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Effects of the influence of a finite longitudinal correlation radius of the dielectric-constant 
fluctuations on wave propagation in randomly inhomogeneous media are considered in the 
framework of the parabolic equation. The results are compared in detail in the Bourret and in the 
Markov approximations. It is shown that deviations from the Markov approximation lead to 
phase shifts due to fluctuations of the dielectric constant, and to a substantially stronger 
dependence of the effective attenuation on the transverse wave vectors. These effects can lead also 
to a peripheral redistribution of the intensity in axial beams and can alter the character of various 
asymptotic expressions. 

1. INTRODUCTION 

The problem of wave propagation in randomly inhomo- 
geneous media can be generally formulated with the aid of 
the Helmholtz equation with a fluctuating dielectric con- 
stant 

A1J+kZ(1+e ( r )  ) U=O, (1.1) 

where k = o(E) '"/cis the wave vector corresponding to the 
average dielectric constant (E), while ~ ( r )  = (E(r)  - (2) ) /  
(2) describes the relative fluctuations. Equation ( 1.1 ) can 
be used to describe both electromagnetic and acoustic waves. 
Polarization effects in electromagnetic waves are neglected 
in the Helmholtz equation, but backward scattering is de- 
scribed in this approximation exactly. If the characteristics 
of the beam and of the medium vary slowly along the wave 
propagation path, Eq. ( 1.1 ) can be approximately replaced 
by the parabolic equation1-' 

U (p, z) = I L  (p, Z) elkz, (1.2) 

du d2u  
2ik - + + k 2 e  ( p ,  z) a=O. 

rlz ap- 

Here z is the coordinate along the propagation path, d /ap is 
the gradient in the transverse direction, and a */ap' is the 
transverse Laplacian. Equation ( 1.3) neglects both polar- 
ization and backscattering effects and describes only the 
propagating wave. It is valid under the conditions1-3 

? h 

> 1 ,  ( 1 )  1 z ,  I > rc2k2z \ (be (x, 0 )  x d x ,  
>'/*li 

(1.4) 

where 1, is the characteristic spatial dimension of the fluctu- 
ations of E, and @, (x,O) is the spectral density of the fluctu- 
ations. 

Many results, formally exact as well as approximate, 
have been published by now both for Eq. ( 1.1 ) (see e.g., Ref. 
1 and the detailed bibliography in that monograph) and for 
Eq. ( 1.3) (see, e.g., Refs. 3 and 4) .  On the one hand, how- 
ever, the results for the Helmholtz equation must be substan- 
tially modified when applied to the propagation of axial 
wave beams. On the other, in specific applications of the 
parabolic equations the analysis is carried out only in the 

Markov approximation with zero correlation radius of the 
dielectric-constant fluctuations. In the present paper we 
wish to discuss the role played by a finite longitudinal corre- 
lation radius in the approximation of Eq. (3 ) ,  and compare 
the corresponding results with the Markov limit. 

The plan of the paper is the following. The general for- 
malism is described in Sec. 2, in which equations are derived 
for the average correlators. The propagation of plane-wave 
packets is considered in Sec. 3. The fundamental role of non- 
Markov corrections is discussed in Sec. 4. The Appendix 
contains brief comments concerning the employed approxi- 
mation. 

2. EQUATIONS FOR THE AVERAGE CORRELATORS 

We begin with a derivation of equations for the average 
correlators. In contrast to Refs. 3 and 4, where Fradkin's 
method is used, it is more convenient for our purposes to use 
the direct approach developed in Ref. 5. We write the formal 
solution of Eq. ( 1.3) in the form 

where 

and K(p ,  z; p1,z') is the exact Green's function of the equa- 
tion 

=6 (p-p') 6 (z-z') . (2.3) 

At the same time, one can use for K a representation in the 
form of a path integral5: 

where the integration is over all the rays emerging from the 
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point p' at 6 = 0 and reaching the point p at l= z. As seen * 

from (2.1 )-(2.4), in the case of fluctuating ~ ( p , z )  the prob- i oxp [- $ j dzt 1dz"t i (p, z ' )  i (p,  z",) )] 
lem reduces to averaging K, or more specifically, to averag- o o 

ing the factor z 1 

k2 t Jdzl Jdzrr(;(p, z f ) ; ( p ,  a/() )] , 
0 0 

(2.12) 
Comparing this exponential with the definition of the char- 
acteristic functional which is equivalent in fact to the Bourret approximation." 

