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A theory is derived for the nonlinear resonant absorption of sound and of a microwave field in 
dielectric glasses at low temperatures and in the steady state. The nonequilibrium nature of the 
phonon subsystem is taken into account. Spectral diffusion changes the phonon bottleneck 
substantially from that in the case without diffusion because the nonequilibrium phonon 
distribution spreads out over the spectrum. The width of the phonon spectral distribution is 
proportional to the phonon lifetime T,, with respect to the nonresonant absorption by two-level 
systems. The critical intensity characterizing the onset of the nonlinear behavior of the absorption 
coefficient depends weakly (logarithmically) on T,,, as T,, + w . The shape of the burned-out hole 
is analyzed. In the case of weak pumping, this shape is the same as that of the distribution of 
nonequilibrium phonons. 

1. INTRODUCTION 

Many low-temperature properties of glasses stem from 
the existence of so-called two-level systems in the glasses. ' In 
the present paper we are interested in the nonlinear resonant 
absorption and the burned-out hole in dielectric glasses in 
the case in which the nonequilibrium nature of the phonon 
subsystem (the phonon bottleneck) is important. Gal'perin 
et aL2 have derived a theory for these effects in the steady 
state, ignoring the accumulation of resonant phonons. 

One of the most interesting features of the low-tempera- 
ture kinetics in dielectric glasses is that spectral diffusion 
plays an important role. This effect was first discussed by 
Klauder and Anderson4 in a theory of magnetic resonances. 
Related ideas have been used in theoretical work on the low- 
temperature properties of glasses by Joffrin and L e ~ e l u t , ~  
Hunklinger and A r n ~ l d , ~  Black and Halperin,' and Laikht- 

An important point to be noted is that spectral diffu- 
sion is manifested only in nonlinear effects. Included among 
these effects are two- and three-pulse  echo^,','^.".^ the non- 
linear resonant absorption of sound and microwave pow- 
er,6,8,12 and the burned-out hole."' 

Spectral diffusion can be summarized as follows: Each 
two-level systems creates a strain field around itself. The 
magnitude of this strain depends on the particular energy 
state (upper or lower) of the given two-level system. As we 
will see below, the most important two-level systems are the 
so-called thermal two-level systems, with an energy (a  dis- 
tance between levels) E 5 T. Under the influence of thermal 
phonons, these systems are continually undergoing transi- 
tions from one state to the other. The strain field which they 
create in their vicinity thus fluctuates over time. 

In turn, the energy of any two-level system changes in a 
strain field. Transitions in thermal two-level systems near a 
given two-level system thus cause this energy to also fluctu- 
ate over time. The scale of these fluctuations can be estimat- 
ed quite easily. We are not interested in the static part of the 
strain, since in a glass there is a wide spread in the energies of 
the two-level systems, with a roughly uniform state density. 

A two-level system may be thought of as an elastic di- 
pole. The strain field which it creates in its vicinity is given 
by 

Here D is the strain energy, p is the density of the glass, v is 
the sound velocity, and r is the distance from the two-level 
system. The sign of this strain depends on the sign of the 
strain-energy constant D and also on the particular state- 
upper or lower-of the given two-level system. In a transi- 
tion, the sign of the strain reverses (the orientation of the 
elastic dipole changes). 

A strain which fluctuates in time is caused by thermal 
two-level systems. Their concentration is on the order of PT, 
where Pis the constant, energy-independent, state density of 
the two-level systems in the glass. The scale of the fluctu- 
ations, Au,, can be found if we take r to be the average 
distance between thermal two-level systems. As a result we 
find Auik z D P T / ~ V ~ .  The characteristic change in the ener- 
gy of the two-level system, E d ,  upon a characteristic change 
in the strain, Au, , is 

In typicai glasses, the dimensionless parameter D 2P/pv2 has 
values on the order of 1/200 to 1/300 (Refs. 1 and 6). It is 
this random change with time in the energy of a two-level 
system due to interactions with other two-level systems that 
is called "spectral diffusion." 

In this paper we analyze the effect of spectral diffusion 
on the distribution of nonequilibrium acoustic phonons gen- 
erated by a coherent monochromatic signal in a glass. We 
also examine the effect of these phonons on the nonlinear 
resonant absorption and the shape of the burned-out hole. 
Some of the results of this study were summarized in Ref. 13. 

Gurevich and Rzaev14 have analyzed this problem 
without spectral diffusion. 

2. QUALITATIVE PICTURE 

At low temperatures, resonant two-level systems with 
an energy e = h, where w is the signal frequency, are re- 
sponsible for the resonant absorption of a sound or micro- 
wave field in a dielectric glass. As a rule, when a resonant 
two-level system absorbs a quantum of the sound or the mi- 
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crowave field, h, it then emits a phonon of the same, or 
nearly the same, energy. The subsequent fate of these reso- 
nant phonons depends on the relation between two times: T ,  

and rn, . The first of these times is the lifetime of a phonon 
with respect to its resonant absorption by a two-level system 
with the same energy': 

Here R is the phonon frequency, and M the transition matrix 
element. 

The second time is the phonon lifetime with respect to 
its nonresonant absorption by two-level systems with an en- 
ergy on the order of15 max ( T,fiR) : 

At frequencies in the classical region, R 4 T, this expression 
is the same as that found by Jackle.I6 

The times t, and tn, play different roles in the kinetics of 
resonant phonons. After being absorbed in a resonant pro- 
cess, a phonon excites a two-level system with the same ener- 
gy. After a certain time, this two-level system reverts to the 
ground state, emitting a phonon of the same, or nearly the 
same, energy. This process does not change the number of 
resonant phonons. 

In contrast, after being absorbed in a nonresonant way 
by a two-level system, with an energy significantly different 
from the phonon energy, a resonant phonon irreversibly 
leaves the resonant group. To complete the picture we 
should add that a phonon may also leave the resonant group 
after its resonant absorption by a two-level system. This 
event occurs if the two-level system excited by a resonant 
phonon goes to the ground state by a two-phonon process 
(emitting two phonons or emitting one and absorbing an- 
other). Although the probability for such a process is sub- 
stantially lower than that for the one-phonon process, it 
plays an important role, along with nonresonant absorption, 
in establishing the phonon temperature in glasses at low tem- 
peratures. l7  We will show that in the problem of the present 
paper this process can be ignored in the classical frequency 
region, h 4 T. In the quantum frequency region, h) T, it 
makes a contribution on the same order of magnitude as that 
of nonresonant absorption to the rate at which phonons 
leave the resonant region. 

