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A model of a granulated disordered metal on a Bethe lattice is studied. The model is invariant 
under time reversal (the symplectic ensemble and orthogonal ensemble). The existence of a 
metal-dielectric transition is proved and the critical points are calculated. The density-density 
correlation function is calculated both in the metallic region and in the dielectric region. The 
localization length in the dielectric region near the transition point increases as the reciprocal of 
the distance from the transition point. The diffusion coefficient in the metallic region falls 
exponentially as the transition point is approached. The form of the density-density correlators 
and the critical behavior of the orthogonal ensemble, the unitary ensemble, and the symplectic 
ensemble are the same. 

1. INTRODUCTION 

In recent papersI4 the Anderson metal-dielectric tran- 
sition in the model of a disordered granulated metal on a 
Bethe lattice has been studied. Application of the method of 
supersymmetry5 has made it possible to reduce the calcula- 
tion of various correlation functions to the calculation of 
integrals of the solutions of certain integral equations. In 
Ref. 1 the author proved the existence of the transition and 
calculated the correlator of the densities at coinciding 
points. In Ref. 3 the behavior of a certain two-point correla- 
tion function at noncoinciding points was investigated. Fin- 
ally, in Ref. 4 the density-density correlator at noncoincid- 

nal ensembles). The asymptotic form of the density-density 
correlator in the limit of low frequencies and large distances 
is calculated. It is shown that in this limit the form of the 
density-density correlator, both in the metallic and in the 
dielectric region, is the same for all three types of symmetry. 
Although the critical points of the transition are different, 
the critical behavior of the diffusion coefficients in the metal- 
lic region and of the localization lengths in the dielectric 
region is the same. In all three cases the diffusion coefficient 
decreases exponentially as the transition point is ap- 
proached, and the localization length is inversely propor- 
tional to the distance from the transition point. 

ing points was calculated directly. The asymptotic form of 
this correlation function in the limit of large distances and 2. THE BASIC EQUATIONS 

low frequencies has made it possible to calculate the diffu- The kinetics of a system of disordered granules is de- 
sion coefficient in the metallic region and the localization scribed by the supersymmetric c-model on a lattice. The ef- 
length and permittivity in the dielectric region. The princi- fective Hamiltonian in this model is written in the form 5 '1  

pal assertion of Ref. 4 was the conclusion that near the tran- F = - ~ ~ [ C  J z j  STI. QiQ, - 
i ( o f  i6) 

sition point the diffusion coefficient falls off exponentially. 
4 

n v x  vis'I'rhQi], 
(The assertion made in Ref. 1 that there exists a minimum i,.i 

metallic conductivity was the result of an insufficiently accu- ( 1 )  
rate investigation of the integral equation.) In the dielectric 
region the localization length increases as the reciprocal of 
the distance from the transition point.334 

However, in Refs. 1-4, only a model with broken time- 
reversal symmetry was investigated. Physically, this case 
corresponds to the presence of magnetic fields or magnetic 
impurities in the granules. Disordered systems that are not 
invariant under time reversal correspond to the case of an 
ensemble of unitary mat rice^,^ which turns out to be math- 
ematically the simplest case. This was the reason why sys- 
tems with broken time-reversal symmetry were investigated 
in Ref. 4. Other possibilities are realized in systems that are 
invariant under time reversal and possess central symmetry 
(the orthogonal ensemble), and in systems that are invariant 
under time reversal but do  not possess central symmetry 
(the symplectic ensemble). The symplectic ensemble corre- 
sponds to the situation when there is spin-orbit scattering in 
the system but magnetic fields and magnetic impurities are 
absent. 

In the present paper we investigate the Anderson metal- 
dielectric transition on a Bethe lattice for systems that are 
invariant under time reversal ( the symplectic and orthogo- 

where JiJ = T f J  v2 V, V , ,  and Ti; is the granule-to-granule 
hopping amplitude. The first term in ( 1 ) describes the inter- 
action of the granules, and the second term is the effective 
Lagrangian of the isolated granules. The letters w and v de- 
note the frequency and density of the levels in the granules, 

is the volume of the granules, and STr is the supertrace. 
The supermatrices Q and A in ( 1 ) have dimensions 8 X 8 and 
are equal to 

A .. 
Q=UQ.O, Q. = ( case - lain!) 

\ -i sin 0 -cos 01 ' 

The matrix 6 has the structure 

A bar above a matrix denotes the ckarge conjugate. The ex- 
plicit form of the matrices u, u, and 0 is written out in Ref. 5. 
We note only the following important properties of the ma- 
trices: 
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The form of the matrices u, v, O, ,  , and O,, and the coefficient 
yo depend on the symmetry of the physical interactions in 
the system. If in the system there is no interaction of a spin 
and particle with external fields (there are no magnetic or 
spin-orbit impurities), the particles with different spins can 
be considered independently. In this case, yo = 1. If there 
are magnetic or spin-orbit impurities, then yo = 2. 

