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Strong electron-phonon interaction leads to formation of small bipolarons in crystals. It is shown 
that their properties, at all densities, are identical with the properties of a charged heavy 
interacting Bose gas. The lower (thermodynamic) and upper (critical) magnetic fields of a 
charged Bose gas with a short-range interaction potential between the particles are obtained. 

INTRODUCTION 

The electrons responsible for the superconductivity of 
superconducting d and f metals, their alloys, and crystalline 
compounds interact strongly as a rule with the lattice vibra- 
tions. Estimates of the corresponding coupling constant A 
that determines the effective interelectron attraction, ob- 
tained from tunneling and other experiments and from ap- 
proximate equations for Tc and the tunneling characteris- 
tics, based on the Eliashberg equations,' yield values A - 1 
and in a number of cases even considerably higher ones 
(A-4 to 5)  (see, e.g., Ref. 2).  One physical cause of such a 
strong electron-phonon interaction is the high density of 
states N(0) in the d and f bands, since they are narrow 
(pseudopotential calculations yield for the width of the d or f 
band 9 5 1 eV, so that N(0) > 1 states/eV.atom). Another 
cause of the large Frohlich-interaction constant (g2  > 1). 
The latter is due to the softness of the phonon spectrum in 
the case of the interaction with acoustic oscillations, and the 
presence in most considered substances of an ion-coupling 
admixture, i.e., of optical polarization modes that interact 
strongly with the electron subsystem. As a result, 

wherez is the coordination number of the lattice and o is the 
characteristic phonon frequency. 

It was repeatedly noted (see, e.g., Ref. 3) that the values 
of A calculated for these compounds do not agree with the 
experimental ones. The discrepancy amounts to several 
hundred percent at a band-calculation accuracy not worse 
than 20%. The d- andf-metal compounds have also many 
other anomalous properties that cannot be explained in the 
framework of the usual theory of electron-phonon interac- 
tions in metals. One of them is the anomalously high density 
of the electronic states, exceeding by a decade or more the 
calculated pseudopotential  value^.^ The heat-capacity coef- 
ficient can exceed by several ten times (A- 15 compounds) or 
by hundreds of times (systems with heavy photons) the cor- 
responding values for simple metals. 

In Refs. 4 (designated AR) one of us and Ranninger 
have indicated that a possible cause of the anomalies of the 
superconducting d- andf-metal compounds can be the po- 
laron effect, a sufficient condition for the onset of which is 
the inequality ( 1 ) . It is known5 that in semiconductors and 
insulators this inequality, which means that the polaron po- 
tential well due to local lattice deformation has a depth, 
compared with the electron kinetic energy, such that the 

width of the electron band decreases rapidly and exponen- 
tially to 

W=B exp (-g2). (2 )  

In a many-electron system, according to AR, the abrupt de- 
crease of the electron kinetic energy (2) ,  which was not ac- 
counted for by the usual theory of electron-phonon intera- 
tion in metals, leads in the presence of even a small attraction 
A to formation of real polaron pairs spatially localized on 
one or several neighboring lattice sites (small-radius bipo- 
larons) and are capable of tunneling through the lattice as a 
unit, with a gigantic but finite effective mass (m**  B m, ). 

It was established in Refs. 4 and 6 that formation of 
bipolarons should cause the transport and thermodynamic 
properties of the electron-phonon system to be similar, in the 
close-coupling limit, to the properties of a charged heavy 
Bose gas. 

We report here the first investigations of certain mag- 
netic properties of a charged Bose gas. In contrast to a 
charged Fermi system, in which the long-range Coulomb 
interaction can be correctly taken into account in the limit of 
high density or in the gas limit, allowance for the the interac- 
tion in a charged Bose gas is a much more complicated mat- 
ter in view of the possible formation of a Bose condensate. 
For a Coulomb Bose gas, nonetheless, in the high-density 
limit, the excitation spectrum was obtained,' and the dielec- 
tric properties were investigated in the absence8 and in the 
presence9 of a magnetic field. On the other hand, to our 
knowledge, the question of the critical magnetic field of an 
interacting charged Bose gas, the vortex structure, an the 
thermodynamic properties of such a gas in a magnetic field, 
which are strongly dependent on the interaction, has not 
been investigated. For example, as first noted by Scha- 
froth,'' an ideal charged Bose gas in a constant magnetic 
field cannot be condensed because of the one-dimensional 
character of particle motion on the lower Landau level. 

