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The use of quantum nondemolition measurements of the energy of a group of Nphotons in a 
waveguide makes it possible to create a quantum state in which a minimum energy uncertainty 
(wArN) - ' is achieved. The coordinate uncertainty of such a group is equal to CAT. This state of a 
group of photons in a traveling wave has properties characteristic of a single photon. Doppler 
measurements with such states make it possible to overcome the standard quantum limit of the 
sensitivity of gravitational free-mass antennas. The influence of dissipation on the resolution in 
such measurements is estimated. 

1. INTRODUCTION 

Various quantum states of an electromagnetic field and 
the related methods of quantum nondemolition measure- 
ments (QNDM) have been intensively investigated during 
the last few years. Few advances were made in this field, 
particularly in QNDM. Yet it is clear by now that the use of 
nonclassical states of a field can become quite useful. For 
example, the use of phase-squeezed states in laser gravita- 
tional antennas'-3 permits a substantial decrease of the 
pump power.4 States with a specified number of photons can 
provide a substantial energy gain in information transmis- 
 ion.^ 

The following terms were coined following the research 
by many workers: phase-squeezed quantum state of a radi- 
ation field (phase bunching: Ap < 1/N ' I 2 )  and amplitude- 
squeezed quantum state (debunching: AN< N ' I 2 ) .  Yet the 
analyzed states comprise only a small fraction of all possible 
quantum states of a radiation field. Neither adequate 
QNDM methods nor their possible use in experiment are 
known for the majority of quantum states. 

It is known that if the experimenter has a self-excited 
generator of cw coherent radiation, the relative deviation of 
its frequency cannot be less than 

where W is the power, Q the quality factor, r the averaging 
time, and N the number of photons. In this equation (usually 
called the Schawlow-Townes formula) N has a characteris- 
tic upper bound that can be reached in practice only at suffi- 
ciently large Q.6.7 The use of coherent quantum radiation to 
measure the velocity of a macroscopic body by means of the 
Doppler effect leads to a standard quantum limit for the 
velocity-measurement error? 

where m is the mass of the body. This limit can be reached at 
an optimal No,, . If phase-squeezed rather than coherent ra- 
diation is used, the limit (2)  remains in force, but No,, de- 
creases faster the stronger the squeezing. 

Von Neumann9 proved a nontrivial assertion: the veloc- 
ity of a body can be measured with the aid of one photon, 
using the Doppler effect, with an error 

where c is the speed of light and r is the averaging time. It is 
natural to search for the cause of the qualitative difference 
between Eqs. (2)  and ( 3  ), when a large group of photons is 
used instead of one solitary one, in the method of preparing 
the group and in the recording methods. The present paper is 
devoted to an analysis of this problem, to the problem of the 
minimum error of the average frequency of a group of pho- 
tons, and also to some related consequences for experimental 
programs. We show that properties typical of a single pho- 
ton can be obtained under certain conditions by QNDM of 
the energy of a group of photons in a traveling wave. 

2. PREPARATION OF FREQUENCY-ANTICORRELATED 
STATES 

It was shown in Refs. 10 and 11 that by using a nonlin- 
ear (quadratic in amplitude) interaction of an electromag- 
netic cavity with a measuring instrument it is possible to 
measure the total number of photons in a mode exactly, and 
the energy E with small error. Such a measurement is usually 
called a quantum nonperturbing measurement of energy, 
since the number of photons is unchanged by the measure- 
ment, and the instrument produces strong fluctuations only 
in the phase, which is not recorded. In this case 

Naturally, such a measurement is possible also in a trav- 
eling wave. It was found convenient to implement it in prac- 
tice by using the idea of the interaction between the signal 
and measuring waves via the cubic nonlinearity of the dielec- 
tric.12 This principle is the basis of a recent experimentI3 
demonstrating quantum nondemolition detection of optical 
quadrature amplitudes. 

