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For certain exactly solvable quantum mechanical problems, we have found associated 
quasisolvable problems for which the first N states are known explicitly. The corresponding 
potentials are nontrivial and contain several free parameters, the known eigenfunctions and 
energy eigenvalues being related to one another by analytic continuation. A known exactly 
solvable problem emerges as N -  a. We note a finite radius of convergence for the strong- 
coupling expansion of the spectrum. A quasisolvable problem has been found for the class of 
periodic potentials which go into a Mathieu potential in the limit N -  cc, . 

1. INTRODUCTION 

The importance of the existence of exactly solvable 
problems' in quantum mechanics is undisputed. A variety of 
physical processes are modeled after these problems, but the 
models are usually fairly gross ones which do not reflect 
many of the important properties of the phenomena being 
studied. This makes it necessary to consider all manner of 
perturbations of the exactly solvable problems and construct 
an appropriate perturbation theory, which has its draw- 
backs. This is one of the reasons for the ongoing search for 
new problems which can be solved exactly. It is worth point- 
ing out that searching for exactly solvable problems is tanta- 
mount to constructing orthogonal polynomials in certain 
given coordinates. Each successive polynomial is usually of 
higher degree than its predecessor. In the present paper, we 
describe an unorthodox approach to this problem: we search 
for all orthogonal polynomials in the class of polynomials of 
fixed degree. These will clearly differ in the number of real 
roots within the region pertinent to the problem at hand, and 
the number of such polynomials will be finite. We thus ob- 
tain potentials for which a portion of the spectrum is known 
explicitly. 

One important property of all known exactly solvable 
problems involving smooth potentials is that they all emerge 
from the factorization method of Infeld and Hull,' and ad- 
mit of a simple supersymmetric extension.' Their spectra 
and wave functions are known explicitly.'' 

Recent years have witnessed the extensive development 
(see Refs. 3, 4, 5-7, and citations therein) of a novel ap- 
proach to finding exact solutions of the Schroedinger equa- 
tion, based on the simple observation that any normalized 
function $(XI can be considered the wave function for some 
state in a certain potential, 

where the constant E has the sense of an energy. In the one- 
dimensional case, if $(x)has n nodes, it is the wave function 
for the nth excited state. Furthermore, $(x) may be unnor- 
malizable, in which case we use the Wronskian to find a 
second linearly independent solution, and can sometimes 
construct a normalizable function from these. We can thus 
find a set of potentials in which one state is known exactly. 
This was sufficient to construct a perturbation theory, for 

example, by the method of nonlinearizatione8 One important 
advance in the development of this approach has been the 
construction of a nontrivial potential in which two levels are 
known.5 

In the present paper, we present two types of multipara- 
meter problems, which we refer to as quasisolvable: firstly, 
those for which we have complete information on the first N 
levels (N  = 1, 2, ... ), which are related to one another by 
analytic continuation, and secondly, those for which we 
have N  potentials of a certain type which differ only in the 
value of one parameter, with a certain single energy corre- 
sponding to the ith state of the ith potential ( N  = 1,2, ...) . In 
the limit N -  oo , these become exactly solvable by the factor- 
ization method described in Ref. 1. All such problems can be 
used to model physical phenomena for which a knowledge of 
the entire spectrum is not needed. 

Since these problems have nontrivial analytic proper- 
ties as functions of their parameters, we briefly recall what is 
known of the analytic properties of eigenfunctions and 
eigenvalues. It was shown in Ref. 9, in the quasiclassical 
approximation for the potential V =  yx2 + x4, that 1 )  as a 
function of y, the eigenvalues have an infinity of copplex- 
conjugate pairs of branch points, which coalesce toward 
1 yl = a along the ray with arg y = r, and every singularity 
corresponds to an intersection of eigenvalues; 2) eigenvalues 
of a given parity form a single Riemann sheet; 3 )  the integral 
of the square of the wave function goes to zero at a singular- 
ity. Several rigorous results were obtained in Ref. 10 along 
these lines, and the positions of the first branches were re- 
cently found numerically." Note that the existence of singu- 
larities for finite y will lead to a finite radius of convergence 
in the strong-coupling expansion for the eigenvalues and ei- 
genfunctions. It has also been shown that analogous analytic 
properties obtain for other quantum mechanical problems, 
such as the Mathieu eq~ation, ' ' . '~ the potential V =  ~1x1 
+ x2 (Ref. 14), certain solid-state energy band problems,'5 
and the two-center Coulomb 

