mation is determined by the diagrams from Fig. 3. The cor- 
responding analytic expression is conveniently represented 
using the components of the polarization operator ( 13 ) : 

AFw = - l z  {n, (k) nk+nbb (k) Nk 
B N  k 

= A F  (0) +AF (T) . ( 2 8 )  

For the temperature-independent corrections we obtain the 
equation 

and for the temperature-dependent corrections the equation 

(30)  
where 

while the expression for rzB (k,p) differs from ( 3  1 ) by the 
replacement up + v , ,  up + u p .  

An explicit calculation of the temperature correction 
AF( T )  gives for H,, % 0, 

FIG. 3. Graph for the correction to the free energy due to interactions of 
the collective excitations (Born approximation). 

while for H,, ( 8 ,  

In the same way, for the anharmonic corrections to the mag- 
netization and spin-induced specific heat-which are relat- 
ed to the free energy by the relations M, = b'F/b'h, 
C, = - Tb' 2 F / a T 2 - ~ e  obtain for H,, 9 f3 

and for Hcl 4 8 

In the limit H,, - H<8<Hc,, we obtain from (34)  

In comparing Eqs. ( 3 5 ) ,  ( 3 6 )  with the results of Ref. 1, we 
note that the characteristics of the temperature dependence 
of the Born and spin-wave corrections to the magnetization, 
susceptibility and specific heat are the same in the limit 
H,, (8, but for H,, - H< 8 4  H,, they differ qualitatively. 
It is interesting that in the latter case the Born correction to 
the specific heat is found to vary as an integer power of T, 
which allows us to observe its contribution experimentally 
against the background of the half-integral powers of the 
spin-wave results. 

We note that formally the Born correction SM, (T) 
goes to infinity at the OPT point H = H,, . However, this 
result must not be understood literally, because in the imme- 
diate vicinity of a second-unit OPT point our perturbation- 
theory calculation becomes inapplicable; it only points up 
the strengthened role of anharmonicity in the present case. I '  
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As for the actual behavior of the system in the fluctuation 
region, we can say the following: it is well-known that for 
arbitrarily small but finite T, in the immediate vicinity of the 
OPT point the quantum system behaves cla~sically.~ Corre- 
spondingly, in our case within this region we will have scal- 
ing behavior characteristic of the three-dimensional classi- 
cal XY model. 

To conclude this section, we note that the quantities 
T;"(k,p), I?{@ (k,p), T;@(k,p) entering into (30) have the 
meaning of forward scattering amplitudes of a -  andfi-quasi- 
particles. (Beginning at this point in the article, we will 
transform the notation w; + wg, w,+ -+wf.) In the long- 
wavelength limit they equal 

(The upper sign refers to the casep = v, the lower t op  #v.) 
We will say more about scattering amplitudes in the follow- 
ing section, where an alternate method will be used in the 
investigation-the quasiparticle formalism. In this section 
we will also present an investigation of the ground state 
which is more accurate than the Born approximation, and 
compare the results of the two different approaches used. 

4. QUASIPARTICLE FORMALISM 

As usual, for low T the original spin Hamiltonian can be 
reduced to an effective Hamiltonian for interacting Bose 
particles. In order to do this, we must use a transformation 
from spin to Bose operators, which in the case of systems 
with tensor interactions is implemented by using the gener- 
alized Maleev-Dyson transformation presented in Ref. 1. It 
consists of a transformation to local coordinates and from 
them to Hubbard operators, and the introduction of Bose 
operators into the latter according to the equations 

Substituting (38 1 into ( 3 )  and passing to momentum space, 
we obtain 

A. Ground state 

In order to treat the ground state more precisely, it is 
convenient first of all to carry out the linear u-u transforma- 
tion (a, ,  b, +a,, fik ) so as to diagonalize the quadratic part 
of the Hamiltonian. In this procedure, the transformation 
coefficients are determined by the condition that the nondia- 
gonal terms reduce to zero in the bare quadratic Hamilto- 
nian P2. We can proceed more consistently by introducing 
a self-consistent transformation which takes into account 
the fact that after reducing the anharmonic terms to normal 
form there appear corrections to the quadratic part which 
themselves depend on the. u-u transformation functions. By 
imposing the condition that the full Hamiltonian, not the 
bare quadratic Hamiltonian, be diagonalized, we obtain in- 
tegral equations for the u-u transformation functions. More- 
over, because the original Hamiltonian contained a finite 
number of anharmonic terms, we can thus determine these 
functions exactly. 