In this case we obtain the following equation for the average 
field: 

0 
(2.5) a i a2 k2 

- u , z = - - p z - -  J h p (  e(p,z) 
where v ( p , f )  is a specified determinate function, we find d z  2k ap2 4 0 

right away that the average 

corresponds to the choice 

Using next the identity 

iz d 2  k  i k lp -p ' I2  We assume throughout that the inequality (2.1 1 ) holds and 
CxP ( j l i  -) f (P) = j ~ j  d2Pf cxp ( 2z  that the fluctuations are Gaussian. 

(2.7) The equations for the remaining field correlators are 
derived in exactly the same way, recognizing that a sum of 

it is easy to show that the final answer can be written in the Gaussian quantities has again a Gaussian distribution. For 
form example, the equations for paired correlators take the form 

( u ( p ,  2) ) a 
--(u(P~, 2) u ' ( P ~ ' ,  2)  ) 

=eAp (-F 4 ) i (cxp [: j dz ' i  (p,  z ' )  1) uo (p )  , dz 
Lk dp 0 

(2.8) 

where 
iz d2 

z 

h 

and the operator L is similar to the time-ordering operator 
(see, e.g., Refs. 6 and 7 ) .  For Gaussian fluctuations, in par- 
ticular, we obtain from (2.8) (cf. Refs. 8 and 9)  

i(z-a') d2 
x . (Pig,  2')  exp 

xi kiS dz' 1 dz"G (p,  z ')  ̂ e (p. z") )] u0 (p ) .  
(1 

- ( E ( p i f .  z )  exp [q $1 
(2.10) 

i (z-z')  (IL 
Since the operators C( p,z) do not commute for different 

z, the expression for the derivative a ( u  ( p,z) )/az cannot be 
expressed in closed form. If, however, the inequality 

holds, we get (cf. Refs. 8-1 1 ) X(u (p i ,  z )  u' (p l ' ,  z) ): 
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The intensity of the fluctuations is usually described 
with the aid of the spectral density 

(E ( p l ,  z l )  e (p , ,  z 2 )  )= jd3qeiq(rl-r*)08 , (2.16) 

Latin letters will hereafter be used for three-dimensional 
vectors, and Greek for transverse two-dimensional vectors. 
It will also be assumed that 

@ 8  ( q l l  q l )  = @ 8 ( - - q l 3  qz) = @ e ( q l l  - q z ) .  (2.17) 

To calculate the correlators in Eqs. (2.13)-(2.15) it is 
convenient to introduce formally 

& ( r )  = & ( q )  e lqr ,  

where S - ,.,, is the Kronecker delta. Next, using the equa- 
tion 

we can rewrite (2.13) and (2.14) in the form 

where 

d Z  
A,,, = - 

d2  d Z  d Z  
d p l z + . . . + - - - -  -- . . . 

dpn2 dpl" d ~ l n  (2.24) 

Further transformations can be carried out with the aid of 
the identity 

but Eqs. (2.2 1 ) and (2.22) are in fact more convenient for 
actual calculations. 

The integrals with respect to z' converge mainly in the 
vicinity ofz over distances of the order of IEII  (where lei, is the 
longitudinal correlation radius). Therefore slow variations 
of @, with height'.' can be taken at the point z in investiga- 
tions of wave propagation over long distances. 