Interaction broadens the Landau levels, thereby elimi- 
nating the one-dimensional singularity of the density of 
states, and according to Ref. 6 an interacting charged Bose 
gas is capable of being condensed in fields lower than a cer- 
tain critical value Hc, . 

In the first section of the present paper, an electron- 
phonon system with a strong Frohlich interaction is re- 
duced, A > 1, to an interacting charged Bose gas whose con- 
densate is described by the known Ginzburg-Pitaevskii 
equation generalized to the case of charged particles.6 In the 
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second and succeeding sections we obtain the lower (H,,  ), 
and higher (H,, ) critical fields of a charged Bose gas. Ana- 
lytic expressions were obtained for the case of a short-range 
interaction potential. 

In real systems, where heavy bosons can be p rod~ced ,~  
light fermions exist in wide bands overlapping the d orfband 
and screen the heavy particles." As a result, the assumption 
of a short-range boson-interaction potential not only facili- 
tate the calculation greatly, but is also the most realistic one. 

1. HEAVY BOSONS IN A STRONGLY-COUPLED ELECTRON- 
PHONON SYSTEM 

We assume as a start, for a strongly-coupled electron- 
phonon system the AR bipolar Hamiltonian4: 

where m is the number of the crystal cell, t(m - m') is the 
bipolaron hopping integral, v(m - m') is the effective inter- 
action of the bipolarons, while b, and b f are the bipolaron 
annihilation and creation operators and satisfy the Pauli co- 
mutation relations 

The Hamiltonian (3) is obtained from the usual Hamil- 
tonian with a Frohlich electron-phonon interaction: 

for the case of a large coupling constant ( A  > 1 ) and A )  W 
( A  is the bipolaron binding energy.) 

In Eq. ( 5 ) ,  T,,, is the one-electron hopping integral 
(T,,. -g ), U,,, (q) = U(q)eIqm is the Fourier component 
of the electron-phonon interaction, o, is the phonon fre- 
quency, m = (m,a) ( a  is the spin index), Vz", is the elec- 
tron-electron interaction, and C,  and d, are respectively the 
electron and phonon operators. 

The transition from (5) to (3) is via two canonical 
transformations (see, e.g., Refs. 4 and 6). The result of the 
first transformation, which leads to a change of the equilibri- 
um positions of the sites as a result of the electron-phonon 
interaction, is a Hamiltonian that describes the motion and 
interaction of small-radius polarons. The second transfor- 
mation, by annihilating the bipolaron-destroying terms, 
leads directly to the Hamiltonian (3). Using the results of 
Ref. 6, we write down an expression that connects 
t(m - m') and v(m - m') with the band electron and 
phonon spectra and with the matrix elements of the electron- 
phonon and Coulomb interactions. 

The bipolaron hopping integral is defined as 
rn 

t (m-m') =2i J dt exp[- (GSiA) T ]  (om,, (T)IJ,,, (0) ), 6=+0. 
0 

(6)  

(om,, (T) omm, (0) >=T:,,,, exp (-2gZ) 

where Tis the temperature and 2 is given by 

g z = ~ o q - ~ c t h ( ~ )  I U ( ~ )  12[1-cos(q(m-m'))~  
a 

( f i  = c = k ,  = 1, where k ,  is the Boltzmann constant). 
The dynamic interaction of bipolarons located in differ- 

ent cells is defined by the expression 

Here B(m - m') is the sum of the direct Coulomb repulsion 
and of the attraction due to the lattice deformation 

The second term in (8)  is the effective repulsion due to ex- 
change of virtual polarons. The expression for 
(om,, (T)u,,, (0 ) )  differs from (7) in that the sign of the 
sum in the second exponential is reversed and that the square 
of the matrix element T,,,,. is replaced by the product 
T,,. T,., . We assume hereafter that the interaction (8)  cor- 
responds to repulsion. In addition, a direct calculation for 
actual models of the phonon spectrum'2 leads as a rule to 
v) t irrespective of the size of the Coulomb contribution. 

We transform in the Hamiltonian (3) from Pauli bipo- 
laron operators to Bose operators, in analogy with procedure 
used in exciton theoryI3: 

cc m 

where the operators a, and a,+ obey the Bose-Einstein sta- 
tistics: [a,,a,.+ ] = S ,,,. . We write down the first few coef- 
ficients o,, which are determined by substituting ( 10) in 
(4): 

We transform now to the operators of paticle creation and 
annihilaton on sites to field bipolaron and boson operators, 
which we define as follows: 

1 1 6 (r) = 7E N m  6 (r-m) b.. $ (r) = F Z  zn 8 (r-m) bm+, 

Here 
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Here Nis the number of unit cells, and S(r  - m) is the eigen- 
function of the operator i in the coordinate representation. 