What complicates things is the fact that the renormal- 
ized quadratic Hamiltonian is formally not self-adjoint. In 
particular, the coefficients of the Hermitian-conjugate terms 
a,P , and f i  ?,a: are found to be different, which pre- 
vents us from selecting conditions on the functions u,, u, 
which reduce the coefficients of both terms to zero at the 
same time. 

The reason these coefficients are different is that trans- 
formations of Maleev-Dyson type from spin to Bose opera- 
tors are non-Hermitian. It is easy to confirm that in order to 
exactly diagonalize the quadratic part with a linear u-u 
transformation it is necessary also to choose non-Hermitian 
transformations, i.e., to determine the relation between the 
original operators a,, b, and the eigenoperators a,, Bk for 
the collective excitations by the equations 

without assuming that u, = U,, u, = V, . In order to obtain 
certain general relations, let us perform this transformation, 
assuming that the original Hamiltonian is of the form 

while not yet specifying the form of 2 ,  , B ,  , and e, . After 
this transformation, we obtain 
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From the condition that the coefficients of the anomalous 
terms a,P - , and B +,a: reduce to zero, we obtain the 
equations 

2iikvkUk+8kvkz+CkUk2=0, 2Ak~kvk+Bk~k~+CkVk~=0, 

(46) 

and from the commutation relations the identity 

Eqs. (46), (47) allow us to determine the explicit relation 
between the spectrum of collective excitations, as well as the 
functions u,, v,, U,, V,, with the coefficients i,, g,,  and 
Ek : 

G:"=~~T/Z= (x.L~-B~c~) l b ~ h ,  (48) 

Let us turn now to the Hamiltonian (39)-(42). The 
bare quadratic part Z2 has the form (40), where 

Ak=D-Jk, B~=c~---J~.  (50) 

The Hamiltonian 3, has the form (41 ). Carrying out the 
transformation (43) on this Hamiltonian, followed by a re- 
duction to normal ordering in the operators a , ,  fl, , and 
isolating the quadratic part and comparing the result with 
the form (45), we obtain corrections to the coefficients A,, 
B,, and C,: 

Proceeding in the same way with the Hamiltonian Z6, we 
obtain 

The total values of the coefficients in the quadratic Hamilto- 
nian equal 

Thus, the renormalized excitation spectrum for T = 0 is de- 
termined by Eq. (48) after substituting in (53).  If in the 

course of these transformations we extract terms which do 
not depend on the operators a, ,  0, , we obtain an expression 
for the ground-state energy: 

The functions u,, v,, U,, V, also determine corrections 
to the correlation functions for the spin and quadrupole op- 
erators at T = 0. They can be obtained by using the connec- 
tion between the spin and quadrupole operators and the op- 
erators a,, b ,  , after passing in accordance with (43) to the 
operators a , ,  p, and extracting the temperature-indepen- 
dent part. For example, the quantity AQ = Q - QhO) 
(where Qo = (3 ( S  ' )2  - 2) is the quadrupole order param- 
eter') characterizes the deviation of the ground state from a 
state with full quadrupole order (S" ) = 0, Qo = - 2 due to 
the presence of zero-point energy of the oscillations; we ob- 
tain for this quantity 

It follows from (49) that the functions u,, v,, U,, V, them- 
selves are determined by a system of three integral equations: 

since all the parameters entering into the right side of (56) 
can be uniquely expressed in terms of the three independent 
combinations standing on the left side. 