The ratio of the two relaxation times, rn,/r,, is 

where Ec = (p5fi3) ' 1 2 / ~  is a characteristic energy on the 
order of 10-30 K in glasses.15 Under the conditions T(Ec 
and fin ) T 2/Ec, the relation r,, r, holds even in the classi- 
cal frequency region. The ratio in (4) reaches its maximum 
value =: 6.4(Ec /T) in the quantum region, at fin =: 11 T. As 
R is increased further, the ratio T,, T ,  decreases, remaining 
much greater than unity as long as the concept of a two-level 
system remains appli~able.".'~ 

Under the condition r,, )r,, resonant phonons with a 
frequency R z w are reabsorbed by resonant two-level sys- 

tems many times before they leave the resonant group. In 
this case, there is the possibility that these phonons will ac- 
cumulate. During intense pulsed excitation, this effect gives 
rise to the phenomenon of a bottleneck in nonlinear resonant 
abs~rpt ion.~ 

As we will show below, however, in the case of weak 
steady-state excitation the accumulation of phonons in a 
narrow resonant region is reduced by spectral diffusion. Al- 
though resonant phonons are reabsorbed many times by res- 
onant two-level systems during the lifetime rn, , the changes 
in the energy of two-level systems which result from transi- 
tions (jumps) in thermal two-level systems and which occur 
randomly in time lead to the result that the emitted phonon 
does not have the same frequency as that which was ab- 
sorbed. This effect in turn causes a nonequilibrium phonon 
distribution to undergo spectral spreading. It  changes the 
phonon-bottleneck phenomenon greatly from that in the 
case without spectral diffusion. 

Under the condition T,, ) T ,  , and in the absence of spec- 
tral diffusion, phonons accumulate in a narrow resonant re- 
gion with a width on the order of the spectral width of the 
pump signal. We will assume below that this width is zero. 
The threshold for the nonlinearity in the resonant absorp- 
tion (i.e., the intensity at which a saturation is manifested in 
the absorption) turns out to be lower in this case by a factor 
of r,, /r, than in the case without an accumulation of phon- 
ens. 14.19-22 

In a situation with spectral diffusion, the phonons 
spread out over the spectrum to a great extent in most of the 
cases which have been considered. As a result, we find that 
under the condition rn, )r, the threshold (critical) intensi- 
ty is inversely proportional not to the ratio rn,/rr but only to 
its logarithm. 

The spreading of phonons over the spectrum due to 
spectral diffusion also has a great effect on the width of the 
burned-out hole. The "burned-out hole" is the decrease in 
the absorption coefficient for a weak test signal at the fre- 
quency w, in the presence of a pump signal (usually strong) 
at the frequency w (Ref. 23). Here we show that in the case 
of weak steady-state excitation the shape of the burned-out 
hole (as a function of the frequency difference w, - w) re- 
produces the shape of the nonequilibrium phonon distribu- 
tion function (which depends on w - R, where R is the 
phonon frequency). If the phonons are able to accumulate, 
the width of the burned-out hole is increased by the spectral 
diffusion of phonons to a magnitude rn,/r, greater than that 
in the case without phonon acc~mulation. '~ 

This "nondiffusion" result is explained on the basis that 
the width of the phonon distribution is determined primarily 
by comparatively rare collisions of resonant phonons with 
so-called quasiresonant two-level systems, near which, with- 
in a distance r( (PT) -'I3, is a thermal two-level system. A 
quasiresonant two-level system spends only half its time in 
resonance, until the neighboring thermal two-level system 
goes into the other state. Because of the proximity of the 
thermal two-level system, the energy of the quasiresonant 
two-level system changes at once by a large amount-signifi- 
cantly greater than Ed-upon such a transition. According- 
ly, after absorbing a resonant phonon a quasiresonant two- 
level system can emit a phonon which is far from resonance. 

Let us examine the most important parameters which 
arise in the solution of the problem. As we have already men- 
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tioned, jumps (transitions) in neighboring thermal two-lev- 
el systems cause the energy e of a resonant two-level system 
to vary in a random way over time. The time scale of this 
variation is on the order of Ed as given by ( I ) ,  i.e., on the 
order of the interaction energy of two thermal two-level sys- 
tems separated by an average distance 7 = (PT)-'I3. We 
introduce the quantity .rd = WE,, with the dimensions of 
time, which we will need below. As we will see, the relation 
between 1 / ~ ,  and the characteristic frequency of the jumps 
of thermal two-level systems will play an important role 
throughout the phenomenon of spectral diffusion. This 
characteristic jump frequency r0 is given by6 

The appearance of a dimensionless parameter r0rd in 
the theory can be explained in the following way. At early 
times, t(T; I, the energy of a resonant two-level system 
deviates from resonance linearly with time4,': 

This formula has the following origin. We consider a volume 
with linear dimensions of order r, around a resonant two- 
level system. This volume contains = PTr: thermal two-level 
systems with characteristic transition frequencies on the or- 
der of r o .  A transition of at least one thermal two-level sys- 
tem in this volume by the time t occurs with a probability of 
order unity if r, satisfies the condition rotPTr:= 1. The 
characteristic change in the energy of a resonant two-level 
system corresponding to this jump is 

D2/pu2rt3--tir,t/rd. 

We thus arrive at (6). 
It follows from (6)  that the time scale for the phase 

relaxation of the wave function of a resonant two-level sys- 
tem, T,, is9 

Expression (7)  holds if this time is much shorter than the 
characteristic time between jumps, l / r o ,  i.e., if 

Under the condition r o ~ d  % 1, the phase of the wave function 
of a resonant two-level system can change by no more than a 
small amount over a time t=. l / ro;  i.e., there is not enough 
time for a disruption of this phase. The time scale of the 
phase disruption thus satisfies T, % Top1. After a long time 
t% To-', on the other hand, the characteristic value of the 
deviation will cease to depend on the time, since the differ- 
ence le( t)  - e(0) I cannot exceed the characteristic energy 
f i /~ ,  in order of magnitude. In other words, the deviation in 
this case undergoes a random walk over an interval of f i / ~ ~ .  
Correspondingly, the phase disruption time r, is deter- 
mined by the spectral width of this interval and is given in 
order of magnitude by T, ~ r ,  $ ro- ' .  