This paper is structured as follows. In Sec. 2, we discuss 
one-dimensional, and in Sec. 3, two-dimensional spherically 
symmetric quasisolvable problems. Quasisolvable problems 
for periodic potentials are described in Sec. 4. Section 5 con- 
tains our hypothesis on a hierarchy of spectral problems, and 
our conclusions. 
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2. ONE-DIMENSIONAL CASE 

We consider the one-dimensional Schroedinger equa- 
tion 

H*=E$, H=-d2/dx2+ V (x) (2) 

and perform the wave-function transformation8 

where p(x)  is a function containing information about the 
zeroes of $ ( x )  in minimal fashion (for example, in the sim- 
plest case,p(x) is an nth degree polynomial with n real roots, 
where we seek the (n + 1 ) th eigenfunction) . Taking y = e, ', 
Eqs. (2) and (3) give 

Our objective is to find a complete reduction of the frac- 
tion of the left-hand side of (4),  and moreover, expressible in 
two terms in some variables. We emphasize that this reduc- 
tion results in a one-term expression in exactly solvable 
problems. 

We now consider specific cases. 
Generalized Morse potential. We take 

and letp = 1. Substituting (5)  into (4),  we obtain 

For the potential (5) ,  which depends on the parameters a, b, 
c, and a ,  we therefore know one eigenvalue, which is a 
unique analytic function of these parameters and is isolated 
from the rest of the spectrum. With the chosen parameter 
values, we obtain a potential which increases as 1x1 - w in 
which we know the ground state, since the wave function 
falls off and is positive. We now take p = e - "" + A,  and 
determine A from the requirement that the potential have no 
singularities [see (4) ]  for real x.  Equation (4) then gives 
rise to an addition to the potential ( 5 ) ,  

where 

A,= {-a-2bt [ (a+2b)2+16ac]'")/4a, 
E,,,=2ac-b2-a{a+2b+[ (a+2b)2+16ac]'")/2, 

where the plus sign refers to the ground state (positive eigen- 
function) and the minus sign to the first excited state in the 
potential (6),  ( 7 ) .  Note that the levels and wave functions 
become interleaved, forming a two-sheeted Riemann surface 
with branch points at (a + 26) = +_ 4i(ac)'I2. It can be 
shown that when 

the reducibility of (4)  results in the addition of 
V,- , = - 2aa(N - 1 )e "" to the potential (5) ,  while 
the result of reduction in (4)  is VN-, + AE, where AE is 
some unknown constant with the connotation of an energy 
correction. In solving for the coefficients Ai , we then obtain 
a set of N linear homogeneous equations with Jacobi matrix 
elementsjik. The constant AE enters linearly with unit coef- 

ficient in the diagonal matrix elements: j,, = J,, - AES, . 
This set of linear equations can be viewed as the problem of 
determining the eigenvalues and eigenfunctions of the Ja- 
cobi matrix Ji, , with AE being an eigenvalue of J,, . If the 
Jacobi matrix is cast in canonical form, with Jli = ai ,  
J,,,, = - b,, and Ji, ,,, = - c, (seep. 28 of Ref. 19), its 
matrix elements in the present case will be 

Inasmuch as b,c, > 0, all of the AE, are real, as expected 
from the fact that the original Schroedinger operator is Her- 
mitian. Since J is an N X N matrix, we have an Nth  degree 
equation for AE with real roots. For N = 2 and 3, the explicit 
form of this equation is 

(AE)'- (6b+5a) (AE) '+4[(b+a) ( 2 b i a )  -4acI AE 

For any N > 1, the roots AE, are interleaved, forming an 
N-sheet Riemann surface, with E, = Eo + AE,. For a suit- 
able N-dependence as N- w , we have c - 0 and c; -. 0. The 
spectrum is then interleaved, and we wind up with the well- 
known exactly solvable Morse potential 

T7=A {esp I -2a ( x - s o )  ] -2 exp [ -a (x-xo) 1). 