In view of the complicated form of the integral equa- 
tions, it is expedient to solve them via an iterative method. 
The zero-order approximation obtained by using the unper- 
turbed values A,, B, , and C, from (50) yields functions 
which coincide with those given by (9) .  Using them, we can 
find more precise values in first approximation to the coeffi- 
cients2,, 5,  , and e, ; these functions in turn determine the 
spectrum in first approximation via (48), and also by substi- 
tuting into the right side of (56) the transformation func- 
tions (43) in second approximation. The iterative process is 
repeated until the desired accuracy is attained. 

It is obvious that the computed results will depend on 
the parameter f .  The maximum value of the anharmonic 
correction is attained for minimum f ,  i.e., for f = fc, (see 
Fig. 2) .  Mathematically this follows from the equations we 
have obtained; physically it corresponds to the increasingly 
important role of anharmonicity as we approach the multi- 
critical point A. So as to estimate the upper bound of the 
corrections, let us carry out an explicit calculation for 
f = lc, (for a SC lattice), thereby obtaining a self-consistent 
value for lc, itself. 
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Carrying out this calculation, we verify that the iter- 
ation process attains an adequate degree of convergence 
after only three steps. The result: 

can be considered exact to three decimal places and used for 
further calculati6ns based on the equations obtained in this 
paper, e.g., for numerical estimates of the ground-state ener- 
gy, correlation functions etc. 

In particular, we obtain the following criterion for fer- 
romagnetism, along with an upper limit on the deviation of 
the ground state from the state of full quadrupole order 

In conclusion, we note that if we use the zeroth-order 
approximation (9) in Eqs. (48)-(54) for the u-v transfor- 
mation functions and then limit ourselves only to terms de- 
rived from Z4 in these equations, we obtain exactly the re- 
sults of the previous section for the T = 0 spectrum and the 
correction AF(0) to the free energy. 

0. Thermal corrections and scattering amplitudes 

Besides the terms quadratic in a,, 0, investigated ear- 
lier, the Hamiltonian contains fourth- and sixth-order terms 
which describe quasiparticle scattering processes, e.g., p4 
has the form 

1 
$j4 = - {Toma ( x ,  k; p, q) a.+aPtaka. 

whereZi  contains terms which do not preserve the number 
of quasiparticles. Without writing out the full expressions 
for the scattering amplitudes at arbitrary angles 
Tga(x,k;p,q), rtp ( (x,k;p,q), Tgo(x,k;p,q), we note that in 
the limit x = p, k = q, and also when using the zero-order 
approximation for the functions u, , u, , U ,  , V ,  , these func- 
tions lead to the Born-approximation forward-scattering 
amplitude (3  1 ) : 

Correspondingly, by investigating fourth-order scattering 
processes in Born approximation we obtain thermal correc- 
tions to the spectrum, critical field, free energy, etc., which 
precisely coincide with the results obtained using the dia- 
gram technique. Taking into account 4-particle processes to 
higher order leads only to changes in the numerical coeffi- 
cients in Eqs. (24)-(27), (32)-(36) without changing the 
character of the temperature dependence (except for the im- 
mediate vicinity of the OPT point H = H,, ). Taking into 
account 6-particle scattering processes leads to thermal cor- 

'rections which are higher order in T. 
Let us dwell on the behavior of the scattering amplitude 

in some detail. We remark that, as follows from (37), 
r r (p,k;p,k)  a l / k p  at the point A (where H,, = 0) and 
rr(0,0;0,0) = constant at all the remaining points on the 
line H = H,, (see Fig. 2 ) .  On the other hand, in tbe easy- 
plane phase (the FM, phase in the designation of Fig. 2, 
where the continuous symmetry of the Hamiltonian ( 1) rel- 
ative to rotation around thez-axis is spontaneously broken), 
according to Adler's principles the scattering amplitude 
with the involvement of Goldstone quasiparticles with fre- 
quency w, in the long-wavelength limit must have the form 