3. PROPAGATION OF PACKETS OF PLANE WAVES 

1.  Equation (2.2 1 ) can be solved in elementary fashion 
using a Fourier transform with respect to the transverse co- 
ordinates. We describe only the asymptotic solution for 
z$ l,,, , when the upper limit of integration with respect to z' 
can be approximately replaced by infinity. Using the equa- 
tion l .",7 

m 

h 

where P means taking the principal value in the integration 
over q, , we obtain the final answer in the form 

6k2 ( x )  = - x Z / 2 k + Q i  ( x ) ,  (3.4) 

In actual calculations with @, (q, ,q, ) it is customary to use 
the Booker-Gordon approximations and a Gaussian or Kar- 
man's approximation of the Kolmogorov-Obukhov turbu- 
lent spectrum. The corresponding dependences of Qi ( x )  
and Q, ( x )  on the modulus 1x1 of the transverse wave vector 
for these typical cases are shown in Fig. 1. New additional 
features compared with the Markov theory are the appear- 
ance of a finite phase shift as a result of the fluctuations of E 

[Eq. (3.5) ] and the dependence of the effective attenuation 
on x [Eq. (3 .6)] .  The Markov limit is formally taken by 
replacing q, + q, 2/2k + q, x/k by q, in Eqs. (3.5) and 
(3.6).  Taking relations (2.17) into account and assuming 
axial symmetry, we obtain, retaining the first nonvanishing 
corrections with respect to the Markov approximation, 
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FIG. 1.  ~ ~ p i c a l  plots of the functions Q, ( x )  and Q, ( x )  in Eqs. (3.5) and 
(3.6) vs the transverse wave vector 1x1: I-non-Markov theory with finite 
longitudinal radius of fluctuations of E,  2- Markov theory. 

We have used here the relation 

transverse wave vectors, while waves with short harmonics 
are grouped near the beam boundary. In the more general 
case one could expect the onset of an annular structure in the 
cross section of the beam at large propagation distances. Es- 
timates of the distance z at which the redistribution effects 
assume an important role will be given in the next section. In 
addition, this effect (together with the influence of self-fo- 
cusing ) is apparently partially responsible for formation of a 
peculiar filamentary structure of the wave beam at large 
propagation distances. 

We present now some specific estimates, using the 
Gaussian approximation for the spectral density of the fluc- 
tuations: 

oeL13 
@, (q)  = cxp - - 

(ax)" 
( q;12 ), 

where a: is the quadratic variance of the fluctuations of E, 

and 1 is the characteristic length, and also the Karman ap- 
proximation for the Komogorov-Obukhov spectrum: 

where q, and q, represent the external and internal turbu- 
lence scales, while C, is a structure constant. Substitution of 
these spectral densities yields: 

and put n aZOe (qL, 0 )  - n1110,21/21/- 
- - k q ,  41 - 16 dg,' { 0 . ~ ~ ~ . 2 ~ ~ ,  . (3.15) 

a2m. (n,. 0 )  - a2m. (qL, 9,)  I 
84: 89: q ,  Po ,,-3/2 (3.10) For atmospheric fluctuations of E we have'-3 Cf  - 

(in the radio and optical bands) and q, - 1 m-'; for 
In the case of spherical symmetry, Eq. (3.7) takes the form k- lo7 mp '  and x-0. l k  we obtain Q, - m- and 

k am.  (9) (3. ) 
AQ, - 1 0 - b m -  (where AQ, corresponds to the x-depen- 

~ ~ ( x ) = - - j d ' q q ~ .  12 dent part of Q, ). 
Substitution of the spectrum (3.13) in the criterion 

Since the following inequalities usually hold (3.11 ) leads to the condition 

we reach several important conclusions. First, fluctuations 
of the dielectric constant shift the longitudinal wave vectors 
into the short-wave region (cf. Ref. 1, p. 408). Second, 
shorter waves are effectively less attenuated than longer 
ones. The last circumstance is physically quite obvious, since 
shorter waves are more weakly scattered than long ones. 
This effect can lead to a peripheral redistribution of the in- 
tensity in axial beams with abrupt boundaries (see Fig. 2), 
since the central region "consists" of harmonics with small 

FIG. 2. Modulus I (u )  1 of mean-field amplitude vs the radius and the 
transverse viscosity: I-distribution at z = 0; 2--distribution at large dis- 
tances (non-Markov theory); 3-distribution at large distances (Markov 
theory). 

which is satisfied with high accuracy in both the optical and 
in the radio bands. 