Another family of quasisolvable problems associated 
with the Morse potential is generated by 

Forp = 1, we have the potential 

in which the lowest eigenvalue is known, and is isolated from 
the rest of the spectrum. Taking the expression in (8)  for 
p (x) ,  it can be shown that the reduction of (4)  leads to 

The parameter A is analogous to AE in the preceding exam- 
ple, and comes from the solution of the Nth degree charac- 
teristic equation for the Jacobian with 

ai=2a(N--i), bi=-2ci, c,=- (N-i+l j [2bf  a(N-i+l) 1, 

Thus, N eigenvalues and eigenfunctions, all with the same 
energy E = - b 'and specifying the ith state oftheith poten- 
tial of the class V =  V,, + V ,  , [see (12)-(13)], become 
interleaved and form an N-sheet Riemann surface. As 
N- CO, c-0 and b, -0 and the interleaving of the Riemann 
surface disappears, giving rise to the Morse potential. 

There is one more family generated, 

Forp = 1, we have the potential (12) with the replacements 
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a- - a ,  c- - c, and b- - b. Making use of (8 )  for the 
factor preceding the exponential, we obtain by reducing the 
fraction in (4)  

We add the constant term in ( 16) to the energy, obtaining 

EN=-bZ-a(a+2b) (N-I), (17) 

while A has the same meaning as in the previous example. 
Here the Jacobi matrix is 

We find that c- 0 and ci - 0 as N- w , resulting in the Morse 
potential. 

Generalized Peshlya-teller potential. We take 

y,=a th ax+c shz ax,  c20,  a>(), a>O. (19) 

Substituting (19) into (4 )  withp = 1, we obtain 

Vo=-a(a+a) ch-' ax-c (c+2a-2a) ch2 ax+cZ ch' a x ,  

and therefore the ground state is known for the potential 
(20), separately from the rest of the spectrum. When 
p = thax, the potential (20) is supplemented by 

V,=-2a (a+a) ch-2 ax, E,=2ac-az+ac, (21 

where El is the first level in the potential (20),  (2  1 ). Note 
that since the resulting potentials are even, the Riemann sur- 
faces of the even and odd states are distinct. When 
p = th2ax + A ,  the term added to (20) is 
V2 = - 2a(2a  + 3a)chV2ax, and 

EO,,=2ac-a2-a (2a-c+ 2a+2[ (a+c+ 2a)'+2c(2a+3a) 1'"). 

(22) 

For p = ( A  + th2ax)thax,  the addition to (20) is 
V, = - 6 a ( a  + 2a)chK2ax, and 

This differs from the situation for the generalized Morse po- 
tential, in that levels of the same parity form a two-sheeted 
surface. When 

the addition to (20) is Vk = - a k ( a k  + a + 2 a ) ~ h - ~ a x ,  
and the first N = [ k  /2] + 1 states of parity ( - are 
known. 

Corrections to E,, or El come from solving an N t h  de- 
gree equation derived from the Jacobi matrix 

a , = - 2 { a [ k ~ k ( 2 i + l )  +i2] -ai+c(k-i)), 
bi=- {a[k2-k(2i+5) + ( i+l )  (i+2)] -2a(i+2)), 

ci=-a(k-i+l) (k-i+2), 
where if k is even, i is odd, and vice versa. These are inter- 
leaved, forming a surface of N sheets. When k -  W ,  they 
become disentangled and c = 0, and we have the exactly 
solvable Peshlya-Teller potential V z  chU2ax. 