The transformation (10) for the field operators takes 
the form 

,. 1 - * .. 
6 (r) =$ (r) - lp+ (r) q(r)  (r) 

Substituting in ( 3 )  the operators bT and b 2 expressed 
with the aid of (1 1) and (12) in terms $(r) and 4 + ( r ) ,  we 
obtain the Hamiltonian of the interacting boson field 

G= d3r d3r1 $+ (r) t (r-rt) (r) 

I + $+ (r)$+ (r);(r)t(r-rr) G(rr) 1 + iUp, 
(13) 

where 

h 

and H,, includes terms with powers of 4 higher than the 
fourth (unpaired interaction). In the momentum represen- 
tation we have 

where 

t ,  = t (la) esp (-ikm) , v k  = o (m) esp (-ikm) . 
m i 0  m-0 

We obtain thus a Bose gas with a complicated unpaired in- 
teraction of the particles with one another, consisting of a 
dynamic contribution u(r - r') and a kinetic one t ( r  - r'). 
The condition met in systems with a strong electron-phonon 
coupling is v&t, since t contains an additional small factor 
exp( - 2g2).I2 This allows us to retain only the dynamic 
part of the interaction. 

A quasi-classical allowance for the magnetic field is suf- 
ficient, since real fields are weak compared with atomic6: 
eHa2< 1, where a is the crystal-lattice period. 

If the variation of the vector potential is slow enough, 
the bipolaron hopping integral is renormalized as follows: * 

t (m,  m') =t(m-mr)esp[-2ieA(m) (m-m') 1. (15) 

The dynamic interaction v(m - m') in a magnetic field 
remains ~nchanged ,~  and for t ( r  - r') we obtain in lieu of 
( 14), on account of the renormalization ( 15), 

1 t (r-rr) = - -z t k + ~ ~ ~  exp [ ik(r-rl) 1. 
N k  

Expanding t ,  + ,,, near k = 0 and using the weak de- 
pendence of A on the coordinates, we have 

where 

According to AR (Ref. 4), spatially homogeneous state 
of the bipolaron Hamiltonian ( 3 )  is realized only in the limit 
of low atomic density of the particles: 

In the inverse case there appears a bipolaron charge-density 
wave. We confine ourselves here to an analysis of the mag- 
netic properties of a spatially homogeneous superconduct- 
ing phase.4 

To present the results in analytic form, we consider the 
region of small values of the gas parameter: 

where 

is the scattering length in the Born approximation and 
n = n,, /a3 is the particle density. The constraint ( 17) on the 
particle density is stronger than ( 16). It permits neglect of 
the unpaired interaction in specific calculations. 

As a result, the Hamiltonian of a strongly coupled 
( A  > 1 ) electron-phonon system in a lattice reduces to that of 
a heavy weakly nonideal charged Bose gas: 

wherep is the chemical potential. 
For the reason mentioned in the Introduction, the 

causes of the interaction can be considered to be of short 
duration. 

2. ELECTRODYNAMIC EQUATIONS OF A CHARGED BOSE 
GAS. THE FIELDS H,, AND H, 

The evolution equation of the Heisenberg operator 
4(r , t )  for the Hamiltonian ( 18) is of the form 

[ V -2ieA (r) ] 
a T 2m" --) 6(r,  TI 

-F ,f d3r1 $+ (r', 7 )  v (r-rr) $ (rt ,  7 )  $ (r, 7). (19) 

We represent the field operator in the form 4 = $o + 6, 
where $, is a c-number having the meaning of a macroscopic 
wave function normalized to the particle density no in the 
condensake. The function $, is defined as that part of the 
operator $ which decreases the number of particles in the 
condensate by unity, leaving the remaining part of the sys- 
tem unchanged: 
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where N is the total number of particles, V the particle vol- 
ume, and $(r,r) the operator describing the part over the 
condensate. 