It is clear from this discussion that there exist two re- 
gions, of high and low temperatures in comparison with the 
characteristic temperature Td . The latter is found by equat- 
ing the characteristic parameter ror, to unity. We have 

This temperature was introduced in Refs. 9 and 24. Its typi- 
cal value for dielectric glasses is about 1 K. This value is 
found if we take P to be the state density determined from 
data on the specific heat.' Ifwe instead experimental data on 
the absorption of sound,' we find the value Td ~ 0 . 1  K. 

3. BASIC EQUATIONS 

In the resonant approximation, the system of equations 
for the components of the density matrix of the sth resonant 
two-level system, 

( y i ; e - i m t  1-n. a 

and for the phonon distribution function N, (k is the 
phonon wave vector) is1' 

1 
-ha , )  =F ( n ,  - Z-), 

N,-N," 
-n.] 6 (e .  ( t )  --hQh) = - - . 

Tnr 

Here W/2 is the transition matrix element which character- 
izes the interaction of the (acoustic or microwave) signal of 
frequency w with the resonant two-level system; 

N,"= [exp (fiQ,lT) -11 -I  

is the equilibrium distribution function of the phonons; fl, is 
the phonon frequency; 

; ik=Ak2M2/2p~Qk 

is the square of the matrix element of the interaction of the 
two-level system with the phonons; V is the volume; 

is the equilibrium filling of the upper level of the resonant 
two-level system; and T' is the time scale of the relaxation of 
the population of the resonant two-level system as a result of 
two-phonon processes. An expression for this time is given 
in the Appendix [expression ( 104) 1 ,  The time-dependence 
between the levels of the sth resonant two-level system is 

e , ( t )=e ,+f iAo ,  ( t ) ,  (12) 

where 

is that increment in the bare energy e, which is caused by the 
interaction of the resonant two-level system with the nearby 
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A n ( Q )  =P-'V-'h-' r, And ( r , ( t ) / h - Q ) .  (19) 
thermal two-level systems (the summation is over all the 
thermal two-level systems). We can then write 

where rl is the distance from the 1 th thermal two-level sys- 
tem to the given resonant two-level system. Here we have a 
characteristic energy Ed - J(7). The function {, ( t )  is a ran- 
dom function of the time, which is described by a "telegraph- 
ic" process. This function alternately takes on the values 
+ 1 and - 1 at random times; the average frequency of 

these jumps is rl .  We assume that the different functions 6, 
are uncorrelated. 

The absorption of an alternating field by a resonant 
two-level system is determined by the imaginary part of the 
susceptibility, Imx, (w), which is related to the nondiagonal 
componentf, of the density matrix by 

2 
Im X. ( o )  = - - Re(f.)~. 

F (14) 

Here the angle brackets mean an average over realizations of 
all the telegraph processes 6, (t) .  This average is equivalent 
to an average over the time. The total susceptibility is deter- 
mined by the sum of the contributions of the type ( 14) from 
all the resonant two-level systems in a unit volume: 

We assume that the arrangement of the thermal two- 
level systems and their transition frequencies r, are uncor- 
related with the parameters of the resonant two-level sys- 
tem. In this case we can write 

m 

Here (...), means a configurational average over the posi- 
tions of the thermal two-level systems and the values of their 
tunneling transparency, on which the transition frequencies 
r, depend. 

Actually, we should have also taken an average over the 
tunnel transparencies of the resonant two-level systems, on 
which the quantities F and M depend.25 However, one can 
verify that this averaging contributes nothing which is fun- 
damentally new, and we will omit it in order to keep the 
equations from becoming too complicated. 

4. SUCCESSIVE ITERATIONS IN THE AMPLITUDE OF THE 
PUMP FIELD, F 

Assuming that the pump amplitude is small, we solve 
the system of equations ( 1 1 ) by taking successive iterations 
in F: 

From the last equation of system ( 11 ), for example, we find 
the relationship between the correction to the phonon distri- 
bution function, ANk, and the average change in the popula- 
tion of the upper level of resonant two-level systems, 
AN(fl): 

r n r  fro ANk = - An (Q,)  cthZ - 
' ~ 7 + ' ~ n r  2T ' 

a 

The function AN(f2) describes the burned-out hole. Specifi- 
cally, the change AQin the absorption of a weak test signal of 
frquency w ,  in the presence of a pump signal which causes a '  
change in population An, is 

where F1 is the amplitude of the test signal. In the case of 
weak pump, the shape of the distribution function of the 
nonequilibrium phonons thus reproduces the shape of the 
burned-out hole. 

Substituting n, = n, O and Nk = Nk O, into ( 1 lb) ,  we 
find an equation for f : I ) .  Its solution is 

m 

- i [ i r  - J A o a ( t l ) d t ' ] } ,  
t-r  

where z, = w - e, /fi, and y-' is the equilibrium relaxation 
time of the population of the resonant two-level system due 
to single-phonon processes: 

M 2 0 S  fio 
cth- '=- 2 T '  

Now substituting ( 18) into ( 1 la ) ,  we find the following 
equation for An, : 

Here y' = y + l / ~ '  and v = ~T,,/(T,,, + T, ). We can write 
a formal solution of Eq. (23) : 

e ( t - z )  
An. ( t )  =V J d r  e-TZt6n [*] - F I d r  e-" ~e f!" ( t - z )  . 

0 0 

In the second term in (24) we can ignore the difference 
between y' and y by virtue of the relation y) l/rl  [see ( 104), 
(99), and (100)l. Multiplying both sides of (24) by 
P-'V-'+i-'S(e, (t)/fi - ~),andsummingovers,wefindan 
integral equation for the function An ( E ) :  

where the kernel is 

R ( e - E ' ) =  Y J d l  e-l'' zi3 (F - 8 )  
PVh , 

where and the source is 
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The sums over the resonant two-level systems which 
appear in expression (26) and (27) are macroscopic quanti- 
ties. To within small fluctuations, which are of no impor- 
tance for our purposes, these sums are equal to their average 
values, which we will calculate [cf. ( 16) ] : 

OJ 

Using (28), we can transform expressions (26) and (27) to 
the following form: 

m 

v 
R ( 2 )  = -J dr cos X T ~  ( r ) ,  (29) 

n 0 

where 

(7 )  = 1 dr' e-T'''(B ( r ,  7 ' )  >., 
0 

and 

Likewise, we write 
cc 

where 
m, 

9 ( r )  =J drf  e-Tt,<L ( T ,  T I )  )=, 
0 

and 
1-1' 

Here we have made use of the circumstance that when we 
take an average over { of a functional which is an odd func- 
tion of the telegraphic process ((t)  we get zero. 

