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Superfluid 3He-A at zero temperature is described by superhydrodynamics, which, just as 
ordinary hydrodynamics, is uniquely derived from considerations of symmetry, but which in 
addition to ordinary variables contains anticommuting variables. The range of applicability of 
superhydrodynamics is determined and it is shown that the elimination of the anticommuting 
variables leads to the appearance of nonlocal (logarithmic) terms. 

The dynamical (orbital) properties of 3He-A at a tem- 
perature tending to zero are not described by hydrodyna- 
mics. This is due to the specific symmetry properties of the 
A-phase, one of the principal manifestations of which is the 
presence of zeroes of the energy gap at two diametrically 
opposed poles of the Fermi sphere. In fact, for this reason, 
the orbital dynamics of 3He-A at T = 0 has been studied on 
the basis of microscopic models (Refs. 1-3). 

It shown in the present paper that the dynamics of the 
ground state of 3He-A can be described by superhydrodyna- 
mics, which, just like ordinary hydrodynamics, is derived by 
means of an expansion in terms of gradients solely on the 
basis of symmetry considerations, but which contains in ad- 
dition to ordinary (bosonic) variables also anticommuting 
Grassmann (fermionic) variables. It is the presence of "fer- 
mionic goldstones" that is most characteristic for a system 
with the symmetry properties of 3He-A. A self-consistent 
hydrodynamic description must of necessity contain all 
Goldstone degrees of freedom (including fermionic ones), 
since the elimination of part of these variables from the sys- 
tem of equations leads, as a rule, to nonhydrodynamic ex- 
pressions, which cannot be expanded in terms of gradients. 
We note that the possibility that fermionic goldstones exist 
in principle had been previously discussed4 in the framework 
of quantum field theory. 

3He-A has another specific property, viz., the presence 
of an anomalous term in the expression of the mass 
As was made clear in the papers of Volovik and co-workers 
(Refs. 1,2), the main contribution to the anomalous current 
comes from portions of the momentum space which are re- 
mote from the zeroes of the energy gap. Therefore the anom- 
alous current cannot even be encompassed by superhydro- 
dynamics. It is, however, important to stress the fact that the 
existence of an anomalous current for arbitrarily large wave- 
lengths of the motion is a feature of the simplified model 
used in the calculations of Refs. 1-3. In reality there exists a 
region of sufficiently large wavelengths where the anoma- 
lous current is small and superhydrodynamics is applicable. 
In this connection one cannot fail to note that the corre- 
sponding inequality to which the wavelength are subject is 
quite stringent. 

In calculations of the anomalous current use has been 
made of a model which does not take account of the damping 
of Fermi quasiparticles which is specific for 3He-A. The rea- 
son for this is that owing to the anisotropy of the A-phase a 
finite damping of all quasiparticles, except those situated 
near the zeroes of the gap, occurs even for zero temperature. 

There are several damping mechanisms-the decay of one 
Fermi excitation into three and the emission of orbital wave 
quanta by a Fermi excitation. In order to estimate the life- 
time T of quasiparticles with an energy close to the maximal 
gap, on account of decay into three excitations, it is sufficient 
to substitute T, for the energy counted from the Fermi level 
in the known formula for quasiparticle damping. We obtain 
fi/r - E, ( T, /E ,  )2.  The corresponding mean free path is of 
the order of I-a(&,/T, )'. We note that this process be- 
comes ineffective if the quasiparticle energy is close to the 
minimal value for a prescribed PI (PI is the projection of the 
quasiparticle momentum on a plane perpendicular to the 
anisotropy axis). The suppression is due to the reduction of 
the statistical weight of the final states which are compatible 
with the energy and momentum conservation laws. It is 
quite important that even in this case the mean free path I of 
the excitations is finite, on account of emission processes of 
orbital wave quanta. Indeed, quasiparticles of even minimal 
energy will have a finite speed on account of the anisotropy 
of the gap, and therefore can emit orbital quanta of suffi- 
ciently low energy which have a quadratic dispersion law. 
An arbitrarily small damping is exhibited only by quasiparti- 
cles situated sufficiently close to the zeroes of the energy gap. 