Let us examine in greater detail the procedure of 
QNDM of the energy of a group of photons propagating in a 
waveguide. Assume that initially, using QNDM in the cavity 
mode, we have measured the number Nof the photons in the 
cavity, and next, connecting the cavity to a waveguide, ob- 
tained a train (group) of traveling photons. Obviously, by 
varying the coupling of the waveguide to the cavity, we get 
a priori information on the length Ax,, - ur,, of a train con- 
taining all N photons (r,, is longer than the time r* of pho- 
ton emission from the cavity, u is the photon propagation 
velocity). It is also obvious that the relative energy uncer- 
tainty of each photon is of the order of (wr*)-I, and the 
relative uncertainty of the total energy of the group is 
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(E = N h  is the energy of the train). If several independent 
photon groups are prepared in this manner, the spread of 
their relative energies is also given by Eq. (5).  

Assume now that a waveguide section of length I >  vr,, 
constitutes the device for the QNDM of the energy. In this 
setup it is necessary that the value of v over this section of the 
waveguide depend on the generalized coordinate q of the 
measuring instrument: 

where l/d is the coupling conqtant. As an illustrative exam- 
ple of such an instrument one can imagine a waveguide sec- 
tion in which one of the walls can be displacement in the 
transverse direction by the pressure of the electromagnetic 
field. In this case q is the wall displacement and d is of the 
order of the waveguide diameter. 

The generalized force acting on the instrument is equal 
to F = E /d, and the generalized momentum @ of the instru- 
ment changes in the chosen measurement time 7, < l/v by 
an amount Er, /d. The error in the measurement of E is 
determined by the momentum uncertainty A@ 

In view of the uncertainty Aq of the coordinate of the instru- 
ment, the propagation velocity also has an uncertainty 
Av = v,Aq/d. The train is therefore displaced by the mea- 
surement a random distance (along the waveguide) 

which corresponds to an uncertainty of its time of arrival at 
the chosen waveguide point behind the measuring unit, 

Since A@Aq>fi/2, the product of Eqs. (7)  and (9)  yields the 
following analog of Eq. (4)  for a group of photons traveling 
along the waveguide 

It follows from this simple relation that after the measure- 
ment the relative error of the photon-group energy is 

We emphasize that the uncertainty AT is a parameter that 
depends on the experimenter. 

If QNDM is effected in such a way that AT-T*, a com- 
parison of (5) and ( 1 1 ) shows that the gain equals to N ' I 2 .  

The average energy of the photon group is determined with a 
much lower error than that of independently emitted pho- 
tons: 

This means that the frequencies of the individual photons in 
the group have become anticorrelated with respect to the 
measured average frequency (see the Appendix). It was this 
feature of the quantum state which motivated the title of the 
paper. We emphasize that the cost paid for the exact knowl- 

edge of the average frequency (and energy ) in the group is 
the uncertainty AT (see Fig. 1 ) . 
3. DOPPLER MEASUREMENTS WITH FREQUENCY- 
ANTICORRELATED PHOTON GROUPS 

The energy of a group of photons reflected from a body 
moving with initial velocity V is 

where E is the energy prior to the reflection, c the speed of 
light, and m the mass of the body. Note that the operators of 
all the quantities in ( 13) commute with one another. The 
equation has therefore the same form in the quantum case, 
except that the classical variables are replaced by the corre- 
sponding operators. 

If we now measure twice the group energy (before and 
after the reflection) by the described method, we can deter- 
mine V from thedifference E ' - E. Obviously the error A Vis 
determined by the value of AE. In the nonrelativistic case 
(V(cand E(mcZ) weobtain from (11) and (13) 

This equation is a generalization of (3)  to the case of an 
arbitrary number N of photons. Thus, a group of photons in 
a frequency-anticorrelated state behaves as one photon with 
total energy h N. 

Measurement of the body velocity should be accompa- 
nied, in accord with the uncertainty relation, by a perturba- 
tion Ax, of its coordinate. The mechanism of this perturba- 
tion was indicated in Ref. 9. It stems from the fact that the 
body acquires by reflection a known momentump = 2E /c at 
the random instant of reflection of the photon group from 
the body. As shown in Ref. 9, 

The product of the uncertainties ( 14) and ( 15) is equal to f i /  
2m, as expected. 