Let us discuss how the above-mentioned behavior of the 
scattering amplitude at the boundary of the FM, phase 
agrees with this requirement. We note first of all that if for 
the FM, phase the Goldstone quasiparticles have the dis- 
persion law w, = ck, then at its boundary H = H,, the ve- 
locity of sound reduces to zero and w, = g k  for small k. 
This follows from Eq. (58) of Ref. 1 for the FM, phase, and 
agrees with the behavior of the frequency of low-lying modes 
when we approach from the QO phase side [see Eq. ( 17) 1 
and is typical behavior for a second-order OPT. Correspond- 
ingly, from (61 ) we obtain the requirement I? (0,0;0,0) 
= constant, which is also satisfied by the amplitudes we 

have found. 
The exception is at the multicritical point A, for which 

the behavior is characteristically unique. On the one hand, it 
follows from ( 17) and the condition K, (0) = 0 that at this 
point the velocity of sound remains constant2' (w: = ck), so 
that we must have r$"(0,0;0,0) = 0 at the point h = 0, 
f = fcr - 0. On the other hand, this is a point of nonanalyti- 
city in the spectrum at k = 0, so that the result at zero quasi- 
momentum, generally speaking, will depend on the path of 
approach to this point. Direct calculations for the FM, 
phase carried out using the same diagram technique and to 
the same order of approximation as in Sec. 3 for the QO 
phase (the corresponding computations will be presented in 
a separate paper), show that on the line h = 0 the scattering 
amplitude for Goldstone quasiparticles has the form (61) 
[and consequently r(0,0;0,0) = 01 for any fs(O,fC,); how- 
ever, as we approach the point A this form is valid over and 
ever-decreasing interval of values of quasimomentum, 
namely those for which o,, w, Af =fcr - 6. At the point 
h = 0 , f =  lcr itself, Eq. (61) can retain its validity only for 
k = p = 0. However, this depends on the order in which the 
limits are taken. If the limit is taken for finite values of Af, 
i.e., if we first set k = p = 0, and then Af = 0, then the Adler 
principle is fulfilled and r(0,0;0,0) = 0. When the limits are 
taken in the opposite order we obtain a different answer, in 
which the form is r(p,k;p,k) - l/kp, which coincides exact- 
ly with the result (37) for the scattering amplitude of the QO 
phase if we set f = fcr in it. Hence, for this value of f we 
simultaneously satisfy both the conditions for joining the 
results of the QO phase with the results for the FM, phase 
and the Adler principle for the FM , phase. 

It should be noted that when we calculate the velocities 
of sound of both modes in the spectrum of the QO phase, i.e., 
c = lim am:/dk, we find an analogous dependence of the 
result on the order of taking the limits k-0, 
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A6 = 6 - &, -0. Actually, it follows from ( 17) that 
c- k /(H f ,  + ak 2 ,  ' I 2 ,  and consequently c equals zero or a 
constant depending on the order in which we let k-- 0, A6- 0 
(because H f ,  -0 as Af - 0 ) .  

In conclusion we point out that the theory we have con- 
structed applies equally to the cases of bulk FM or AFM. In 
both cases, for H < H,, a single-sublattice tensor phase re- 
sults. The difference in spin structures appears only for 
H > H,, , where ordering arises in the XY plane: ferromagne- 
tic for J,, > 0 and antiferromagnetic for J, < 0. 

We also emphasize that, as we have verified, the use of 
the two independent methods we developed for investigating 
spin systems with tensor-vector order parameters-the low- 
temperature variant of the diagram technique for Hubbard 
operators and the formalism based on the generalized Ma- 
leev-Dyson transformation-lead to identical results when 
used in first-order approximations. 

"we note that similar unphysical results are also obtained for other spin 
systems when the Born approximation is used in the immediate vicinity 

of a second-order OPT point or of a point of phase instability [see, e.g., 
the result for low-temperature magnetization near a field-driven insta- 
bility of the APT phase-Eqs. (34)-(37) of Ref. 61. 

"The same thing follows from Eq. (57) of Ref. 1 for the FM, phase. 
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