Another family is generated by 

y2=b th3 ax+a th ax, a>b, a>O. (25) 
F o r p  = 1, we have a potential with a known ground state: 

Vo=-b2 ch-' ax+b (2a+3b+3a) ch-' a x  

- (a+3b) ( a + b + a ) ~ h - ~  ax,  

Since (25) is an odd potential, all potentials generated will 
be even, and the Riemann surfaces for odd and even states 
will be distinct. The result of the reduction in ( 4 )  is 

Tik=-2abk ch-4 a ~ + 2 a ( b k + A ) c h - ~  ax. (27) 

The value of the parameter R is derived from an equation of 
degree N = [k  /2] + 1. The result is a problem in which N 
states of parity ( - I l k  with energies (26) are known in 
potentials like (26) and (27),  and are interrelated by analyt- 
ic continuation in one of the parameters a,  b, or a. In the 
limit k- w , we have b -0 and the problem reverts to a Pesh- 
lya-Teller potential. 

Generalized harmonic oscillator. Folowing [3-71, we 
take 

By virtue of the even parity of the resulting potentials, states 
of differing parity form two distinct Riemann surfaces. For 

p =  1, 

Vo=b2x92abx4+(a2-3b)x2, Eo=a, (29) 

and for p = x, 

Whenp = x2 +A,  the addition to (29) is V2 = - 4bx2, and 

while for p = x ( x 2 + A ) ,  the addition to (29) is 
V,= - 6bx2,and 

E,,, and E ,,, form two-sheeted Riemann surfaces respec- 
tively, with branch points a = + i (2b) ' I 2  and 
a = f i (6b) 'I2.  Whenp = A &  + A l x k -  ' + ... +A, ,  the 
-addition to (29) is Vk = - 2kbx2; N = [ k  /2] + 1 states of 
parity ( - 1 ) are known for this potential. The corrections 
to the energy AE are the roots of an N t h  degree equation 
derived from the Jacobian 

where if k is even, then i<k  is even, and vice versa. The limit 
k -  w gives b-0; the spectrum becomes disentangled, and 
we have the potential V = a2x2. 
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3. THE d-DIMENSIONAL SPHERICALLY SYMMETRIC CASE 

If we treat the radial part of the d-dimensional Schroe- 
dinger operator with a spherically symmetric V(r) in a simi- 
lar manner, we obtain 

whereD = d + 21 - 1; 1is the orbital quantum number (the 
problem is formulated over a semiaxis). As in the one-di- 
mensional case, our objective is a complete reduction of the 
fraction on the left-hand side of (34). 

Generalized harmonic oscillator. The analog of (28) is 

Forp = 1, 

For p = 9 +A, the reducibility requirement leads to two 
solutions: A > 0 (ground state for fixed I) and A < 0 (first 
excited state). The potential (36) is supplemented by 
V, = - 463, and the corresponding states have energies 

where the lower sign refers to the ground state and the upper 
to the excited state. Taking 

for the factor preceding the exponential, the addition to the 
potential (36) that we obtain by reduction is 
V, - , = - 4b(N - 1 )3. Additions AE to the energy (36) 
are given by the roots of the characteristic equation for the 
Jacobi matrix 

These levels are interleaved, forming a Riemann surface of N 
sheets. In the limit N +  co , b -0 and b, - 0, the spectrum is 
no longer interleaved, yielding a known, exactly solvable 
problem (for example, see p. 158 of Ref. 20). The latter is a 
generalization of the harmonic oscillator in spherical coordi- 
nates to nonintegral angular momentum. 