Equation (25) can be solved by the Fourier method. As 
a result we find 

To determine the nonlinear increment in the absorption 
coefficient, i.e., in Im X(w), we need to evaluate the quantity 
f S3'. For this quantity we find the following equation from 
( l l b ) :  

The last term on the left side of Eq. (36) actually describes 
the change in the relaxation time of the nondiagonal compo- 

nent of the density matrix due to the appearance of nonequi- 
librium phonons in the system. A detailed calculation shows 
that in cases in which spectral diffusion is important this 
change can be ignored if the deviation from equilibrium is 
small. Spectral diffusion leads to either a more rapid relaxa- 
tion of the nondiagonal component of the density matrix,f,, 
or a pronounced smearing of the phonon distribution, so the 
resonant region ends up with few phonons. We will accord- 
ingly ignore this term below. 

Using (24) and (35 ), we find the function f j3'(t) from 
(36). Substituting it, summed with (21 ), into ( 16), and in- 
tegrating, we find 

The characteristic amplitude F, -the saturation of the reso- 
nant absorption-is determined in this case from the expres- 
sion w 

where 
m 

X ( r )  = j dr f  e-"(K(r,  r ' )  )., (39) 
0 

and 
1 

K ( % ,  TI)= ( erp{-i [ bw.(tf)dt'  
t-r 

t - T - r  

The first term in brackets in (38) describes the effect of 
the nonequilibrium phonons on the characteristic saturation 
amplitude Fc of the resonant absorption (the effect of the 
phonon bottleneck). In a case without an accumulation of 
phonons (r,, = u = 0 )  the amplitude Fc is determined by 
the second term, and we obtain the result derived in Refs. 2 
and 3. As would be expected, the accumulation of resonant 
phonons results in a lowering of the threshold for the nonlin- 
earity in the resonant absorption. 

A AVERAGING PROCEDURE 

The quantities in which we are interested can be ex- 
pressed in terms of averages of the type ( ( e ~ p ( i A ) ) ~ ) ~ ,  
where A is some linear functional of Aw, ( t ) .  An important 
property of this functional is that it vanishes, and the corre- 
sponding average becomes unity, if Aw, is independent oft. 
These results reflect the obvious fact that the two-level sys- 
tems which contribute to the spectral diffusion are those 
which can undergo transitions. 

We will carry out the averaging procedure in two steps. 
We first take an average over the telegraphic processes in the 
thermal two-level systems. We then take a configurational 
average over the parameters and positions of the thermal 
two-level systems. Since the functional A is linear, the aver- 
age ( e ~ p ( i A ) ) ~  breaks up into a product of independent 
averages, each corresponding to some thermal two-level sys- 
tem. We assume that the telegraphic processes in them are 
uncorrelated with each other. 

We begin the calculations with the simplest case: the 
function B(r , r l )  in (3 1). This funcrion breaks up into the 
product of the functions 
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where Jand f ( t )  correspond to some thermal two-level sys- 
tem. The average in (41) is carried out over all realizations 
of the random process l ( t )  for the given value of l ( 0 )  and 
overallf(O).Inderiving (41) weset t=Oin (31),sincein 
the steady state this average does not depend on the particu- 
lar time t. We also made use of the circumstance that there is 
no preferred direction for time in the telegraphic process 
{(t), so we can take this process to be an even function o f t  
when we take the average. Noting that the modulus off ( t )  is 
always unity, we can transform b(r,rl)  to 

b (z, r ') =( (cos Jr-it (0) sin Jz) 

-(cos Jr+iE(z') sin IT) )t, E(o). (42) 

With a fixed f ( O ) ,  the average isz6 ({(TI) 
= f (O)exp( - 2 Tr'), where r is the frequency of the jumps 

of the given thermal two-level system. The quantity f (0 )  
itself takes on the values + 1 with probabilities of 1/2, so 
averages over this quantity vanish. As a result we find 

b (7, r') =I- (l-e-2r") sin2 Jz. (43) 

Our problem now reduces to one of calculating the aver- 
age value of the quantity B(T,T') over the configurations of 
the thermal two-level systems. The effect of a thermal two- 
level system on a resonant two-level system is determined by 
two factors: the distance from the thermal two-level system, 
r  (on which the quantity J depends), and the frequency of its 
jumps, r .  A configurational average thus actually reduces to 
an average over these two quantities. With regard to the 
average r, we assume that all spatial positions of the thermal 
two-level system are equally probable. The distribution in r 
(i.e., actually the distribution in the tunneling transparen- 
cy) is (Ref. 25, for example) 

where r, is the maximum frequency of the jumps of a ther- 
mal two-level system, given by (5).  For simplicity we re- 
place the expression in the radical by unity; this simplifica- 
tion has no substantial effect on the results. 

Using the Holtsmark method26 to calculate the average, 
we find - Po 

<B(z, TI) )c = ~ ~ { - P T J  d3r j  [ I - b  (z, r l )  I}. 
0 0 

(44) 

Using J = D 2/pv2r%, we can put (44) in the form 

where - I.0 

and 

is the characteristic width of the region of spectral diffusion, 
introduced by Hunklinger and Arn01d.~ This width is equal 
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in order of magnitude with the characteristic change in the 
energy of the resonant two-level system, e,  due to a transition 
in a thermal two-level system at an average distance 
(PT) - I t 3 .  

Substituting (43) into (46), and integrating over J, we 
find r, 

n d r  
Q(5 TI)=-z J- (1-ecZrTr r ). 