2. The solution of Eq. (2.22) is much more complicat- 
ed. We describe here only the propagation of plane-wave 
packets in the form 

where 

Substitution of this function in (2.22) yields an equation 

that coincides formally with classical kinetic equations and 
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describes radiation transport (cf. Refs. 1-4 and 13-1 5).  
Equations of type (3.18) were studied earlier in weak-turbu- 
lence theory (see, e.g., the review in Ref. 16). In view of this 
analogy it is easily seen that in the Markov limit (q, + x2/ 
2k + ~ ' ~ / 2 k - - q ,  ) there exists a nontrivial power-law solu- 
tion of Eq. (3.18) for an inertial interval of the Kolmogorov- 
Obukhov spectrum: 

We demonstrate this formally using the conformal-mapping 
method of Katz and Kontorovich. I' We redesignate identi- 
cally the integration variables in the second term of (3.18) as 
q, and f' (it should be noted that the two terms are equal, 
and we distinguish between them formally only for conven- 
ience) and make the change of variables 

A 

where the operation (KR /XI) is defined by the condition 

i.e., it corresponds to rotation of the vector x' to x and to a 
change of its length by a factor ?t/xf. We seek the solution in 
power-law form 

We obtain then after the transformations (3.22) the follow- 
ing expression for the term in the right-hand side of (3.18): 

Consequently, the distribution 

is a solution, which does not depend on z, of (3.18). It is easy 
to verify that this solution is local and is therefore physically 
admissible (note that the influence of e boundaries in mo- 
mentum space must be taken into account even for local 
 distribution^'^). The distribution (3.24) corresponds to 
constant transfer of intensity in the transverse direction as a 
result of wave scattering by Kolmogorov vortices. The trans- 
fer is directed from the shorter to the longer waves (in a 
direction opposite to the energy transfer in the Kolmogorov 
turbulence theory). 

Note that in the Markov limit Eq. (3.18) can be written 
in coordinate space also in the form 

where H (  p - p; ) is defined in Eq. (4.10) below. It is ob- 
vious therefore that for the regularized spectrum (3.13) the 
right-hand side of (3.25) cannot vanish exactly. The distri- 
bution (3.24) must therefore be understood as a spectral 
density that minimizes the Fourier transform of the right- 
hand side of (3.25) in the case when the inertial spectra 
interval predominates. Although the deviation from a purely 
power-law spectrum (3.19) [cf. (3.13) ] can play an impor- 
tant role, it is well known16 that distributions of the type 

(3.24) can be really observed asymptotically within the lim- 
its of a certain spectral interval. 

4. DIFFERENTIAL EQUATIONS FOR THE AVERAGE 
CORRELATORS WITH ALLOWANCE FOR THE FIRST 
NONVANISHING CORRECTIONS FOR THE LONGITUDINAL 
CORRELATION RADIUS 

1. We discuss in this section the principal influence ex- 
erted on the wave propagation by finite corrections with re- 
spect to the longitudinal correlation radius of the fluctu- 
ations. The corresponding differential equation for the mean 
field is of the form 

where 

' l ~ k 2 ~ o = Q r  ( 0 )  , (4.2) 

while Q, (O), Qi (O), and D are defined respectively by Eqs. 
(3.8), (3.11), and (3.15). Since usually D >  0, the term with 
real diffusion leads to a radial redistribution of the intensity 

1 ( u )  l 2  over sufficiently long propagation distances. This ef- 
fect is due to the weaker effective attenuation of the shorter 
waves (see Sec. 3.1 ). We estimate the characteristic length z 
over which the redistribution effects become important, us- 
ing a Gaussian beam as an example. 

