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The ionization of an atom by a smooth laser pulse is described using an adiabatic approximation 
developed in the theory of atomic collisions. Adiabatic quasienergy states are introduced and the 
process of filling them is described. It is shown that the autoionization cross section in the wings of 
the spectrum develops an oscillatory structure because of the interference of electrons emitted 
from these states at the leading and trailing edges of a pulse. At the center of this spectrum there is 
a resonance peak corresponding to an autoionization line. The intensity of this peak vanishes 
when the "condition of quantization" of the area under a pulse is satisfied; the peak profile is 
independent of the shape of the laser pulse. Consequently, when this quantization condition is 
obeyed the absorption of a pulse is minimal. 

1. INTRODUCTION 

The processes occurring in atoms under the influence of 
smooth laser pulses have began to attract attention. Studies 
of these processes are related directly to the role of switching 
the field on and off. It is usual to assume that the field is 
switched on instantaneously or adiabatically 
The hypothesis of instantaneous switching on of the field is 
justified only in the case of resonance processes, whereas in 
the case of adiabatic switching on it is presumed that the 
detuning from the resonance is large.' Therefore, details of 
switching on of the field are important only in investigations 
of quasiresonant processes. Several papers have been pub- 
lished recently9-" in which exactly soluble models are used 
to analyze such processes under the influence of a smooth 
laser pulse. It has been found that the cross sections of the 
various processes (such as resonant f luores~ence ,~~ '~  reso- 
nant i o n i z a t i ~ n , ~ ~ ~ ~ ~  and resonant autoi~nizat ion '~, '~)  exhib- 
it an oscillatory structure. It is usual to point out the special 
role of the pulses of amplitude Eo ( t )  satisfying certain 
"quantization conditions" imposed on the integral 
$2 E,(t)dt,. However, a qualitative explanation of these 
features has not yet been provided. 

We shall show that the processes induced by a smooth 
pulse can be described satisfactorily by the methods and re- 
sults of the theory of nonadiabatic transitions in atomic 
collisions; the analogy is of fundamental importance. The 
oscillatory structure of the electron spectrum appears be- 
cause of the interference of electrons leaving the system at 
the leading and trailing edges of a pulse. Such oscillations 
have been investigated earlier in the case of collisions of 
heavy particles" and a detailed review of the results and 
methods can be found in Ref. 18. However, an important 
distinction is that we do not need to average over the impact 
parameter, so that the oscillations should be much clearer. 
We should mention here an earlier attempt to describe the 
detachment of an electron under the action of a smooth laser 
pulse,I9 but the analogy with the theory of collisions was not 
pointed out there and the results obtained cannot be regard- 
ed as final. 

2. ADIABATIC QUASIENERGY STATES 

We shall consider a system which has a bound state (0)  
with an energy E,, a continuum Ik) with a dispersion law 
~ ( k ) ,  and a diabatic state ( 1  I ) ,  E, ) immersed in this contin- 

uum [(OIO) = (111) = 1, (klk') =cS3(k- k ' ) ] .  This sys- 
tem is in an alternating field with a slowly varying ampli- 
tude: E = eEo(t) cos wt. It is assumed that the system can 
undergo dipole transitions 10) -+ 11) (matrix element D )  and 
10) -+ (k )  [matrix element D(k)  ] and autoionization 
/ 1) + ( k) [matrix element V(k) 1. The wave function of the 
system is 

I $)= ao(t)e'*1(O~+al(t)l~)+~d3kb(k,f)(k)+~6~). (1) 

where IS$) includes a contribution of the states correspond- 
ing to multiphoton processes (it is assumed that E, ZE, + w,  
holds i.e., that states (0)  and (1 )  satisfy one-photon reso- 
nance conditions). In order to determine the coefficient 
functions in Eq. ( 1) using the rotating wave approxima- 
t i ~ n , ~  we obtain (in atomic units) 

iho= (&ha )  aa+'ilEaDal+112E, 1 D (k) b (k, t )  h k ,  

i ~ l = s l a l + ' / ~ o D a o  + V(k) b (k, t )  d3k, (2) 
i6(k ,  I )  =e (k)  b(k, t)-tl/,EoU(k)aa+V(k)a,. 