The calculation of the density correlator K ( r l ,  r,) .in 
the model described reduces to the calculation of the follow- 
ing correlator: 

K(r1, h) =-2n2v2yu (Q:: ) .,(Q::) ., erp (-F[Q]) dQi, 
i 

( 3 )  

where F[Q]  is determined by the expression ( 1 ). The super- 
scripts in (3 )  label the blocks identified explicitly in (2 ) ,  and 
the subscripts label the elements in these blocks. 

Below we shall calculate the density-density correlator 
( 3 )  on a Bethe lattice (Cayley tree). As in Refs. 1 and 4, we 
consider the case of arbitrary branching number m. We as- 
sume that only nearest neighbors interact, and that for these 
all the J,, are the same and equal to J. 

The structure of the Bethe lattice makes it possible to 
reduce the calculation of the integral (3 )  for arbitrary r ,  and 
r, to the calculation of a certain integral of the solution of 
certain integral equations. These equations were obtained in 
Ref. 4. We shall write out these equations and the formula 
for the density--density correlator in the general form appli- 
cable for any type of symmetry: 

Z(Q) =Y" ' - i (Q)exp( ' /4~ STr .\Q). ( 4 )  

The supermatrix function P(r ,  Q) satisfies the linear equa- 
tion 

p ( r ,  y )  - [ m+S (r- 1) ] j e rp  ( ' / ,a STr QQ1) Z (Qr) 

x P (r-l, Q') dQ' 

=6 (r) Y (Q) Q2'. (5)  

Finally, for the function Y we have the nonlinear integral 
equation 

(Q) = eri, ( ' /&a ST,  QQ1+'/,p STY AQ') Yt"(Q1) dQr. 

For B =  0, Eq. ( 6 )  has the solution 

'1' ( Q )  =I. 

This statement is proved by a change of variables in the inte- 
gral 

S ~ X P  ('/,a  ST^ QQ') ~ Q ' = S  erp ('/,a STr i\Q) dQ, 

where Q has the same structure as Q. But the latter integral is 
equal to unity,5 and this proves (6a).  The solution (6a) cor- 

responds to the dielectric region. In the metallic region a 
nontrivial solution, which will be discussed later, appears. 

In the expressions (4 )  and (5) ,  r is the distance between 
sites r, and r,, and N ( r )  = m r  ' ( m  + 1) ( r  > 1) is the 
number of sites at a distance r from a given site. We assume 
that N(0)  = 1 and that P ( r ,  Q)  ,= 0 for r < 0. The param- 
eters a and f i  in (4)-(6) are equal to 

The function K( r ,  , r, ) always decreases exponentially 
with distance, because of the exponential increase of the 
number of sites situated at a particular distance r. The factor 
N ( r )  in ( 4 )  has been included precisely to compensate for 
this decrease. 

For the calculation of the correlator K ( r )  (4),  in a pre- 
vious paper the author4 proposed the following scheme. We 
assumed that the solution P of Eq. ( 5 )  has the same struc- 
ture as the matrix Q2': 

P=-ivPo (Q,) ii, Po = (PO'' 
0 Po22 

Substituting P (8 )  into (5 )  and integrating over u and v, we 
were able to reduce Eq. ( 5 )  to a system of equations for the 
components of Po. After this, we expanded in eigenfunctions 
of the integral operator appearing in the left-hand side of 
(5 ) .  

However, this scheme is rather cumbersome. It is much 
simpler to perform the expansion of the solution P i n  eigen- 
functions of the integral operator appearing in the left-hand 
side of ( 5 )  before the integration over u and v. Of course, 
these two procedures are equivalent to each other. Making 
the replacement 

P (r, Q) =-iZ-'I2 (Q) P (r ,  Q) , ( 9 )  

we bring Eq. (5 )  to the form 

where 

(Q) -- 9 exp ('/,a STr QQ') [Z(Q) Z(Q1) (Q') dQ1 

for an arbitrary function p .  
W5shall consider the eigenfunctions pE (Q) of the op- 

erator M. These functions satisfy the equation 

We shall seek the functions p, in the class S, of ( 4 x 4 )  
supermatrices p satisfying the condition 

In particular, the supermatrix iQ21 satisfies the conditions 
(13).  