The generalized Coulomb problem. We now take 

Withp = 1 (ground state), we have the potential 

in which the lowest state is isolated from the rest of the spec- 
trum. For p = r + A  , the energy is 
E, = b(D + 3 - 2c)  - a*. The addition to the potential 
(41) is 

where the plus sign corresponds to the ground state, the mi- 
nus sign to the first excited state. Taking 

as the factor preceding the exponential, it can be shown that 
reducing the fraction in (34) yields 

The constant term in (44) can be ascribed to the energy 

while the parameteril can be found by solving the N th degree 
characteristic equation for the Jacobi matrix 

The resulting problem is that of Npotentials coupled by 
analytic continuation, for which the ith state of the ith poten- 
tial corresponds to the energy (45). For N-. co , b +0 and 
b, -0, the potentials are no longer interleaved, giving the 
known, exactly solvable Kratzer potential (seep. 157 of Ref. 
20), which generalizes the Coulomb potential to nonintegral 
angular momenta. 

Another quasisolvable Coulomb problem arises when 

Whenp = 1, 

If we take the expression in (43) for p ( r ) ,  it can then be 
shown that reduction of the fraction in (34) yields 

The parameter A makes its appearance as one of the roots of 
the characteristic equation for the Jacob matrix 

ai=(N-i) (N-i+D-I-2c) ,  b,=-2ai, ci=-2b(N-i+l).  

This is analogous to the situation in the previous problem. 
As N-+ w , b -0 and ci -0, and we obain the exactly solvable 
Kratzer potential. Note that this problem was investigated 
by Korol' *' for a = 0. 

4. QUASISOLVABLE PROBLEMS AMONG PERIODIC 
POTENTIALS 

We have thus described quasisolvable problems on the 
line ( - co , + co ) and the semi-infinite line segment [0, co ) 
in Secs. 2 and 3. We now move on to periodic potentials. Let 

y=a sin 2ax. (51) 

It is well known (see Refs. 12 and 13, for example) that there 
are four possible forms for the factor preceding the exponen- 
tial in (3) :  

pl=Ao cos" 2ax+Al cosN-' 2ax+. . . + A N ,  (52) 
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Consider states of the first type, as in ( 5 2 ) .  Lettingp = 1 and 
substituting ( 5 1 )  into ( 4 ) ,  we obtain 

Vo=,-a2 cos2 2ax-2aa cos 2ax, E,=-a2, ( 5 6 )  

and we thereby find the eigenfunction and the energy of the 
lowest state of this type in the periodic potential ( 5 6 ) .  Now 
let the factor before the exponential bep = cos 2 a x  + A.  Re- 
ducing the fraction in ( 4 )  gives the condition 

with the plus sign corresponding to the ground state 
( I A ,  I > I ) ,  and the minus sign to excited states ( I A -  I < 1 ) .  
The potential ( 5 6 )  is supplemented by 

AV,=-4aa cos 2ax, ( 5 8 )  

while the corresponding energies are 

E,=-a2+2az 2 4a (aZ+4aZ)'". ( 5 9 )  

In the general case of ( 5 2 ) ,  the addition to the potential ( 5 6 )  
is A V,  = - 4aaN cos 2ax ,  giving rise to the potential 

VN+,=-aZ cos2 2ax-2aa(2N+I) cos 2az, ( 6 0 )  

in which N  + 1 states are known, being related to one an- 
other by analytic continuation in the parameters a  and a, 
and forming an ( N  + 1)-sheet Riemann surface; the wave 
functions are of the form 

$=p exp {- (a12a) cos 2ax) .  ( 6 1 )  

We next move to a consideration of states of the second 
type, as in ( 5 3 ) .  Lettingp = sin 2ax ,  the addition to ( 5 6 )  is 
the same as ( 5 8 ) ,  and we thus know one state of the second 
type in this potential, with energy 

as well as two states of the first type with energies ( 5 9 ) .  In 
the general case of (53), we obtain the potential ( 6 0 ) ,  in 
which we know N  states of the second type, forming an N -  
sheet Riemann surface in a  or a. Furthermore, in this poten- 
tial, we known the ( N  + 1 ) th state of the first type. 