For simplicity, we are neglecting the contribution IS*). An 
allowance for this contribution in accordance with perturba- 
tion theory gives rise to a dynamic polarizability of the states 
( 1) and (k)  and, in the final analysis, it results in redefinition 
of the polarizability of the state 10) denoted later by a. It 
therefore follows that if we regard a as fitting parameter, we 
can also include the contribution of the states IS$). 

In view ofthe time dependence ofEo ( t ) ,  the system (2) 
cannot be solved analytically. However, from the practical 
point of view, it is sufficient to consider the case of a relative- 
ly slow change jn E,. In this limit it is reasonable to intro- 
duce adiabatic quasienergy states dependent parametrically 
on Eo by substituting ai = ciexp( - iilt) into Eq. (2):  

where 

Fa~(h)= J d3ka(k) fi (k) [h-e ( k )  +io]-l. 

We are interested only in the case of a resonance when 
(E, + w - & a ,  and il is quite close to E,.  We can then 
expand F4 as a series in the vicinity of A = E,  . I '  We shall 
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introduce Z, B, a ,  and E, assuming that 

where a is the dynamic polarizability of the state 10) , and E, 

represents the energy of the resonance state. We must stress 
that all the quantities introduced so far, generally speaking, 
are complex variables. Substitution of Eq. (4) into Eq. (3)  
gives the condition of solubility of Eq. ( 3  ) : 

h,='/2 { E ~ + ~ + E ~ +  i/,aEo2* [ (e0+ ~+ilpaEo2-el)2+E0202]'h) 

(5) 

and the unnormalized solutions of the system (3)  are 

The quantity which can be determined experimentally 
is the spectrum of the emitted electrons S(k) ,  which is pro- 
portional to the square of the modulus of the corresponding 
amplitude d(k)  : 

m 

d ( k ) = l i m e s p [ i ~ ( k ) t ] b ( k , t ) = j  [V(k)a,(t) 
I-+ m -m 

+i/zD (k)Eo (t) a, (t) ] exp [ ie (k) t] dt. (7 )  

If the external field is weak and the absolute value of the 
detuning S = E, - E, - w is relatively large, the only quasi- 
energy state which becomes populated is that which reduces 
to the state 10) in the zero-field limit, i.e., 

ao=l,  ai=-i/2EoD/G, h=eo+o+'/,Eo2(a-2D2/6). 

In this case we have 
m 

which makes it possible to determine the main parameters of 
the theory V( k ) a  and D( k )  from the experiments on con- 
ventional (nonlaser) photoionization. 

3. ADIABATIC APPROXIMATION AND NONADIABATIC 
TRANSITIONS 

In the adiabatic approximation the solution of the sys- 
tem (2)  is 

t 

+.LC,- ( t )  exp[ - h- ( T ) ~ T ] ,  (8) 
t I 

where A ,  ( t )  and c: ( t )  are given by Eqs. (5)  and (6),  i.e., 
they depend on time via the dependence E, ( t ) .  In our case, 
because of the complex nature of the main characteristics of 
the system A ,  in the case of real values of t, we have to 
determine the lower limit of integration in Eq. (8) .  We shall 
consider symmetric laser pulses characterized by 
E, ( t )  = Eo ( - t ) ;  it is then convenient to take t, = 0. 

The adiabatic representation of Eq. (8)  postulates that 
the coefficients A + are independent of time, which is not 
true in the vicinity of the points of degeneracy of the system 
( 3 )  when A + = A_. Such degeneracy occurs in a critical 
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field 

If the detuning is small, only the values 

Ecr ,=* (2ila) [D- (0'-a6) '"1 (9 

are relatively small when A =: (E, + o + E, )/2 is close to e l  
and lies within the range of validity of the expansion of F a ,  
Other values of the critical field are very large, of the order of 
the atomic field, and the behavior of the system under these 
conditions is outside the scope of the present study. 