To expand the solution p i n  the eigenfunctions pE it is 
necessary to introduce the scalar product in the space of the 
functions p .  We assume, by definition, that the scalar prod- 
uct of two matrices p, (Q)  and p, (Q)  from the class S4 is 
equal to 

(cpi, 92) - j STr[kvii(Q)rp,(Q) IdQ. ( 14) 
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Using the definition ( 14) and the property ( 13), we can 
prove that 

In addition, the scalar product ( 14) is real: 

h 

It is easy to see that the operator M ( 11 ) is self-adjoint: 

For realp, cozesponding to imaginary physical frequencies, 
the operator M is real. In the usuaiway one can prove that 
eigenfunctions p, of the operator M that correspond to dif- 
ferent eigenvalues E are orthogonal to each other. The eigen- 
values E for realp are real. The normalization condition for 
the eigenfunctions is written in the form 

Expanding the solution F( r ,  Q) in the eigenfunctions pE 

E 

substituting this expansion into (9)-( 1 1 ), and using (4) ,  we 
obtain 

m+ I 
K ( r )  = 2n2v270[ - - - 6 )  B E )  (17) 

m m 
E 

where 

To calculate the density-density correlator at coincid- 
ing points we can make use of the completeness property of 
the eigenfunctions p E ( Q ) .  Performing the summation in 
(17) fo r r=O,  weobtain 

This expression was written out in Ref. 1. 
A 

Any eigenfunction p, ,of the operator M ( 1 1 ) can be 
represented in the form 

(n  and m are integers). This follows from the invariance of 
the kernel of M under the simultaneous replacements 

where U, has the same structure as U (2) .  In the integrals 
for BE in (17a) a contribution is made only by eigenfunc- 
tions pE of the form (19) with n = m = 1. 

We note that all the formulas obtained have a general 
character and are correct for all three types of symmetry. 
The subsequent calculations must be performed separately 
for each type of symmetry. The study of Eqs. ( 6 )  and ( 11) 
for arbitrary frequencies is very difficult. In the following 
sections we shall study only the most interesting, low-fre- 
quency limit. 

3. THE DIELECTRIC REGION 

The symplectic ensemble 

First we shall consider the region of sufficiently small a, 
in which, as will be seen from the following, the system is a 
dielectric. For the calculation of the correlator K ( r )  from 
formula ( 17) it is necessary first of all to find the solutions of 
Eq. (6) .  As in Refs. 1,4, 6, and 7, we assume that the solu- 
tion \y depends only on 6 (of course, this is true not only for 
the dielectric region). This form of the solution makes it 
possible to perform the integration over u' and u' in (6 )  im- 
mediately. The integration over u' and u' is not complicated 
for the unitary model, and was carried out in Ref. 1. How- 
ever, in the cases of the symplectic and the orthogonal en- 
semble this integration leads to immensely cumbersome ex- 
pressions. Nevertheless, in the region of low frequencies, as 
in the unitary model, Eq. (6 )  and all the other formulas 
needed for the calculation of the density-density correlator 
become significantly simpler. 

First we perform the calculation for the symplectic en- 
semble. In this case the matrices O , ,  and 8,, appearing in 
( 2 )  have the form 

The integration over u' and u' in (6 )  is implemented as fol- 
lows. By the change of variables U '-. UU' we can get rid of 
the matrices U. After this it is necessary to write in explicit 
form the expression for S: 

This expression is a polynomial in Grassmann variables. 
Next we expand exp S in the Grassmann variables (this 
again gives a polynomial) and integrate over these variables. 
After this we can integrate over F and a, which, together 
with the Grassmann elements, specify the matrices u and u 
(Ref. 5) .  All the expressions are very cumbersome. How- 
ever, in the limit of low frequencies the large 
8- 8 '-In( 1/P) become important. The same situation also 
obtained in the study of the unitary ensemble. This consider- 
ably simplifies the resulting expressions. Assuming that the 
solution \V depends only on 8 and integrating over all the 
remaining variables, we bring Eq. (6 )  to the form 

cs 

where 

shx 
~ ( a ) =  j 

0 

Equation (22) is valid for large 8 , 8  '. In the derivation ofthis 
equation we used the formulas obtained in Ref. 5 for the 
Jacobian that arises in the transformation to the variables u, 
u, 8. 
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By direct integration we can verify that 

It follows from the equality (23) that for 0> 1 andp  = 0 Eq. 
(22) has the solution 

This solution agrees with the general form of the solution 
(6a), which is applicable not only for large 0. However, this 
solution is realized only in the dielectrie region a <a , .  Only 
in this region does the solution of Eq. (22) [which for 0 = 0 
coincides with (24) ] ensure the analyticity of the physical 
quantities in the upper half-plane of the frequencies. 

For the calculation of the physical quantities for small 
but nonzerofl we make the change of variables t = 8 + In P. 
The important contribution to the physical quantities is 
made by the region t- 1. Correspondingly, Eq. (24) can be 
rewritten in the form 

m 

t-t' 
( t )  = j ~ ( t - t / ) e a ~ ( - )  ~ m ( t ' ) e x p ( -  g) dt'. 