0 

(48) 

We turn now to an evaluation of the quantity L ( r , ~ ' )  in 
(34). The average over f breaks up into a product of aver- 
ages: 

T '  +I 

[we set t = 0 in (34) and replaced f ( t )  by f (  - t )  1. We first 
take the average over { at a fixed value of f (0 ) .  For this 
purpose we introduce the auxiliary function 

t 

As was shown by Klyatskin," the function \V(t) satis- 
fies the integrodifferential equation 

t 

It is equivalent to the second-order differential equation 

with the initial condition 

To evaluate (49), we adopt as v(t) in (50) a piecewise- 
constant function equal to + 1 at r 1< t< r  + T' and 0 in the 
interval O<t < 7'. At the point t = T', this function is discon- 
tinuous; the function \V ( t )  is continuous; and its derivative is 
found from Eq. ( 5 1 ) : 

The quantity I(T,T') is related to the function V/ determined 
in this manner by 

L ( T .  T') =([cos Jr+it (0) sin J r ] Y  (t+z')>,,,,. (55) 

Solving Eq. (52) on the interval r f < t < r  + T' under the 
boundary conditions (54), we find \ V ( T  + 7'). Substituting 
it into (55), and taking the average over f(O), we find 

1 ' 1 (z, r ') =e-"[ cos Jz (ch(r2-J2) "z+ 
(,Z-JZ) 'b 

sh (rZ-JZ) "z) 

+ e - ~ r r '  ' 
(r2-J') 'b sin z s h ( - ~ ~ )  J . (56) 

We wish to stress that this expression holds for both r > J 
and I- < J. Taking a configuration average by the Holtsmark 
method. we find 
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where 

It remains to calculate the function K(r , t  '), determined by 
(40), and the configurational average of this function. For 
this purpose we set t = r' + 27 in (40). The average over the 
telegraphic process at one thermal two-level system, k(r , r l ) ,  
can be written in the form in (50). In this case the function 
v(t) is - 1 in the interval O<t<r, at r < t < r + T', and + 1 
in the interval r + r1<t<2r + 7'. Then calculating 
Y( r f  + 27) with the help of (52), (53), and (51), and tak- 
ing an average over {( 0) , we find 

Then taking a configurational average, we find 

where 
m I'. 

6. STUDY OF LIMITING CASES 

The functions (L(r , r l ) ) ,  and (K(r , r l ) ) ,  , given by 
(57) and (60) depend on the relation between the character- 
istic value of T (which is equal to To) and that of J, (which is 
equal to 1 / ~ ,  ). It is thus natural to consider two limiting 
cases. Which is actually realized depends on the relation 
between the temperature T and its characteristic value Td 
given by (9) .  

a) Case of low temperatures, T 4  Td (rOrd 4 1 ). In this 
case, calculations yield (see the Appendix) 

In this region there are three characteristic frequencies: 
y, To, and (rO/rd ) ' I2  > r O .  Correspondingly, there are three 
limiting cases. 

Under the conditions2' 

theintegrals (30), (33), (35), (38) and (39) aredominated 
by r 5: rd , and we have T'( y- ', i.e., the characteristic values 
of r' are much greater than r .  In this case the integrals in 
(48), (62), and (63) depend logarithmically on 7'. Carrying 
out the integration, we find the following expression for F:, 
which holds to within logarithmic corrections 

Under the condition v< y' (r,, <r, ), without an accu- 
mulation of phonons, we find from (65) the result2 

This result is interpreted in the following way9: We apply the 
label "resonant" to those two-level systems whose frequency 
deviation le, (t)/fi - w 1 ,  does not exceed l / rd .  Because of 
jumps in neighboring thermal two-level systems, this devi- 
ation sometimes falls in an interval (near zero) with a width 
on the order of (rO/rd ) ' I 2 ,  which we call the "resonant re- 
gion." The time spent by a resonant two-level system in this 
region is on the order of rp = ( T~ /I?,) ' I 2  [see (7)  I .  

The population of a resonant two-level system can be 
changed by the pump field F only if the system is in the 
resonant region. The average rate of change of the popula- 
tion in this case would be - n z F2r,. Since we have y 4 r,, 
a resonant two-level system finds itself in the resonant region 
many times over its lifetime y-I. The total time it spends 
there is y- ' ( l / rp  ) / (  l /rd ). This time is smaller than the 
time y-' by a factor equal to the ratio of the width of the 
region of spectral diffusion, l / rd ,  to the width of the reso- 
nant region, 1 /~ , .  The critical intensity is found from the 
condition that over this time the resonant two-level system is 
excited with a probability of order unity: 

We thus find Ff z y/rd, which agrees with the calculated 
result within a large logarithm. The change in the population 
during a single crossing of the resonant region is small, An 
z F  f 6 (< 1, and a resonant two-level system must reach this 
region many times for any significant change in its popula- 
tion. 

Under the condition 1 - v/y' 4 1 (r,, % T, ), that phon- 
ons do accumulate, we find from (65) 

In this case Ff turns out to be inversely proportional to only 
the logarithm of the large ratio r,, /r,, not to its first power, 
as in the ordinary phonon-bottleneck effect (Refs. 19-22; 
see also Ref. 14). Consequently, F:  changes only slightly 
from the case without phonon accumulation. The reason for 
this result is the spreading of the nonequilibrium phonons 
over the spectrum caused by spectral diffusion. 

To illustrate this point, we note that the shape of the 
burned-out hole in this case is 

OD 

where 

It follows from (66) that in the case without phonon accu- 
mulation, i.e., under the condition v/y'< 1 (r,, < r , ) ,  the 
hole has Lorentzian shape,' 

with a width A, z (7 In T,/y)/2rd. In other words, this 
width is on the order of the width of the region of spectral 
diffusion. This result is understandable. After being excited 
in the resonant region, a resonant two-level system under- 
goes a random walk over the entire region of spectral diffu- 
sion, over a time y- ' > r; '. It can lose its excitation, 
i.e., emit a phonon, while at any point in this interval. 
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Under the condition S1 & 1 (T,, %T, ), i.e., in the case 
with phonon accumulation, the shape of the hole is quite 
different from Lorentzian: 

ln (1/61), 'IA, IK.1, 

In (111 Al 1 61), 1 < 1 A1 1 < 1/61? 
l/A,2612, 1 A1 1 > i/61. (69) 

The effective width of the hole in this case is greater by a 
factor of 1/6, = r,,/~, than the width of the region of spec- 
tral diffusion, I/?,. The linear time dependence of r,, (in- 
stead of a square-root diffusion dependence) of the width of 
the nonequilibrium distribution results from infrequent 
collisions of phonons with quasiresonant two-level systems 
close to a thermal two-level system [within a distance r sub- 
stantially smaller than the average value (PT)'13]. For 
roughly halfthe time, a quasiresonant two-level system has a 
frequency deviation 1 e, (t)/fi - o 1 5 l / ~ ~ .  It sometimes en- 
ters the resonant region as a result of transitions in thermal 
two-level systems in its vicinity (other than the nearest). 
The nearest thermal two-level system is in one of its quan- 
tum states at this time. When it goes into the other state, the 
energy of the quasiresonant two-level system changes ab- 
ruptly by a large amount fil)fi/~, . Consequently, the qua- 
siresonant two-level system spends the other half of its time 
far from resonance. 