The system of equations for ICI, and @ is 

+$+ (rr, T) ij (r', t) $ (r, t) + +08 (rr, t) 90 (r, t) (rr7 t) 

+ qo (r', T) 9o (r, t) I$+ (rr, 7 )  1~ (r-r'). 
(11 

This system of equations must be supplemented by the Max- 
well equation 

rot rot A (r) =4nJ,, (22) 

where J, is the density of the superconducting undamped 
current. The latter is determined by the order parameter 
$, = n, 112e'p, normalized to the density of the superfluid 
(superconducting ) component n, = p,/m** (see, e.g., Ref. 
14). In the weak non-ideality approximation ( 17), however, 
it can be assumed that 1CI, and t+bo are equal, and J, can be 
expressed in terms of the macroscopic wave function +b0. 
With allowance for gauge invariance we have then 

e 4eZ 
J.--~-[+~'V$~-+~V$~'I- - I$oI". 

m" m" (23) 

Consider now Eq. (20) for q0. In the stationary case, q0 
is independent of time: a$o/ar = 0. Choosing the short- 
range potential in the form v(r - r') = voS(r - r'), we re- 
write the equation for +b0 as follows: 

Here, too, we have used the condition (17), so that near 
T = 0 we can neglect the above-condensate particle density 
compared with 1$012. 

At low temperatures, a weakly nonideal Bose gas is su 
pertluid. In the present case of a charged Bose gas we can 
thus determine the critical magnetic fields that destroy the 
superconductivity (superfluidity ) of this system. We point 
out first the analogy between the system (22)-(24) and the 
equations of the Ginzburg-Landau phenomenological theo- 
ry. 

Recognizing that the chemical potential of a homogen- 
eous weakly nonideal Bose gas isp z nu, (Ref. 15 ), the char- 
acteristic lengths of the problem (22)-(24), given by 

are respectively the field penetration depth and the charac- 
teristic scale of variation of q0. The Ginzburg-Landau pa- 
rameter is x = m** (v0/16re2) l/'. The large bipolaron mass 

gives grounds for assuming that the condition for type-I1 
superconductivity is met: 

Indeed, the condition (26) is met if it is assumed that 
m**=: 102-3m,. (Refs. 4, 6, and 12) and (uo/ 
16re2) 1 / 2 z R ,  (R, is a screening radius of the order of the 
interatomic distance). 

Using Eqs. (22)-(24), we calculate the lower critical 
filed Hcl in which a normal vortex appears in a supercon- 
ducting Bose gas. At large x, just as in the usual supercon- 
ductivity theory, l6 

where @, = r/lel is the magnetic-field flux quantum flux. 
Using for S and < expressions (25), we get 

We calculate now the thermodynamic critical field H,, 
meaning the field in which the homogeneous superconduct- 
ing normal phases are in thermodynamic equilibrium. 

We assume that the ground-state energy E(0)  is deter- 
mined by the particle-interaction energy. Neglect of the ki- 
netic energy of the superconducting phase, which is a homo- 
geneous condensate, means neglect of the above-condensate 
part whose contribution is small in terms of the parameter 
( 17). The normal phase is a homogeneous state in which the 
particles are on a lower Landau level that is degenerate in the 
positions of the particle-orbit centers. Allowance for only 
the interaction energy in this state is equivalent to neglect of 
the susceptibility. 

We obtain thus for the s phase 
E ,  (0) -nZvoV/2. 

For normal state 

where ni is the particle in the state i. By virtue of the homo- 
geneity we have n  p i  ( 1 = , and we get 
EN (0) zn2uoV. Doubling the energy compared with the su- 
perconducting state is connected with an additional ex- 
change interaction of the particles on the lower level. 

As a result of 

the critical field is 

The thermodynamic critical field of a charged Bose gas 
was already calculated earlier by Schafroth.I0 He regarded 
an ideal charged Bose gas as a model of a superconductor 
and obtained for the critical field Ho = 4rnpO, where 
p0 = e/2m**. Comparing (29) with Schafroth's result 

we see that when the condition (26) is met the thermody- 
namic field is determined exclusively by the interaction [see 
(29) 1, and the contribution due to the diamagnetism of the 
charged Bose gas is negligibly small. 
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3. SPECTRUM OF NORMAL INTERACTING CHARGED BOSE 
GAS, FIELD H, 

It is known1' that an ideal charged Bose gas in a homo- 
geneous magnetic field does not condense. We shall show 
here that the interaction between the particles leads to a fin- 
ite critical condensation magnetic field, and determine the 
critical H,, (7') curve. 