- co 2 

Using the equality (23), we can determine the asymptotic 
form as t- - C O :  

y ( t i ,  t - + - - J .  (25a) 

As t- co the function Y ( t )  tends to zero. The function Y has 
exactly the same asymptotic forms in the unitary-ensemble 
model.' In the interval between these asymptotes Y ( t )  de- 
creases monotonically. This solution is possible for a < a c .  

The calculation of the critical point a, is performed in 
exactly the same way as in the unitary-ensemble model. ' The 
procedure for finding this point consists in the linearization 
of Eq. (25) about the value Y = 1 and the investigation of 
the Green function of the linearized equation. Performing 
calculations analogous to those in Ref. 1, we obtain the equa- 
tion for the critical point: l = mT, (a , ) ,  with 

ieS ( a )  
[ K i + i , ( a )  - KI-iz ( a )  I 

+sh u [Kt++,  (a) + Kt-i. (a) I 

where K ,  (a) is the Macdonald function. 
For a < a c  the Green function has no singularities in 

the region R e p >  0. This corresponds to the dielectric re- 
gion. For a > a,  the Green function has singularities for 
R e p  > 0. In this region of values of a Eq. (24) also has a 
nontrivial solution for 0 = 0, and this leads to the appear- 
ance of diffusion. 

In the limiting cases of large m and values of m close to 
unity, the solution of Eq. (26) can be obtained analytically. 
For large m the critical a, is small, while for m -+ 1 it is large. 
Using the asymptotic forms of the function K, ( a ) ,  we ob- 
tain 

1  3 '" 2 
a, = , m -  1 ;  m )  ~ n - =  I ,  r n ~  i .  

8 (m- 1) a, 

We note that in the formal limit m - 1 the critical values a, 
for the unitary model and the symplectic model are large and 
coincide with each other. In the limit a9 1 Eqs. (22) and 
(25) become differential equations and coincide with the 
corresponding equations of the unitary-ensemble model, 
which are written out in Ref. 1. This property was noted in 
the problem of wires in Refs. 5 and 7, which corresponds to 
the case m = 1. A comparison of the formulas (27) with the 
corresponding formulas for the unitary model shows that 
the inequality a,, <a ,  is fulfilled. [The equation for the 
critical point a,, in Ref. 1 differs from Eq. (27) in that it 
does not contain the numerical factor 3/4 in the left-hand 
side. ] Comparison of the functions To (a) for the symplectic 
ensemble and the unitary ensemble makes it possible to con- 
clude that for all m the inequality 

is valid. We recall that we must distinguish the unitary mod- 
els with a magnetic field [the model ( 1 la)  ] and with mag- 
netic impurities [the model ( 1 1 b) ]. The quantities a in 
these models, for the same densities of states and the same 
hopping amplitudes, differ by a factor of 2 (Ref. 5).  

We turn now to the calculation of the correlation func- 
tions. Having obtained the solution \ V ( t )  of Eq. (25), we can 
immediately use the expression (18) to write the density- 
density correlator at coinciding points. Integrating over u 
and v in ( 18) and changing to the variable t in place of 0 we 
can verify that the correlator K(0)  for small 0 is inversely 
proportional to 0 .  Using (7)  and going over to the time 
representation E(0,  t) ,  we obtain 

The quantity p ,  (0)  is proportional to the probability that 
the particle will be found after an infinite time at the point 

from which it began its motion. This quantity, as in the uni- 
tary model, is finite for all a <a , ,  and tends to a finite, non- 
zero limit as the transition point a, is approached. As the 
critical value is passed, the quantity p co (0)  drops discontin- 
uously to zero. 

To calculate the correlation function K ( r )  at large dis- 
tances we make use of the expansion ( 17). In the integrals 
for BE ( 17a) there are functions qE (Q)  of the form ( 19) 
with n = m = 1. In Eq. ( 12) we go over to the limit of large 
8-ln( l /p) .  By performing the integration in ( 12) and se- 
parating out the terms of leading order in 1/p, we bring the 
formulas ( 12), ( 17a) to the form 

The functions @, ( t )  are eigenfunctions of a real symmetric 
operator 2: 

rn 

J 9 ( t ,  t f ) q E ( t ' )  d t f = ~ @ . ( t ) ,  (31) 
- m  

where%?(t,t ' )  = L( t  - t ') [Z ( t )Z ( t  ' ) I  1'2,andthefunction 
L ( t )  is defined in (24). 