The value of the critical field determines when the adia- 
batic approximation of Eq. (8)  oreaks down: Eo( tc r )  
= Ecr, . In the case of exponential switching of the field on or 

off, which is the most imporiant process in our problem, 
these moments form two vertical series in the complex t 
plane, similar to the series in the model of Nikitin. 20 In this 
case the standard problem for the description of nonadiaba- 
tic transitions corresponds to a system of equations 

if Eo = Aexp(yt). The solution of this system subject to the 
initial conditions a, ( - CQ ) = 1 and a ,  ( - cu ) = 0 can be 
expressed in terms of the confluent hypergeometric func- 
tions: 

expl -i ( E ~ + o )  t] (11) 

[the expression for a ,  ( t )  can be obtained from Eq. ( 1 1 ) and 
one of the equations in the system ( 10); we shall not need it 
later]. This solution should be matched to the adiabatic rep- 
resentation of Eq. (8). However, the matching in the limit 
t - CQ is unsatisfactory because such an asymptote postulates 
passage through both nonadiabatic regions, whereas the sec- 
ond region is physically meaningless. The correct solution of 
the problem can be obtained by constructing a uniform 
asymptotic representation for the hypergeometric functions 
in Eq. ( 11 ), which however leads to very cumbersome ex- 
pressions. We shall adopt a simpler procedure: we shall con- 
sider the asymptotic expression ( 1 1 ) in the case when la 1 2 /  
a)y,but6-y: 

where r ( x )  is the gamma function, JB ( U )  is a Bessel func- 
tion. Representation described by Eq. ( 12) corresponds to 
the solution of the Demkov problemz1 describing the passage 
through one nonadiabatic region. Therefore, comparing 
Eqs. ( 12) and (8),  we obtain 

A,=n-"'r('/2i-iq) (AD/4y) - I q  exp [r'12nq--Li2i(YkZ)], 

(13) 

where 
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I 
Z-inq + -l:ir (hi-h-) df. 

2 

If the detuning is small, so that S gmax I E o ( t ) b  I, then 

By analogy with Eq. (12), we can obtain expressions de- 
scribing the process of switching off the field. The solution of 
interest to us is then 

ao=r('/,+ iq)exp (-iY) (E,D/4y) ' i"-1q{(~os Z 
-i th xq sin Z)J-,-, ,(EOD/2y) 
+sin ZJxt ,+, , (E,6/2y))  exp  (-ie,t).  (15)  

The probability that the system does not become ionized by a 
single pulse, 

- - -"' (cos Z+i tb n q  sin Z )  I , 

can be described more simply if the imaginary parts of the 
main characteristics are small: 

W=l-sin"/chL nq. (16) 

For a fixed value of the detuning S the probability W oscil- 
lates as a function of Z; if Z = rn, the ionization probability 
is minimal. It should be pointed out that expressions similar 
to Eq. ( 16) are known from the theory of nonadiabatic tran- 
sitions occurring in atomic collisions (see Refs. 21 and 22 
and also Ref. 23 ) . 

4. SPECTRUM OF EMITTED ELECTRONS 

The amplitude of the spectrum of emitted electrons 
d(k)  of Eq. (7)  can be transformed, subject to Eq. ( lo),  to 
the following form where a ,  does not occur: 

We shall assume that a laser pulse has an envelope shown in 
Fig. 1. For a given detuning S from a resonance we can ob- 
tain ECr from Eq. (9) and then the nonadiabatic regions lie 
in the vicinity of the points t = f Ret,,. We can identify 
three natural regions in the electron spectrum (Fig. 2) :  the 
wings of a line ( I  and 111) and the line center (11). Electrons 
corresponding to the line wings are emitted from adiabatic 
quasienergy states and the line center is due to regions 
It 1 >Re I,,. 

We shall now consider the wings of a line. We shall find 
the spectrum by calculating the integral of Eq. ( 17) by the 
method of stationary phase. The stationary points t ,+ ob- 
tained in such calculations satisfy the conditions 
/2 * (t" ) = ~ ( k )  and represent the times at which an elec- 
tron of energy ~ ( k )  becomes detached. It is clear from Fig. 1 
that if ~(k)<Re; l+(O)  or &(k )>ReL(O) ,  there are two 
such points; addition of the corresponding contributions 

FIG. 1 .  Time dependence of the real parts of the pulse amplitude E,  ( t )  and 
of the adiabatic quasienergies 1. ( 2 ) .  The following notation is used: * t, are the moments of detachment of an electron of energy ~ ( k )  in the 
adiabatic region; f t,, are the moments in the vicinity of which there is a 
nonadiabatic transition characterized by E, = E,, of Eq. ( 9 ) ;  E ,  and E ,  

represent the energies separating the wings from the center of the spec- 
trum. 