Since we have J-r -3 ,  the concentration of quasireson- 
ant two-level systems with 

is smaller by a factor of T,,/T, than the concentration of 
resonant systems. Accordingly, over a time T,, a resonant 
phonon can be absorbed only once by a two-level system of 
this sort, on the average. An excited quasiresonant two-level 
system may, on the other hand, emit a phonon while far from 
resonance, after a transition of the nearest thermal two-level 
system to the corresponding state. The frequency of the 
phonon emitted in the process will differ from that of the 
absorbed phonon by an amount of order J. 

Because of this spreading of the nonequilibrium phon- 
ons over the spectrum, the number of resonant phonons 
[i.e., the number of phonons which can be absorbed by reso- 
nant two-level system) as followsfrom (69) ] is proportional 
to just the large logarithm I~(T, , /T ,  ), while in the absence 
of a spectral diffusion the number of such phonons would be 
proportional to r,, /T, . 

We turn now to the other limiting case. Under the con- 
ditions 

the characteristic values of T and T' in the integrals in (30), 
(33), (35) and (38) satisfy the conditions r , ~ ,  r ,~'< 1. In 
this case, the exponential functions in (48), (62), and (63) 
can be expanded in series, and the integration over r can be 
carried out. The integrals over T' which appear as a result 
can be evaluated quite easily; for Ff we find 

Under the condition v/y'< 1, without phonon accumula- 
tion, we have 

To within a large logarithm, the value of Fc in this case is the 
same in order of magnitude as l / ~ ~  [see (7 )  1. A resonant 
two-level system undergoes a significant change in popula- 
tion at F z F c  during even a single crossing of the resonant 
region, over a time T ~ .  The accumulation of phonons be- 
cause of spectral spreading changes only the argument of the 
logarithm, as in the preceding case. 

For the burned-out hole in this case we have (cf. Ref. 2) 
w 

r D - ~ *  

where 

Its shape is non-Lorentzian. The asymptotic behavior is the 
same as in (69), where the subscript 1 should be replaced by 
2 on all quantities. The effective width A, is 

This result has the following physical meaning: The 
quantity (I?,/T, ) 'I2 is the width of the resonant region. In 
this region, the population of the resonant two-level system 
is changed significantly by the pump field. According to (6),  
the time scale for the crossing of this region is (T,/ 

r0) - - T ~ .  In the case at hand, (70), however, this time is 
far shorter than the relaxation time of the resonant two-level 
system, y-'. Consequently, after crossing the resonant re- 
gion the two-level system remains excited for a time y- ' .  
Over this time, its frequency (the energy of the resonant two- 
level system divided by fi) takes on the value r0/yTd, ac- 
cording to (6).  This value is the effective width of the 
burned-out hole in the case without phonon accumulation 
( T,, < T, ). If T,, ) r,, on the other hand, as in the case under 
consideration here, (70), the width of the hole turns out to 
be larger by a factor of T,,/T, because of the scattering of 
nonequilibrium phonons by quasiresonant two-level sys- 
tems. 

We turn now to the case 

From (38) we find the following expression for F f  : 

where 

The shape of the burned-out hole in this case is described by 

e-x 
An (e) =B, dx eos A,,z - 

0 x+s3 ' 

where 

IfS,) 1, we find from (76) 

F:=yz (I-vly') - y 2 t , / ~ , .  
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This result agrees with the result of Ref. 14, where spectral 
diffusion was ignored. The condition 6,  $ 1  thus determines 
the range of applicability of the theory of Ref. 14. This condi- 
tion can be rewritten in the form 

R ~ B T ' "  (TdE,)  'I4. ( 8 1 )  

For the burned-out hole in this case we find from ( 7 8 )  

In other words, the hole has a Lorentzian shape with a half- 
width A& = y / 2 .  However, an important reservation must 
be made here." 

It follows from ( 1 8 )  and ( 8 2 )  that the phonon distribu- 
tion which is found is quite narrow, with a width on the order 
of the uncertainty in the energy of the resonant two-level 
system. It is thus incorrect to find it from a kinetic equation 
in this case. Kinetic equations ( 1  1 )  do not apply to such 
narrow distributions. Since resonant absorption in the ab- 
sence of spectral diffusion is essentially resonant scattering, 
the nonequilibrium phonons should have this same frequen- 
cy as the pump field, w (Ref. 1 3 ) .  Consequently, although 
the width of the burned-out hole is on the order of y in the 
case, the shape of the distribution function of nonequilibri- 
um phonons does not reproduce that of the burned-out hole. 
The width of the nonequilibrium phonon distribution is To/ 
y r d  in this case; it is substantially smaller than y and is deter- 
mined by the spectral diffusion. Experimentally, it could be 
measured by studying Brillouin scattering of light. 