The scheme of the subsequent calculation in ( 17), (30), 
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and ( 3  1 ) is completely analogous to that presented in Refs. 3 
and 4. First of all it is proved that the spectrum of the eigen- 
functions @,(t) (31) is continuous. Next, there exists a 
maximum eigenvalue Emax = To ( a ) .  At large distances the 
principal contribution is made by states with eigenvalues 
close to Em,,. As a result, as in Refs. 3 and 4, we obtain 

where 
rn 

in which V(t) = lim [@, ( t ) /&] ,  and V(t) tends to a finite 
E-0 

limit as a - a, .  
Going over to the time representation k by means of 

(7 )  and calculating the integral in (32), we obtain 

The formula ( 33 ) is applicable for r $1, and the coefficients 
a and b remain finite as the transition point a, is approached. 
The only quantity with singular behavior is the localization 
length I. Comparing (32) with (26), we obtain the asympto- 
tic behavior of I for a-a,: 

~=const/(a,-a). (34) 

The formulas (32)-(34) coincide fully with the corre- 
sponding formulas for the unitary ensemble. Of course, the 
dependence of the coefficients a and b and of the localization 
length on a is different for these two models (only the depen- 
dence of I on a, - a in the critical region a, - a & a ,  is the 
same). Despite the power dependence (34) of I on a, - a ,  
the formula (33) does not agree with scaling theory, since 
the pre-exponential factor in (33) tends to a constant as 
a - a , .  For agreement with ordinary scaling we need an ex- 
tra factor I "' in the pre-exponential factor in (33).  

The orthogonal ensemble 

The investigation of localization in the orthogonal-en- 
semble model is the most difficult in the technical aspect. 
The complexity of the calculations greatly exceeds the com- 
plexity arising in the investigation of the symplectic ensem- 
ble, although, at first sight, these models are very similar. In 
the orthogonal model the matrices e l ,  and 0,, appearing in 
(2a) have the form5 

As in the preceding section, we reduce the integration over 
U'in (6 )  to theintegration of exp S,  whereSis written out in 
(21 ). In the dielectric region in the limit of smallfl, as in the 
preceding models, large values of 8 ,  and 8, are important. 
In this case T ,  = 8,  + 8, -In( 1//3). At the same time, the 

important values of r2 = 6 ,  - 6, are of order unity. Despite 
the great simplifications that arise for small fl, the necessary 
calculations are extremely lengthy. Assuming that VT does 
not depend on the elements of the matrices u and u, we bring 
Eq. (6 )  to the form 

~ e x p { a n n ' - ' / ~ a ( l + x ~ )  [ch(.tl-tlf) + c h ( ~ ~ - - ~ ~ ' )  I )  
x(a4 (a-c) (a'-c') [ch (T,-ti') (ch (tz-zz') 4- nn') (1+x2) 

-t nn' (ch ( t2-~z ' )  + nn') + x2 (ch (~~-7;)  nn'+ I )  1 
-t2a3[ (a-c) (a'-c') (ch ( ~ ~ - 7 ~ ' )  (1+x2/2) 

+ch(zl-zl') (l+xz) -k2nn1) 

+ 'I, (SS' cos p-bb') (nnf+ ch (ti--ti') (If x2) ) 

+ '/2x2 (nn' ch (T~-T;) 

+I-ca-cfa'+2 (a-c) b' sh (T~-T~' )  ) I 
+ 2az[ch (T,-r,') ( l+x2) 

+nnf+'12(ss' cos p-bb') + (a-c) (a'-c') -I- x2 ch(zz-t,') 1) 

(36) 
where 

The vectors n and n' have components n = (sin 0, cos B ) ,  
n = (sin 8  'cos p, cos 8  ' )  . The integration over 7; extends 
from 0 to CC, while that over 7; extends from - to a. 

Equation (36) is very complicated, and we have not 
succeeded in investigating it for arbitrary a. However, this 
equation becomes considerably simpler in the limiting cases 
a 3 1  and a <  1. I t  makes sense to describe the dielectric re- 
gion in the limit a > 1 if we consider the formal limit m - 1. 
For a > 1 all the integrals in (36) become Gaussian, and Eq. 
(36) itself becomes a differential equation. As in Refs. 5 and 
7, we assume that VT depends on 7 , .  Changing to the variable 
z = 1/2 exp T ,  we obtain for a > 1  and m - 1 < 1 the equa- 
tion 

which coincides in form with the corresponding equation for 
the unitary and symplectic ensembles. The only difference is 
that the coefficient of the first term in (37) is twice as large, 
and the coefficient of the second term is half as large, as the 
corresponding coefficients in the equation for the unitary 
and symplectic ensembles. By means of Eq. (37) we immedi- 
ately determine the transition point a,: 

The fact that Eq. (37) coincides in form with the corre- 
sponding equation for the unitary and symplectic ensembles 
makes it possible to apply all the formulas obtained for these 
models to the orthogonal ensemble as well. 