The simplest state of the third type, as in ( 5 4 ) ,  is 
p = cos a x .  The addition to the potential is 

AVl=-2aa cos 2ax, ( 6 3 )  

and as a result, we know the lowest-lying state of the third 
type in the potential 

V,=-a2 cos2 2ax-4aa cos 2ax, E,=-a2-aa+'a2/4, ( 6 4 )  

where E is the energy. The potential 

VN=-a2 cos2 2ax-4aaN cos 2 a x ,  ( 6 5 )  

[compare ( 6 0 )  ] with N  interleaved states of the third type, 
is obtained whenp = p, [see ( 5 4 )  1. Exactly the same poten- 

tial arises in the problem of N  states of the fourth type. 
We thus see that 2 N  + 1 states are known in the poten- 

tial ( 6 0 ) ,  with N  + 1  of these ascribed to the first type, and 
the rest to the second. In the potential ( 6 5 ) ,  we know 2N 
states, of which N  are of the third type and N of the fourth. 
Only the states of a given type interleave, forming a Riemann 
surface with a finite number of sheets. We point out that in 
all cases, the polynomial coefficients Ai [see ( 5 2 ) - ( 5 5 )  ] in 
the set of linear equations are of the same form as in type one 
and type two solutions (see Secs. 2  and 3 ) ,  although the 
matrix for this system ceases to be Jacobian, and instead 
consists of a four-wide diagonal band. 

In the limit N -  ~ 1 3 ,  we obtain the same Mathieu poten- 
tial 

v,=-4aa cos 2ax ( 6 6 )  

as for both ( 6 0 )  and ( 6 5 ) ,  and this is in fact not exactly 
solvable. In contrast to the foregoing problems of Secs. 2  and 
3, therefore, the states remain interleaved; this has been con- 
firmed by numerical calculations. l 2 . l 3  The matrix of the sys- 
tem determining the Ai is Jacobian; the exponential factor in 
the wave functions ( 61  ) vanishes, and we have the standard 
representation for the Mathieu functions. 

We have unfortunately not been able to generalize our 
results to arbitrary quasimomentum and derive energy band 
structures. 

5. CONCLUSION 

In Secs. 2  and 3, we have thus constructed quasisolvable 
problems of two kinds. We first recount problems of the first 
kind, for which the first N  eigenfunctions and eigenvalues 
are known, and for which information about the remaining 
states can be obtained by approximate methods: 

- [a(a+a)+ak(ak+ z+2a)] ch-Z ax, (11)  

$=pN-l (r2)r1-c exp {- br" -- 
4 

We have also found quasisolvable problems of a second kind, 
for which the ith state of the ith potential ( i  = 1,2, ..., N )  al- 
ways has the same energy EN : 
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E,=b (2N+D-1-2c) -aZ, $=p,-, (r)rl+ exp {-ar-bY/2) ; 

EN=-az, $=pN-, ( r)  r'-" exp {-ar- br-I) ; 
V=c2e-4aa"-2ace-3ax+ [a2-2c (b+aN) ] e-2a"+ (2ab+aa+h) e-"", 

c a 
IP=~,-, (e-") exy {- - ekx - - eax+ bx} ; 

2a a 

V=-b2 ch-' ax+b[2a+ 3b+a(2k+3) ] ch-' ax 
-[ (a+3b) (a+b+a) +2kab+h] ch-' ax, 

b 
$=ph (th ax) (ch ax) -(+b)la exp (- thz ow) , 

2a 

where N = [k /2] + 1. The energies of the states Ei and the 
quantities A,,  i = 1,2, ..., N for (I)-(IV) and (V)-(IX) re- 
spectively are the roots of certain N th degree algebraic equa- 
tions, which can be solved explicitly when N <  5. These 
equations are the characteristic equations for certain N X N 
Jacobi matrices. The potentials (I)-(IX) each have one pa- 
rameter less than the corresponding potentials in general 
form. 