Consider a normal Bose gas in a magnetic field at finite 
temperature. It is convenient to treat the interaction of the 
particles with one another by using temperature Green's 
functions. 

We choose the unperturbed wave functions to be Lan- 
dau solutions of the Shrodinger equation in a uniform mag- 
netic field: 

In a magnetic field, the temperature Green's function not 
perturbed by interaction is equal to 

where wj = 27~jT, j = 0 ,  + 1 ,  + 2  ,... . The total number of 
particles in the system is defined as 

N=T lim yl y, G .  (a,) e r p  i-icojr).  
7-0- 

01 

Substituting in ( 3 2 )  the Green's function ( 3  1 ) , we see that 
owing to the divergence of the integral with respect to p, 
there is no Bose condensation at any temperature. This is 
due to the quasi-one-dimensional character of the motion in 
the magnetic field. We write down the Dyson equations 

To calculate the self-energy part we confine ourselves to 
the loop approximation (Fig. 1 ). The discarded diagrams 
are small in the parameter W w ,  which in turn is small be- 
cause of the weakness of the interaction ( 1 7 ) .  In the presen- 
tation of the wave functions ( 3 0 )  and ( 3 3 ) ,  we can write 

The smallness of the interaction ( 17) allows us to confine 
ourselves to the diagonal approximation. It is convenient to 
write the Dyson equation ( 3 3 )  in the coordinate representa- 
tion (Fig. 1 ) .  

G ( x ,  2 ' )  = Go (x, x ' )  

+ 3 dz dz' Go (L ,  Z )  r )  ( z - z ' )  G ( z ,  z ' )  G (z ' ,  2')  , 
(35 

where x = ( x , T ) ,  T is the "imaginary time," 

D ( z - r ' )  = T E D  ( q ,  o,) e x p [ i w , ( r - - r l )  J e i p [ i q ( z - z ' )  1, 

FIG. 1. 

Substituting ( 3 6 )  and ( 3 7 )  in ( 3 5 )  we obtain an equation 
for the self-energy part: 

xv ( o j )  = y, T,D ( k ,  w , )  G v ,  (mj-mj') I I v V '  (k) 1 '. ( 3 9 )  
v',k 0, 

I t  suffices to consider the interaction renormalization 
of the spectrum of the lower Landau level, which makes a 
singular contribution to ( 3 2 )  at wj = 0 .  The Bose-condensa- 
tion point is determined by the condition 

where I ; , ( O )  is the value of Z, at n = p, = 0. 
The asymptotic behavior of the Green's function at the 

Bose condensation point is determined at small Ip, I by the 
critical exponent a: 

If a < 1, the integral in ( 3 2 )  converges and condensation is 
possible. 

The static component of the self-energy part 8, (0) de- 
pends on the renormalized interaction D(k,O),  which is de- 
termined by the polarization operator 

n ( k )  = Z' yl y, G V ( o j 1 )  G ( - o j f )  I Jvvr (k) I z .  

V V '  O; ( 4 2 )  

Summation over wj can be carried out by using 

where f(e,  ) is the Bose distribution function in the interac- 
tion-renormalized spectrum E, = E,' + 2,: 

The overlap functions used in (43 ) are 

I.,"' ( k )  = j dr exp ( i k r )  p. ( r )  cpr- ( r )  . ( 4 4 )  

In the Landau gauge, I :' ( k )  can be rewritten in the form 

where 
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at n l ( n ,  where L :.- "' is a Laguerre polynomial. 
We seek the lower-level energy in the form 

and confine ourselves to the temperature region Tpw. We 
break up the polarization operator into two parts-singular 
and regular: 

m 

m"o J dq exp(-k12/2m"o)  
I l ( k ) =  T--  I Fao 1 t IIreg ( k )  

2n2 -- E ( Q )  E (9-k*) 
(47) 

We replace the dimensional momentum energy p, and E by 
the dimensionless 

The asymptote of the singular part of (47) at small k is 

where B(x ,y )  is the Euler beta function. 
The effective integration region in Eq. (39) for 8,,pz (0) 

is of the order ofp. We seek for this equation a solution that 
takes the asymptotic form (46) at small momentap S; 1. It 
suffices therefore to consider the singular term (47), and to 
retain in the sum over Y' in (39) only the term with n' = 0. 
Equation (39), which determines E( p )  in the lowest order 
in q is the reduced to on singular nonlinear integral equa- 
tion: 

Taking this to be an iterated integral, substituting E(  p )  in 
(46), and neglecting the termp2, we get a = 1/2, 

Summation in (32) over all levels but the lowest can be 
carried out without allowance for quantization, since T$ w. 
For the lower level it is necessary to use the spectrum (46). 
As a result we obtain for the upper critical field Hc2 

m 

Calculation of the integral yields 
( 1 -tala) $12 

Hcz ( T )  = 0,18@om"T,q'h 
t  ' (53 

where 

Expression ( 53 ) differs from Hc2 of ordinary superconduc- 
tors in the sign of the second derivative (which is positive) 

H,, ,re]. un. 