In the limit a < 1 the solution VT also depends only on r ,  . 
This follows from the fact that in the presently considered 
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region T2, T; - 1 ,  T,, T; ) 1 all the variables T, drop out. Per- 
forming the integration in (36) over T;, x ,  p, and O ' ,  we 
obtain in the leading approximation in a 

m 

T -Ti 
(4) = j L(G-T() exp (4) y m  (rll) 

where 

For the function L (T) in the leading approximation in a 
the equality 

is fulfilled. From (39a), as usual, it follows that for T,  $ 1 ,  
for which Eq. (39) is valid, we have for fl = 0 the solution 
\V = 1. This is in agreement with the general form (6a). 

Making in (39) the change of variables t = T, 

+ ln(fl/2), we arrive at Eq. (25), in which, as L ( t ) ,  we 
must take the expression (39). The subsequent scheme of 
the calculations is entirely analogous to that followed in the 
preceding section. Introducing the function T,: 

x 

r. = 1 L (r) cos (er) d r ,  
- x 

where L is defined in (39), we obtain Eq. (26) for the transi- 
tion point. Expanding (26), (40), and (39) in explicit form, 
we obtain 

w 

where y is a number of order unity. 
Comparing (38) and (41) with the corresponding for- 

mulas for the unitary ensemble,' we can see that in the pres- 
ently considered limits a $ 1 and a 4 1 the inequality 

aco>acu (42) 

is fulfilled. It is entirely natural to assume that the inequality 
(42) is also valid for a - 1 .  The case a - 1 has not yet been 
subjected to analytical investigation. However, it is hard to 
see why we should expect a qualitative difference between 
the results for a - 1 and those for a 1 and a $1. 

Using the formulas ( 17 ) or ( 17a) and the lack of depen- 
dence of \V on T,, we again arrive at the expressions (29)- 
(31). Correspondingly, the final formulas (32)-(34) are 
valid for the orthogonal ensemble. Only the dependence of l 
on a far from the transition, the critical value a,, and the 
numerical coefficients a and b turn out to be different in 
(33) .  The quantity p _  (0)  (29) depends on the model, but 
remains nonzero as the transition point is approached. 

4.THE METALLIC REGION 

We turn to the calculation of the density-density corre- 
lation function K(r )  in the metallic region. In Ref. 4 it was 
shown that this correlator in the region of low frequencies 
and large distances in the unitary model always has the form 

K ( r )  = - I 

cm cm 
where c is a coefficient that depends on a, and fl is related to 
the physical frequency by the formula (7) .  The coefficient 

cm 1 D=-- 
rn-l nvV 

was identified with the diffusion coefficient. The expression 
(43) corresponds to classical diffusion on a Bethe lattice, the 
coefficient D being proportional to the frequency of hopping 
to any of the neighboring sites per unit time.4 In Ref. 1 the 
form of the correlation function K(r )  (43) was obtained for 
all three types of symmetry in the limit a $1. The derivation 
given in Ref. 4 of formula (43) for the unitary ensemble was 
based on the use of the equation obtained from Eq. ( 10) by 
integration over u and u. However, even for the unitary en- 
semble this derivation required very cumbersome calcula- 
tions. For the orthogonal ensemble and symplectic ensemble 
this procedure does not seem possible at all. Below we pro- 
pose a simpler scheme of calculations. 

It turns out that the formula (43) is a consequence of 
the invariance of the Lagrangian ( 1 ) for w = 0 under the 
replacement 

where Vis an arbitrary supermatrix satisfying the condition 

Naturally, with regard to the structure of the matrix V we 
should also impose certain conditions, such that the super- 
matrix V Q ~  has the same structure as Q. These conditions 
can be written in the form5 

The invariance (44) makes it possible to obtain an explicit 
expression for the diffusion coefficient D in terms of the solu- 
tion (taken for fl = 0 )  of Eq. (6).  Formally, the metallic 
region differs from the dielectric region in that, even for 
8-0, the solution \V, of Eq. (6)  differs from unity and var- 
ies from 1 to 0 upon change of the parameters of the matrix 
tl,, in (2)  and (2a) from 0 to cc . The solution that goes over 
to \V, = 1 at fl = 0 must be discarded, since it does not give 
analyticity of the physical quantities in the upper half-plane 
of the frequencies. 

To derive (43) we note that if \V, (Q) is a certain solu- 
tion of Eq. (6)  f&fl = 0, then \V ,( V Q ~ )  is also a solution of 
this equation for any V satisfying the conditions (44a) and 
(44b). This fact is a consequence of (44). 