We wish to emphasize that for the classes of polynomi- 
alsin ( e - " " , e a X ) ,  (ch2ax,chK2ax),x,or  ( r , r l ) , n o o t h -  
er potentials exist for which the foregoing approach to the 
construction of states with N >  2 is applicable. Attempts to 
generalize (I)-(IX) [or what amounts to the same thing, to 
generalize (51, (111, (151, (19), (251, (281, (351, (401, 
and (47) ] while keeping to the representation (3)  all violate 
the requirement that the quotient in (4)  and (34) be a two- 
term expression. Different states then emerge in different 
potentials, being related to one another by analytic continu- 
ation. 

An attempt to generalize our method to a multidimen- 
sional problem22 has also failed: it proved to be impossible to 
construct nontrivial excited states except in those instances 
where the coordinates were separable. 

Notice that our technique for constructing quasisolva- 
ble problems is an unorthodox approach to the construction 
of orthogonal polynomials. Usually, having specified a 

weighting function, one begins constructing orthogonal 
polynomials of increasing degree. In the present case, we fix 
the degree of a certain polynomial, and seek orthogonal 
polynomials of that fixed degree. These will clearly differ 
from one another in the number of real roots, and there will 
be a finite number of them. It is therefore understandable 
why for the problem over the entire line [see (111), for exam- 
ple] we could only construct even or odd states: a polynomi- 
al with real coefficients has an even number of complex 
roots. 

We wish to point out the importance of the potentials 
(VI),  (VII), and (IX) for possible physical applications. 
The potential (VI) can model atomic interactions where 
charges interact with each other at small distances, and 
charged atoms interact at large distances. The potential 
(VII) can be useful in molecular physics to describe interac- 
tions between diatomic molecules. 

In closing, we now attempt a classification of spectral 
problems. As noted in the Introduction, in exactly solvable 
problems at the differential-equation level, every level 
crosses every other in the complex parameter plane (except 
in those cases where they are prevented from doing so by 
symmetry considerations). For those problems in which the 
determination of the spectrum reduces to the solution of a set 
of transcendental equations, eigenvalues exist which are not 
interleaved (as shown in Ref. 23, for example, where the k th 
level is interleaved only with levels k - 1 and k + 1 ). For 
exactly solvable problems, the spectrum is wholly noninter- 
leaved, and there is no crossing of levels. For quasisolvable 
problems, a part of the spectrum can be identified in which 
the levels are interleaved among themselves, and these re- 
main isolated from the remainder. We may introduce a sym- 
bolic symmetric matrix Tin which T, # 0 when states i and j 
are interleaved, and T,, = 0 otherwise. 

We propose a hierarchy among spectral problems: 1 ) 
for exactly solvable problems at the differential-equation 
level, the matrix T has no vanishing elements; 2 )  for exactly 
solvable problems reducible to transcendental equations 
containing only elementary and special functions, there exist 
T,, = 0; 3) for quasisolvable problems, T is in block form 
along the main diagonal; 4) for exactly solvable and nonpar- 
ametric problems, T is a diagonal matrix. 

Note that when the original Hamiltonian belongs to a 
symmetry group, this hierarchy refers to states of a definite 
symmetry. Our assertion applies only to the one-dimension- 
a1 and spherically symmetric problems (4)  and (34), but the 
hypothesis may possibly be valid for multidimensional prob- 
lems as well. 

Further in~es t i~a t ions*~ have shown 'that the quasisol- 
vability of problems (I)-(IX) and ( 6 0 ) ,  (65) is related to 
the existence of finite-dimensional representations of the 
group SL (2,C). Any of these problems can be represented as 
a quantum spinning top in a constant magnetic field. 

In closing, we wish to express our deepest gratitude to 
K. A. Ter-Martirosyan, A. G.  Ushveridze, and especially M. 
A. Shubin for helpful discussions and their interest in this 
endeavor. 

"Problems for which one or more transcendental equations must be 
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