Let us dwell on the influence of dissipation on the accu- 
racy of the Doppler measurement of the velocity. Let R be 
the probability of the photon reaching the receiver without 
being absorbed either by the transmission line or through 

FIG. 1 .  1-Initial state: A E T * - - W " ~  for N = 10 and o r *  = 30; 2-fre- 
quency-anticorrelated state AEAr = N2 for 2 o A r  = 30; 3-state with 
given energy: AE-0 ,Ar-  w . 
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reflection from the body. Dissociation increases the energy 
uncertainty of a group of photons via two mechanisms. First, 
the number of absorbed photons is a random quantity with a 
variance 

Second, the energy of each of the N ( l  - R )  photons ab- 
sorbed on the average has an uncertainty ti/2r*. Conse- 
quently, the energy uncertainty due to dissipation is 

Inasmuch as o ~ *  1 always, the main contribution to ( 16) 
is made by the first term. 

Direct conversion of the uncertainty ( 16) into the ve- 
locity-measurement error leads to the expression 

It follows therefore that to obtain a measurement accuracy 
exceeding the limit (2) the energy of the probing pulse must 
be exceedingly high: 

By changing somewhat the measurement scheme, however, 
we can improve the situation substantially. The energy un- 
certainty that leads to the appearance of the restriction ( 17) 
is due to a change in the number of photons, while the signal- 
induced (Doppler) change of energy is due to a change of 
their frequency. If we monitor the initial and final values of 
not only the energy but also the number of photons in the 
group, we can determine the number of absorbed photons 
and eliminate by the same token the first term in ( 16). The 
velocity-measurement error is then 

fic c (I-R) '" 
ARV z - [N(l-R)]" = 

RET' Roz'N" ' 

In sum, we can state that the von Neumann case is real- 
ized with a group of photons only at very low dissipation 
(N(1 - R )  < 1).  If, however, the photon absorption is ap- 
preciable, the use of frequency-anticorrelated states leads 
nonetheless to a resolution gain of the order of ( 1 - R )  'I2. 

4. USE OF FREQUENCY-ANTICORRELATED STATES IN 
GRAVITATIONAL ANTENNAS 

A gravitational wave is known to produce a field of 
transverse acceleration gradients that can be conveniently 
described by the dimensionless amplitude of the variation of 
the metric h =: 2AL /L (L is the distance between the free test 
masses). If h is determined by coordinate measurements 
with the aid of coherent or phase-squeezed electromagnetic 
radiation, the standard quantum limit for h is 

We use in this equation the parameters of the laser gravita- 
tional antenna of the LIGO program,' viz., r,, is the dura- 

tion of the gravitational radiation spike, m the value of one of 
the masses, and L is the distance between the masses. 

Another experimental possibility is to use a group of 
photons in a frequency-anticorrelated state and record the 
variations of the trial-mass velocity difference 
A V,,,, = JhLo,,,, (w,,,, is the frequency of the gravitation- 
al radiation). We emphasize that in the second procedure 
the preparation of the state of the photon group is such that 
the observer obtains the distance between the masses with a 
large error, with an ensuing resolution gain in the velocity 
measurement. If A V of Eq. ( 19) is compared with A V,,,, , 
putting T,,,, = Ar and w,,,, r,,,, =:2r, then 

It can be seen from the foregoing example that the limit h ,Q, 

can be exceeded only if the rather stringent requirements 
E=:4.104 e r g , A E / E ~ 2 . 1 0 - ~ ~ ,  and 1 - R- 1-10-7 are 
met. It must be noted, however, that the dynamic range of 
the meter must not be too large (approximately seven dec- 
ades) and that the requirements imposed on AE/E and 
1 - R refer to the value of h, which is five orders smaller 
than the presently attained sensitivity. 

We note in conclusion that the quantum-measurement 
procedure considered is an extreme case, in which the almost 
total lack of information on the coordinate leads to a maxi- 
mum gain in the velocity resolution. Obviously, there exists 
a range of measurement procedures intermediate between 
the one considered here and the traditional one. 

We note also that the Doppler measurement of the mo- 
mentum of a free particle with the aid of radiation in a fre- 
quency-anticorrelated state is, in the absence of dissipation, 
asymptotically nonperturbing, since the momentum pertur- 
bation is A p z  2AE /c, and AE can be small because of the 
increase of AT. 