The solution \V, (Q) in fact depends only on Q, (2).  
This implies that \V, (Q) can be represented in the form 

where F is  a function of Nvariables, and thef, are functions 
of matrices. The number N in (45) depends on the dimen- 
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sions of the matrix Q. We represent V (44), (44a), (44b) in 
the form 

V = ( 1  ( 1 )  - H = ( O  h ,  
K O '  

We shall make use of the fact that Yo ( V Q ~ )  is a solution of 
Eq. (6)  withp = 0  for any H, including small H. Expanding 
Y( V Q ~ )  in (6) in H, equating the terms linear in H, and 
using the representations (2) '  (2a), we obtain 

where Fl  denotes the derivative with respect to the ith argu- 
ment. In the left-hand side F I depends on the elements of the 
matrix 8, and in the~ight-hand side F l depends on the ele- 
ments of the matrix 6 '. 

We introduce the function QB (Q): 

dY me (Q)  = v ,- ZZ'h (Q )  - v 
d 0 

The functions Y(Q) and Z(Q)  (4)  in (48) are taken for 
arbitrary 0. In the unitary model, 

in the orthogonal model, 

and in the symplectic model, 

6 Y  - dY aY -- -- aY dY + -=- 0  1 
d e l i  ae, ae, ae,, ae ' 

Cal~ulating~the derivatives with respect to the elements of 
the matrix 8 in (48) and comparing with (47)' we can re- 
write Eq. (47) in the form 

where 

We turn now to the calculation of the correlator K ( r ) ,  
using the expression ( 17). In th%metallic region the eigen- 
value spectrum of the operator M ( 11 ) is discrete, and, at 
least, the difference between the zeroth and the first value 
does not tend to zero at p = 0. This is a consequence of the 
fact that the solution Y of Eq. (6)  decreases to zero as 6 + co 

in the symplectic model and as 7, + co in the orthogonal 
model. In the unitary model, Y decreases to zero as 8, + C O .  

This case was discussed in more detail in Refs. 3 and 4. The 

decxease of the solution Y leads to the resuit that the kernel 
of M that arises after the integration of M over U differs 
substantially from zercin a finite range of variation of the 
elements of the matrix 8. From thiafollows the discreteness 
of the eigenvalues of the operator M ( 1 1 ) . 

At large distances the main contribution in the sum in 
( 17) is made by just the state with the largest eigenvalue Eo 
( p )  . For p =  0 the largest eigenvalue and the eigenfunction 
p, (Q) corresponding to it can be found exactly. Comparing 
Eqs. (12) and (11) with the identity (49), we obtain 

where c, is a normalization factor, equal to 

To calculate the largest eigenvalue E, (0 )  for finite values of 
fl we take the scalar product of both sides of Eq. ( 12) with 
the function Qi, (Q) (48). We have in mind the scalar prod- 
uct defined by the formula ( 14). The result of the multiplica- 
tion is written in the form 

The function Q p  in ( 5  1 ) cp ta ins  derivatives with respect to 
h 

8 (48). Integrating over 0 by parts in the left-hand side of 
(51), we bring ( 5  1 ) to the form 

E ( p )  (me, a.) = - P STrl kQi2kqE (Q') 12'" (Q') Yr" ( Q )  

- exp( $  ST^ A Q )  Ym (Q) m 

The second2erm in the right-hand side of (52) contains the 
matrix a /dB, which is in fact defined in (48a). I t  is assumed 
that the opergor of derivatives with respect to the elements 
of th: matrix 8 acts on all the factors standing to the right of 
a /aOh(including the Jacobian that arises in the integration 
over 8, u, and %). Comparing Eq. (49) with the derivative 
with respect to 9 of both sides of Eq. (6)  taken f o r 0  = 0, we 
obtain 

a 
u , n exp (a  ST^ QQ') yom (Q' )  d ~ '  

a 0 4 

However, the equality (53) is valid not only for the solution 
Y, of Eq. (6 ) .  It is fulfilled for all functions Y,, that depend 
only on Q, (2 ) .  This statement can be verified by substitut- 
ing an arbitrary function Y, in place of Yo in the left-hand 
side of Eq. (6) taken for P = 0. Repeating the transforma- 
tions (45)-(4!9), in the left-hand2ide of (49) we obtain the 
matrix aq,/d8 in place of a\V,/a6. After this we can derive 
(53), but now Yo in (53) is not necessarily a solution of Eq. 
(6) .  Varying with respect to Y, in (53), substituting the 
result into (52), and using (6), (48) for p = 0, we obtain 
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The equation (54), which is valid for all P, is simplified 
greatly for values ofB that are small in comparison with the 
difference between the eigenvalues. Retaining only terms 
linear in B, and using (50) and (50a), we find 

ic 'p 
m E ( p ) =  1  --f- a y ,  - .f  ST^( kQnkv - u )  'Y? ( Q )  dQ. 

m  a e 

The subsequent calculations are rather simple. First it is nec- 
essary to integrate over u and v in (55).  The resulting expre2- 
sion must be integrated over the elements of the matrix 8. 
The integrand then turns out to be En exact divergence in the 
space of the elements ofthe matrix 8and the integral is trans- 
formed to a surface integral over an infinitesimal surface 
about the coordinate origin 8 = 8, = 8, = 0. At this point 
\Vo = 1, and this makes it possible to calculate the integral in 
explicit form. For the unitary model more-detailed calcula- 
tions are given in Ref. 4. 