FIG. 2. Temperature dependence of Bose-condensation critical magnetic 
field: 1-upper critical field of usual superconductor (BCS), 2-H, (7') 
for short-range bosons, 3-(H,, (7') for bosons interacting with impuri- 
ties (obtained in Ref. 6 ) .  

and in the nonlinear growth near T, (Fig. 2).  The expres- 
sion for f is obtained by direct substitution of (53) in (5 1 ) : 

We see hence that the temperature region of validity of (53) 
( 2  40) is bounded from above: 1 - t p 0 . 0 3 ~ .  As t-0 
expression (53) diverges formally. It must be noted, how- 
ever, that as t - 0 the expansion in powers of 7, used to obtain 
(50), is not valid in view of the possible localization of the 
bosons in the self-consistent interaction potential, a localiza- 
tion similar to that in the random potential of the impuri- 
ties.6 The validity region of (53) is bounded also from below 
( T 2  a ) ,  viz., t 2 77'14. 

CONCLUSION 

We have determined the critical fields of a weakly inter- 
acting charged Bose gas with short-range interaction. It was 
established that such a gas is a type-I1 superconductor 
(Hc, pH, $Hcl 1, the energy spectrum of the normal phase 
in a magnetic field was found, and the temperature depend- 
ence of the upper critical field Hc2 was shown to differ qual- 
itatively from the Hc2 ( T )  of the BCS theory. A similar tem- 
perature dependence was obtained earlier for a Bose gas 
interacting with impurities, i.e., for dirty bipolar supercon- 
ductors (see Fig. 2).  

As shown in the first section of the paper for arbitrary 
electron densities, and as noted earlier for low atomic densi- 
ties:~~ a charged heavy Bose gas is obtained from a Fermi gas 
with strong electron-phonon interaction as a result of local 
lattice instability that leads to a substantial exponential sup- 
pression of the kinetic energy (to the polaron effect). We 
note in this connection that this effect does not occur in the 
usual theory of electron-phonon interaction in metals, in 
which one uses a continual approximation, i.e., infinitely 
broad electron bands with constant density of electronic 
states N ( 0 ) .  

The existence of heavy charged bosons is possible not 
only in such d- and f-metal compounds as A-15, Chevrel 
phases, carbides, oxides, nitrides, or systems with heavy fer- 
mi on^,^ but also in other substances in which the electron- 
photon interaction is large ( A  > 1) and there are narrow 
enough electron bands as a result of large interatomic dis- 
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tances. These substances include apparently the supercon- 
ducting ceramic Ba-Pb-Bi-0, a number of anomalous prop- 
erties of which, including high T, and the mixed valence of 
the bismuth, can be explained within the framework of the 
theory of small-radius polarons.6 We note in this connection 
that the high-temperature superconductivity ( T ,  > 40 K)  
observed recently in the ceramics Ba-La-Cu-0 (Ref. 17) 
and Sr-La-Cu-0 (Ref. 18) can also be of the bipolaron 
type. Small bipolarons can be formed in these compounds on 
the copper ions as a result of displacement of the surround- 
ing oxygen ions. The decisive role is played in this case by the 
hard mode corresponding to vibrations of the oxygen ions 
relative to the copper ion. The role of the barium (stron- 
tium) reduces then to a change of the bipolaron density, as a 
result of which optimal conditions4s6 are created for bipo- 
laron superconductivity. An estimate of the effective mass of 
bipolaron from the ciritical temperature (53) of an ideal 
Bose gas yields m** - loom, for T, = 100 K and n = loZZ 
~ m - ~ .  

In this case the high-temperature superconducting ce- 
r amic~"~ '~  should feature a large magnetic-field penetration 
depth, an anomalous temperature dependence of H,, (Fig. 
2) ,  an anomalous electronic heat ~apac i ty ,~  and a mixed va- 
lence of the copper. 
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