The limit ( 2 )  can be exceeded even if the error in the 
measurement of the instrument momentum cP. is bounded by 
its standard quantum limit. All that is needed for this pur- 
pose is a proper choice of E and l / d .  

The dynamic range of the measurements can be consid- 
erably decreased by measuring not E and E ' separately, but 
only the difference E - E '. In this case the instrument must 
have a memory, and the signs of the generalized force should 
be opposite in the forward and backward passages of the 
photons. 

APPENDIX A 

Statistical properties of a wave packet with a given number of 
photons 

We consider a one-dimensional transmission line-an 
infinite long line. This eliminates the technical difficulties 
connected with considering a vector electromagnetic field in 
three-dimensional space, but preserves all the crucial aspects 
of measurement theory. 

Let B(w) and B + (o) be the annihilation and creation 
operators of photons moving along the x axis. These opera- 
tors satisfy the commutation relations for a continuous 
mode spectrum [8(o) ,b(o1)]  = S(w - o'). 
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The state of a line on which a specified number N of 
photons travel in the x direction is described by the wave 

contribution to the wave-packet-energy measurement error. 
This contribution is equal to the uncertainty of the readings 
of the measuring instrument when the transmission line is 
not excited: 

vector 
m 

IN)=- I j?P(oi,...,mN) 
(N!)" , 

where 
where $(. . .) is a wave function normalized to unity and 
symmetric under permutation of the arguments. Let us find 
the possible minimal energy uncertainty of a wave packet in 
state (A. 1) 

m 

~ ( t ) =  J a(z)c(x,t)dx 
0 

is the operator of the force acting on the instrument,$ (x,t) is 
the energy-density operator, and a ( x )  characterizes the 
coupling of the instrument to the line in the section x. The 
coupling is substantially different from zero over an interac- 
tion interval of length VT,, and satisfies the normalization 

B = J hod+ ( a )  8 (o)  do  
0 

if its length is given. The energy variance is condition 
m 

Omitting the cumbersome but in principle straightfor- 
ward calculations, we present the calculated (B. 1 ) : 

0 

The spatial distribution of the energy is characterized by the 
function 

w 

hT=d 
(A.E). = L(- )' J Re(A2 (or.)) 

3 2XT.3" , 

where - 
where $ is the energy density operator. The coefficient in 
(A.4) is chosen such that W(x) be normalized as the prob- 
ability distribution overx. The variance  VAT)^ of this distri- 
bution specifies the length of the wave packet. 

We consider the case of greatest practical interest, when 
the frequency bandwidth of the wave packet is much smaller 
than its average frequency Z. In this approximation AEAT 
has a minimum if the wave function is Gaussian. It is easy to 
show in this case that 

is the Fourier transform of a ( x ) .  The function A (77) differs 
substantially from zero at T,I 5 1; from the condition (B.2) it 
follows that A(0) = l/d. 

If the investigated wave packet is to remain in the inter- 
action interval during the entire measurement time, the fol- 
lowing condition must be met 

The integrand in (B3) differs substantially from zero at 
w r x  5 1, so that the inequality wr,  < 1 certainly holds. We 
can therefore put 

wherep is the correlation coefficient of the photon frequen- 
cies. The quantity AEAT decreases with decrease ofp. At the 
minimum value (N  - 1 ) - ' of p we get 

The expression for A& takes then the form 

We note for comparison that if the photons are not correlat- 
ed, p =  0, then 

where 
rn 

APPENDIX B 
is a numerical coefficient of order unity. In particular, for 
the Gaussian function lnfluenceof zero line fluctuations on the energy- 

measurement accuracy 

No account was taken in the derivation of Eq. ( 10) that 
the energy of the zero-point oscillations on a finite section of 
an infinite line fluctuates and makes therefore an additional 

1 
a(x)  = - exp 

d 

we have k = 1 6  
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Owing to the inequality (B.4), the value of A& is al- 
ways less than the measurement error given by Eq. ( 10). It 
can thus be concluded that the zero-point fluctuations of the 
transmission line do not increase substantially the energy- 
measurement error. 
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