In the opposite limit, with S,g 1  or ~ 
4 T ~ / ~ ( T ~ E ,  ) ' I 4 ,  [but with &>) T"~T,  ' I 3 ;  see ( 7 5 ) 1 ,  we 
find the following expression, to within logarithmic correc- 
tions, for Ff from ( 7 6 )  : 

In this case the burned-out hole, ( 7 8 ) ,  has a definitely non- 
Lorentzian shape. Its asymptotic behavior is described by 
(691 ,  with a subscript 1  must be replaced by 3  on all quanti- 
ties. The effective width is 

As= (I',/yz) (.t,,/z,) B y .  
6 )  Case of high temperatures, T$ T, ( r O ~ d  $ 1  ) . In this 

region there are three characteristic frequencies: rO, 
and y. Correspondingly, there are three limitingcases. In the 
case 

1 r, B - B ( ~ Q K T , )  
'Gd 

( 8 4 )  

the integrai over r can be extended to cc, in ( 5 8 )  and ( 6 1  1. 
As a result, we find the following result, which holds to with- 
in logarithmic corrections under the condition T'>)T, as is 
shown in the Appendix: 

The ranges T 5 T~ and T' 5 y- ' contribute to the integrals in 
( 3 0 ) ,  ( 3 3 ) ,  ( 3 5 ) ,  ( 3 8 )  and ( 3 9 ) ;  i.e., thecharacteristic val- 
ues of T' are much greater than T. In this case, expression 
( 4 8 )  for Q(T,T')  takes the form 

n 
Q(a,  a') = - T In I',T'. 

2 
( 8 6 )  

Going through the calculations, we find F : ,  

( 8 7 )  
and the width of the burned-out hole, 

where 

If there is no phonon accumulation, i.e., under the con- 
dition I-,, 47, ( v 4  y ) ,  we find 

In this case the burned-out hole has a Lorentzian shape2: 

The width of the hole is on the order of the width of the 
region of spectral diffusion, l / r d .  

In the opposite case, with rnr &rr ( 1  - v/y' < 1  ) and 
with phonon accumulation, the critical intensity is changed 
only insignificantly by the spreading of the phonons over the 
spectrum. The shape of the burned-out hole, in contrast, 
changes radically. The hole becomes non-Lorentzian, and 
from ( 87 ) we find 

The effective width of the hole is 

A,= ( ln  (I ' , /r) /ad)  ( a n V / z , ) ,  

larger than the width of the region of spectral diffusion by a 
factor of T,, /T, . 

We now consider the case 

In this case, the integrals ( 3 0 ) ,  ( 3 3 ) ,  ( 3 5 ) ,  ( 3 8 ) ,  and ( 3 9 )  
are dominated by r, r 1 < y - ' .  The quantities V ( r , r ' )  and 
S ( r , r l )  can be ignored in the arguments of the exponential 
functions in ( 5 7 )  and ( 6 0 )  in this case. Expression ( 8 6 )  
remains valid for Q(r ,T1) .  For F :  we find [cf. ( 7 6 )  ] 

where 

For the burned-out hole we have [cf. ( 7 8 )  ] 
m 

e-x 
A n ( e )  =B, dx c o s ( A 5 ~ )  rf6- 9 

where o 

Under the condition S, 9 1 we find [if there is an accu- 
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mulation of phonons, i.e., if rn,,ry, the condition 
T) ( Td Ec ) ' I2)  as well as (9 1 ) would also have to be satis- 
fied in this case] 

as in the ordinary phonon bottleneck (see also Ref. 14). In 
this case the burned-out hole has a Lorentzian shape with a 
half-width y/2 [see the comment following Eq. (82) in the 
connection]. In the opposite case, S,4 1 ( T 4  ( T, E, ) 'I2), we 
find 

which agrees to within logarithmic factors with (87). In this 
case the burned-out hole has a non-Lorentzian shape. The 
expressions for this shape in the various limiting cases are 
the same as (69 ) ,  where the subscript 1 must be replaced by 5 
on all quantities. 

Finally, we consider the limiting case 

The distinction from the preceding case is that now the char- 
acteristic values satisfy r r1ZI ' / y4  1. We can thus write 
(48) in the form 

Q( T, TI) =Z~~ZT'. 

The results turn out to be the same as in case (75). The 
critical intensity is given by (76), and the burned-out hole is 
described by (78). The condition 6 %  1 (fio 
( T ' 1 2 ( T d ~ ,  ) ' I4 )  is compatible with (97) only if 
T 4  ( E ,  T, ) ' I 2 .  ~t T) (Ec Td )It2, only the case 8,) 1 is re- 
alized. 

7. DISCUSSION OF RESULTS; NUMERICAL ESTIMATES 

Spectral diffusion in dielectric glasses thus gives rise to 
rather different pictures of the burned-out hole and the non- 
linear resonant absorption, depending on the signal frequen- 
cy w and the temperature T. When the accumulation of non- 
equilibrium resonant phonons is taken into 
consideration,we find that spectral diffusion also plays a role 
in cases in which it was previously negligible [cases (75), 
(91 ), and (97) 1 .'s3 The reason for this result is that the non- 
equilibrium phonons spread out markedly over the spectrum 
as a result of spectral diffusion, thereby modifying the 
phonon-bottleneck phenomenon. The width of the phonon 
distribution increases linearly with increasing nonresonant 
lifetime r,, . The functional dependence of the width of the 
phonon distribution on the time r,, is not of a "diffusive" 
nature because of collisions of nonequilibrium phonons with 
quasiresonant two-level systems in the vicinity of a thermal 
two-level system. 

The theory derived here refers to the steady state. Con- 
sequently, the length of the excitation pulse must exceed 
max (r,, ,r,,/yr, ) . This condition reflects the circumstance 
that under the condition yr, 4 1 nonequilibrium phonons 
are captured by resonant two-level systems." A long time is 
required for a phonon to collide with a quasiresonant two- 
level system. 

If the accumulation of resonant phonons is to be mani- 
fested, it is further necessary that the dimensions of the exci- 
tation region exceed the diffusion length 

Otherwise, the phonons will escape from the excitation re- 
gion before they collide with quasiresonant two-level sys- 
tems. In amorphous quartz (SiO,), for example, at a tem- 
perature T = 0.5 K and an excitation frequency f = w/ 
277 = 1 GHz, these parameters would have the following nu- 
merical values (for transverse phonons)': r, z?.5 ps, 
r,, z 20 ps, y- ' ~ 0 . 5  ps, and L = 3 cm. 

Let us examine the effect of two-phonon relaxation pro- 
cesses of resonant two-level systems [described by the time 
r1 in ( 1 la )  ] on the accumulation of resonant phonons. It 
follows from the analysis in Sec. 6 that nonequilibrium 
phonons affect the resonant absorption under the condition 
1 - v/y' ( 1. Since we have 

and yr' ) 1 a necessary condition here is r,, ) T,, . In this case 
we have 

Using expression ( 104) for T', given in the Appendix, along 
with (22) and (4), we find that under the condition fio ( T 
we have 

i.e., the first term in (98) can be ignored in this case. In the 
classical frequency region, two-phonon relaxation processes 
of resonant two-level systems contribute much less to the 
rate at which excitations leave the resonant region than does 
the nonresonant absorption of phonons by thermal two-level 
systems. 