Calculating next the integrals in ( 17a) and (50a) over u 
and u, retaining in (17), at large distances, only the largest 
eigenvalue, and going over to the physical frequencies (7) ,  
we obtain 

4nv exp[ ; ( ~ + i 6 )  r ] 
K ( r )  = -- 

V ( m - l ) D  m - l ) D  

The diffusion coefficient D in (56) is equal to 

The formulas (56) and (56a) are applicable both for the 
orthogonal and for the symplectic ensemble. The limits of 
integration over 8, e l ,  and 8, are indicated in (20) and (35). 
The quantity j i s  proportional to the Jacobians J (Ref. 5 )  : 

The corresponding expression for the diffusion coeffi- 
cient of the unitary model is written out in Ref. 4. It differs 
from (56a) by the absence of the third term in the integrand. 
Naturally, we have taken the Jacobian of the unitary model 
here. 

In the derivation of (56) and (56a) we used only the 
assumptions that 0 is small and that r is large. For the calcu- 
lation of the coefficient D for arbitrary a it is necessary to use 
numerical methods. An analytical investigation can be car- 
ried out only in the limits a )  1 and a - a ,  < 1. In the limit 
a s 1  the coefficient c in (43) and the diffusion coefficient D 
(43a) are the same for all three types of symmetry and are 
equal to1 

It is possible to arrive at the expressions (57) both by means 
of the direct calculation proposed in Ref. 1 and by using 
(56). 

As in the localized region, large values of the elements 

of the matrix 8,, in Q (2 ) ,  (2a) become important near the 
transition point . This makes it possible to make use of the 
equations (24), (36), and (39) obtained in this limit, in 
which we must set P = 0. A scheme for finding the solution 
\V for the unitary ensemble was developed in Refs. 1,3, and 4. 
Similar arguments can be carried through for the symplectic 
and orthogonal ensembles as well. As a result, for the sym- 
plectic and orthogonal ensembles we obtain 

q=n [b-'(a,)dr (a,) /aa] Ih, (58) 

wherep is a numerical factor. The quantity b ( a )  is defined in 
(32). The formula (58) coincides with the corresponding 
formula of Ref. 4, obtained for the unitary ensemble. Only 
the coefficientsp and q and the critical value a ,  itself depend 
on the model under consideration. 

5. CONCLUSION 

The investigation carried out above, and also the results 
of Refs. 1, 3, and 4, show that the kinetics of disordered 
metals on a Bethe lattice is the same for all physical types of 
symmetry. Neither a magnetic field nor magnetic or spin- 
orbit impurities alter the critical behavior near the metal- 
dielectric transition point. In all cases the density-density 
correlator has the form (33) in the localized region and the 
form (56) in the conducting region. The dependence of the 
localization length I on a in the critical region a ,  - a <a, is 
described by the formula (34), and the dependence of the 
diffusion coefficient for a - a ,  <a, is described by the for- 
mula (58).  The form of the density-density correlator (56) 
is a consequence of the invariance of the Lagrangian ( 1 ) for 
w = 0 under the rotation (44). 

The dependence of the localization length 1 (34) on the 
distance from the transition point coincides with the corre- 
sponding dependence obtained in the Anderson model on a 
Bethe lattice in Ref. 8. The sharp dependence (58) of the 
diffusion coefficient on a - a ,  agrees with the sharp depen- 
dence obtained in Ref. 9, although it is difficult to carry out a 
detailed comparison because of the small number of points 
calculated near the transition in Ref. 9. The formulas ob- 
tained for the localized region for m = 1 agree completely 
with the corresponding formulas obtained in one-dimen- 
sional models differing from those considered above. lo The 
only discrepancy is a discrepancy with the result of Ref. 11, 
in which a linear decrease of the diffusion coefficient near the 
transition point was obtained. In Ref. 4 a possible reason for 
this discrepancy was discussed in detail. 

The results obtained above have made it possible to de- 
termine the direction of the shift of the transition point a ,  
under different physical perturbations. For example, an ap- 
plied magnetic field, according to (42), expands the metallic 
region. In the absence of a magnetic field the critical value a,  
for a system with spin-orbit impurities is higher than a ,  in a 
system with magnetic impurities [see (28) 1. It is necessary 
to recall that a magnetic field and magnetic impurities in- 
duce different shifts of the transition point because of the 
difference of the coefficient yo in ( 1 ). Combining the formu- 
las (28) and (42) with the formula (7 ) ,  we can consider the 
remaining cases. 
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