Let the initial distribution in the z = 0 plane be 

<uo(p)  >=uo exp [ - (llao2+ik/2Ro)p2] =uo exp ( -'12kapZ) , 

(4.3) 

Here a, is the width of the beam and R, the curvature radius 
of the front (for wide beams this corresponds to focusing of 
the beam in the plane (z = R,,). Solution of Eqs. (4.1 )-(4.4) 
leads to the form 

ip2akk kZXo 
x exp [- ( ik-aKzj + ~ Q I  ( O I L  - -21 8 ' 

(4.5) 

where 

x = k / ( l + 2 i ~ k ) .  (4.6) 

Determining I ( u )  1 from (4.5), we easily see that the redis- 
tribution effects become important starting with z>z*, 
where 

The approximation (4.1 ) no longer holds at z > z* and it is 
necessary to retain in the non-Markov corrections addi- 
tional terms of the expansion. At a, )a, we get 
z* - R :/Dk *a:. For atmospheric turbulence (in the optical 
and radio bands) D- 10-l5 m [see Eq. (3.15)], which 
yields in the optical band at k- 10' m- '  an estimate 
z*- 1O(R ;/a:) m. In the case of accurately collimated 
beams, when ai = 0, we get z* - a;/D. The effect will there- 
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fore be much more strongly pronounced for focused beams which can be approximately interpreted as the operator of 
than for collimated ones. the arrival angles. I? fact, in the case of a plane wave, u 

The corresponding differential equation for the coher- a exp(ix*p), we get 15 = x/k. For Gaussian beams 
ence function takes the form 1 1 

art,, i nk2 2 2 rISi (pl, p:; 0)- -exp[ - - (ka)~ :  - - ( M ) ~ F ] .  
n -=-A , r , - - - ~ ( ~ ~ - p ~ ~ ) r ~ , ~  

dz 2 k i i i 1  4 (4.18) 

n a' + 

- - (Dab (0) -Dab (Pi-Pi') ) 
8 

" ) r,,., 
dp1a d~ia'apw' 

(4.8) 

where 

B(pl-pl') =~(pl-pi')+AH(Pi-~i'), (4.9) 

1 d@*(q17 q z )  
F (pl-plf) = 5 d2qL f 

ag, 
exp [ iq, (pi--pif) I ,  

Summation is carried out over repeated Greek indices 
(a = 1 corresponds to the coordinate x and a = 2 to the 
coordinate y )  . Also assumed are axial symmetry of the fluc- 
tuations and satisfaction of the condition 2% I,,, . In the Mar- 
kov theory, AH, F, G, and DaB are equal to zero. 

We use Eqs. (4.8)-(4.14) to determine the evolution of 
the beam width in the case of prolonged averaging. The cor- 
responding width is determined from Ref. 2 

where the following normalization is assumed: 

J dZpr l , i (~ ,p ;  z)=1. 

All the mean values are determined next by the equa- 
tion 

(a)= j d2p(.o(p, Z ) ~ ) U ( ~ , Z ) ) ,  (4.16) 
h 

where 0 is in the general case a certain operator. 
It is convenient to introduce the operator 

however, calculation yields 

so that at ai )a, we have (6') -ai/2R i. 
With the aid of the operator 0 we can write the equation 

for ( p i  ) in the form 

d(pL2> -- - <epLtpLi),  (4.20) 
a z 

where 

In typical situations, all the constantsf, g, and h are positive. 
From (4.9)-(4.14) we find that the non-Markov correc- 
tions can change the character of the asymptotic relations, 
since we have z s g -  ' 

whereas the Markov theory yields 
X 

(pLZ>= - hz3. (4.26) 
12 

Such regimes, however will never be reached in atmospheric 
turbulence, for under these conditions g-0, 1C:qr3, which 
yields g- 10-l4 m- '  for Cz - 10-l4 m-'I3 and q, - lo4 
m-'. For media with higher optical density, however, these 
deviations can in principle be appreciable. For acoustic 
waves we have C2-10-%-"/2, so that g-10-6 m-' .  
Since g -  h,  the influence of the non-Markov corrections can 
alter slightly the statistics of the arrival angles at z4gP ' ,  
when 

where (6'), corresponds to the value of (6') at z = 0. If 
(0')" is not too small, the non-Markov corrections alter also 
the constant in the asymptotic relation (4.26) at z(g-I. 
Another interesting application of Eq. (4.8) is to effects of 
redistribution of the intensity ( 1  u 1') along the propagation 
path. 