gives rise to an oscillatory structure of the spectrum. The 
right-hand wing of the line [d  + (k )  1 is created by an adiaba- 
tic quasienergy stateA + ( t )  and the left-hand wing [d- (k )  ] 
by an adiabatic quasienergy state /2- (t): 

1 1 
e x p [  - i ( Y + Z )  ]exp(  r nq) ~ , ( t = ' )  

It is clear from Eq. ( 18) that in the case of large values of the 
parameter q which represents the product of the detuning 
and the time at which the field is switched on) one of the 
wings is suppressed exponentially because the state which 
reduces to the state 10) at the moment the field is switched 
off is populated preferentially. The total number of oscilla- 
tions N can be obtained from Eq. ( 18): 

i.e., the number of oscillations is governed by the area Z 
under a pulse, as already pointed out in Refs. 9-12. Natural- 
ly, oscillations in the spectrum appear only if the decay of 
adiabatic quasienergy states is relatively weak in the course 

FIG. 2. Spectrum of the emitted electrons. Regions I and 111 (wings of the 
spectrum) are due to the detachment of an electron in the adiabatic re- 
gion, whereas I1 is the center of the spectrum. The central peak corre- 
sponds to the autoionization of a free atom. 
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of motion from one point of detachment to another. In any 
case, such decay makes the oscillations incomplete. 

It would be of interest to describe the profile of the out- 
ermost line in the wings of the spectrum. This line is due to 
electrons which leave the system in the vicinity of extrema of 
the quasienergies R + and R -. If a pulse has a clear peak, we 
can use the quadratic approximation so that the calculation 
of Eq. (17) yields an Airy function (by analogy with Ref. 
17). However, if the pulse has a long plateau, during which 
the system decays significantly, then it is preferable to use a 
different approximation: E,, = Em -B exp ( - y ,t) or 
E, = Em - Bt-B (Ref. 17). 

We shall consider the spectrum of electrons in the cen- 
tral part I11 shown in Fig. 2. We shall do this by calculating 
the integral ( 17) and use the standard solutions of Eqs. ( 12) 
and ( 15). We then obtain 

E~+O-E (k) 
) [ r( ~ r - 6  ('k )I 2Y 2Y 

[ eos Z + i  sin Z cth 
'12n (k) I 11 . (19) Y 

The first term in braces represents the contribution of the 
leading edge of a pulse, whereas the second term corre- 
sponds to the trailing edge. The factor 

describes the process of decay of the system during its mo- 
tion in the adiabatic region. Naturally, the contribution of 
the trailing edge is significant only if this factor is not too 
small. The most important feature of the spectrum at the 
center is the presence of a pole contribution due to decay of 
an autoionizing state. It follows from Eq. ( 19) that this con- 
tribution is proportional to sin Z and its profile depends 
weakly on the nature of the process of switching on the field, 
governed by the parameter y. It should be pointed out par- 
ticularly that when the condition Z = m is satisfied, the 
line corresponding to decay of an autoionizing state is miss- 
ing after the passage of a pulse, in agreement with Eq. ( 16). 

5. CONCLUSIONS 

We shall now summarize the results. A smooth laser 
pulse induces a transition of an atomic system to a superposi- 
tion of adiabatic quasienergy states. This transition is de- 
scribed by the usual theory of nonadiabatic processes in 

atomic collisions. According to this theory, the probability 
that the system returns to its initial state after the passage of 
a pulse oscillates as a function of the pulse area and can be 
close to unity. For pulses of this kind the absorption is mini- 
mal. Autoionization of electrons with a specific energy oc- 
curs (in the adiabatic part of a pulse) at two points where the 
corresponding contributions interfere, creating an oscilla- 
tory structure of the spectrum. In the central part of the 
spectrum there is a resonant pole maximum corresponding 
to decay of an autoionizing state filled after the passage of a 
pulse. If the probability of survival of the system is close to 
unity, the intensity of this maximum is close to zero. 

It should be stressed that our analysis of one-photon 
processes far from the threshold can be extended also to mul- 
tiphoton processes. 

The authors are deeply grateful to V.N. Ostrovskii for 
his interest and valuable comments. 
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