In the quantum frequency region, f i w )  T, the situation 
is different: 

i.e., the first term in (98) is twice the second. In this case, the 
rate at which excitations leave the resonant region is thus 
determined by both the nonresonant scattering of phonons 
and two-phonon relaxation of two-level systems. 

We conclude with a few words regarding the behavior 
of the absorption coefficient as a function of the intensity at 
high intensities, under the condition F) Fc. In this case it 
follows from qualitative considerations similar to those in 
Ref. 3 that the absorbed power will not depend on the inten- 
sity. The absorption coefficient will therefore fall off in in- 
verse proportion to the intensity. The ultimate reason for 
this result is that in a situation with spectral diffusion the 
number of two-level systems which are involved in the ab- 
sorption is far greater than that in the absence of spectral 
diffusion. The spectral width of the interval in which the 
energies of these two-level systems fall is significantly 
greater than the width of the resonant region. Accordingly, 
for F >  Fc the number of two-level systems which are in- 
volved in the absorption does not increase with increasing 
intensity, as it would in the absence of spectral diffusion. 
Instead it remains constant. 

We sincerely thank Yu. M. Gal'perin and V. L. Gure- 
vich for an extremely useful discussion of these results. 
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1 
I ,  (r ,  y )  =e-u cos xy(  ch ~ ( I - X ~ ) ~ '  + -- sh y ( 1 - 2 ) ' )  ( 1 - x 2 )  

APPENDIX 

A) Two-phonon relaxation time of resonant two-level 
systems. The rate of change of the population of the upper 
level of a two-level system with an energy e as a result of two- 
phonon processes can be written 

+ x e-"i+ZB) sin z y  sh y ( I - x 2 )  
( 1  - x Z )  Iir 

and 
r.7 - 

where 

I , ( G  y )  =e-u cos e y  (cos y ( x 2 - 1 )  *' + 1 
sin y ( x 2 - I )  lh) 

(22- 1 )  '" 

+ 2 
e-Y('+ZB) sin x y  sin y (x2 -1 )  Ih,  

( x Z -  1 )  " (1 10) 

and f i  = T'/T. 

At low temperatures, T g  Td (rord g 1 ), the character- 
istic values satisfy Tor& 1. The integrand (in the integrals 
over y )  can thus be expanded in a series in y, and only the 
first nonvanishing term need be retained. In the calculation 
of Vl (T,T'), we can expand the function 1, ( x ,  y )  directly in y 
and then integrate over x.  As a result we find 

where no is the equilibrium population of the upper level of 
the two-level system, N :  is the equilibrium distribution 
function of the nonresonant phonons, and W:;' are the pro- 
babilities for the corresponding transitions. The first expres- 
sion in square brackets in ( 101 ) describe decay-emission (or 
absorption) processes involving two-level systems and two 
phonons. The second expression describes association pro- 
cesses: One phonon is absorbed by a two-level system, and 
another is emitted. 

The transition probabilities W g !  satisfy relations 
which follow from the principle of detailed balance: 

0 

In the calculation of V, (T,T') we can carry out the ex- 
pansion in y only after the integration over x, since the inte- 
gral over x is dominated at values y g 1 by x --, l/y. As a result 
we find, after some calculations, 

J 2 [ l - e - u ( I + z ~ ) l .  vz (z, z') = - 
2 o y  

In the simple isotropic model, a calculation by second-order 
perturbation theory yields 

Comparison with Vl ( 7 , ~ ' )  shows that in the regions of 
values of T and T' in which we are interested here the follow- 
ing conditions holds: Using ( 101), ( 102), and ( 103), and going through the 

calculations, we find the following expression for the relaxa- 
tion time T' of a resonant two-level system with e = tiw: 

In other words, we have 
1 D2M202T3 n z  h a  
-= 

t i 0  fro fro 
&13h5p2vi"[-3-T + T ~ i ( $ )  - 1 2 ( ~ ) ]  cthF7 

(104) and we find (62). 
At high temperatures, T% Td (TOTd > 1 ), the charac- 

teristic values satisfy Tor) 1. The upper limit on the integral 
over y can thus be replaced by W .  As a result we find 

where 

where , 
Under the condition h g T, connection processes dominate 
the value of l/rl .  In the opposite case, with tiw % T, the rate 
of two-phonon relaxation is dominated by decay processes. 

B) Calculation of the function V(T,T'). Introducing the 
new variablesx = J /T ,  y = TT, and partitioning the range of 
integration over x and 0 to co into the two subranges from 0 
to 1 and from 1 to CO, we rewrite (58) as 

For valuesp< 1, the quantity v(P) = v(0) is some number 
on the order of unity. We are interested in the behavior of the 
function v (0) as 0- w : where 
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where 

x  
A12 ( x ,  Y) = - , e-u (l-e-zpu ) sin x y  sin y  ( x Z -  I )  ". 

( x 2 - I )  'I1 

Using (118),  wefind from (116) that v , ( w )  issomenum- 
ber, since the integral in ( 1 16) converges if we set B = cc in 
(118).  

With regard to the function v,(P) we have a different 
situation. This function can be written in the form 

dx 
sin x y  sin y ( x Z -  l )  ". 

In the case y ( 1 we have 

ds n 
sin x y  sin y  ( x Z -  1) % = - y ,  

2 

so that asp+ cc the integral over y in ( 120) diverges logar- 
ithmically at its lower limit. As a result we find, for g- cc , 

and thus Eq. ( 8 5 ) .  The function S(T,T')  is calculated in a 
similar way.3 

"This system of equations holds if the width of the nonequilibrium distri- 
butions n, and N, is greater than the uncertainty in the energy of a 

resonant two-level system, Ify [see (22) 1. Because of spectral diffusion, 
this condition holds in most of the cases considered (Sec. 6). 

''In general, this inequality would also contain some logarithmic factors. 
We have omitted them to avoid making the calculations overly compli- 
cated. These factors can be reconstructed quite easily by requiring that 
the results found for the different limiting cases join at the boundary 
between their ranges of applicability. 
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