3. We present here also, to complete the picture, the 
corresponding equation for the correlator r,,, , in view of its 
importance for effects connected with intensity fluctuations: 
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where 

The remaining notation is the same as in Eqs. (4.9)-(4.14). 

5. CONCLUSION 

It follows from the results of the present paper that non- 
Markov corrections can play in principle an important role 
in the redistribution of the intensity in the beam cross section 
for waves propagating in randomly inhomogeneous media. 
These corrections can also change the asymptotic depen- 
dences of a number of average characteristics. 

We present in conclusion criteria for the applicability of 
the Markov approximation. In all cases it is necessary to 
satisfy the inequalities 

where I,,, and I,, are respectively the longitudinal and trans- 
verse correlation radii of the fluctuations of E ,  and a is the 
beam width. The other inequalities depend on the specific 
correlators. For TI,, under condition (2.1 1 ), for example, it 
is necessary to satisfy the inequality z4z* [see Eq. (4.7) 1 ,  
for r,., we must have z g g - '  [see Eqs. (4.14) and (4.24) 1,  
and so on. These criteria differ in part from those given in 
Refs. 1 and 3. Furthermore, it is necessary to satisfy the 
criterion ( 1.4) in order to ensure applicability of the para- 
bolic equation. 

The authors thank A. A. Vedenov, M. I. Kaganov, A. 

M. Kamchatnyi; E. B. Levchenko, and A. L. Chernyakov 
for a discussion of the results and for helpful remarks. 

APPENDIX 

We wish to make here a few comments concerning the 
Bourret approximation [Eq. (2.12)]. We elucidate themain 
ideas using the elementary one-dimensional equation 

with Gaussian correlations 

There is no noncommutativity problem here, and (2.12) is 
an exact equality.3.'9 We wrge down, however, the solution 
of Eq. (A.  1 ) in terms of an L-ordered exponential 

We consider next, for example the fourth-order term after 
the averaging 

Let the function B, (z - z') have a maximum at z = z' and 
let it tend rapidly monotonically to zero at lz - z'l 2 1,. At 
z> 1, we obtain then the estimates 
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The estimate (A.7) holds also for the last term in (A.5). 
Thus, the terms of type (A.6) predominate a t z g  I,. Summa- 
tion of such terms, however, corresponds in fact to the Bour- 
ret approximation. Actually, since we deal with summation 
of infinite series, we must check that the corrections to the 
Bourret approximation are small. This is the nub of the crite- 
rion (2.11) (it is easy to verify that for the Gaussian distri- 
bution (3.12) the criterion (2.11 ) agrees with that obtained 
in p. 4 12 of Ref. 1 ) . In diagram language this means selection 
of nonintersecting diagrams at large distances for z$ I,,, (in 
the Fourier wave-vector representation they correspond to 
the most singular diagrams at small q, ). The real situation is 
not so simple, since Eq. ( 1.3) corresponds formally to a two- 
dimensional Schrodinger equation with a random potential, 
and in its investigation we encounter the same problems as in 
the theory of Anderson localization (cf. Ref. 20; concerning 
the effects of Anderson localization for wave propagation in 
randomly inhomogeneous media see, e.g., Refs. 21-23). If 
the results of Ref. 20 are used, we get as the lower estimates 
of the distances at which localization effects come into play 

zag-' exp (a /u2kg) ,  (A.8) 

where g is defined in (4.24) and a is a numerical coefficient 
of order unity. For the atmosphere, in view of the smallness 
of g (see Sec. 4.2), these distances are practically indistin- 
guishable, but for a number of model it is possible 
to reach a point where the localization effects become ob- 
servable. 
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