The anomalous current arises (see Refs. 1-3) as a result 
of a peculiar quantization of the quasiparticle levels under 
the influence of their interaction with the gradients of the 
order parameter. A quantization really exists if the appropri- 
ate gradient interaction energy (which has the order of mag- 
nitude T, (a/il) 'I2, where a is the interatomic distance, il is 
the wavelength, see Refs. 1-3) substantially exceeds the en- 
ergy indeterminancy fi/r. This yieldsilg 1. The results ofthe 
quoted papers (Refs. 1-3) thus refer in fact to the intermedi- 
ate asymptotic region {<A <I, where {-fiv,c/T, is the co- 
herence length, since I = cc in the model used. If the oppo- 
site inequality A> I holds, the quasiparticle damping plays a 
dominant role and the anomalous term in the current is 
small. This is just the region where superhydrodynamics is 
applicable. As already noted the characteristic length pa- 
rameter, I-{(E,/T, ) - l mm, is quite large. 

1. THE BOSE PART OF THE ACTION 

Since the known Lagrangian formulations for the Bose 
part of the problem (Refs. 8, 9) contain redundant param- 
eters and supplementary conditions, we expose a method 
free of this drawback. 

The variable determining the local-equilibrium state of 
3He-A at T = 0 are: the density p ( r , t )  and the three angles 
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pa (r,t) defining the orientation of the trio of mutually or- 
thogonal unit vectors e,, e,, and 1 = e, X e,. As order param- 
eter we can choose then the complex vector A = el  + ie,. 

Let 

(cp) Gkp 

be the Cartan form defining the infinitesimal rotation 88 
corresponding to two neighboring units pa and pa + dqa in 
the group space {pa) of the three-dimensional rotation 
group. Setting (cpa ) = (p where the vector Q is directed along 
the rotation axis and its magnitude is tan(8 /2), where 8 is 
the rotation angle, then we have (Ref. 10) 

2 
hai = 7(6ai+~ibaqb) - 

l + c p  
( 1 )  

Here E,, is the Levi-Civita tensor. 
As is easily verified, the quantities ( 1 ) satisfy the "flat- 

ness" conditions 

Since the conditions (2)  are covariant with respect to a 
change of the coordinates p a ,  they retain their form also for 
any other parametrization of the rotations. 

The superfluid velocity v, has the components 

wherem is the mass of the 3He atom. The Mermin-Ho identi- 
ty" for v, is automatically fulfilled on account of the condi- 
tions (2) .  

Since the generator of the gauge transformation 
A -+Aelx is the quantity - 50/2m, the derivative of the ac- 
tion density with respect to x equals - 50/2m. In order to 
meet this condition it is necessary that the density of the 
Lagrange function should have the following form: 

where E is to be interpreted as the energy density. The ca- 
nonical momentum j of the unit volume equals 

On account of Galilean invariance we have 

B - 2  pv '+E.(I, a,i,p). 
2 ( 6 )  

Variation of the Lagrange function with respect to Sp and 
Spa, making use of the conditions (2) ,  yields the hydrody- 
namic equations for the purely bosonic subsystem: 

The last of the equations (7)  is nonhydrodynamic, since it 
describes rapid rotation around the vector 1 with a frequency 
equal to the chemical potential. This formal deficiency is 
easily removed as follows. It is known (Ref. 12) that the 
dynamics of any nonrelativistic particle system can be made 
invariant to a time-dependent gauge transformation (for 
which A - AeiX"' ) by adding to the energy density the term 
- (fjp/2rn)A0(t), where A,(t) is a "scalar potential" sub- 

ject to the gauge transformation A,-A, -x. The corre- 
sponding gauge invariant form of the last of the equations 
(7)  is the following: 

By choosing the arbitrary function A,(t) one can "stop" the 
rotation at an arbitrary point in space. In view of the arbi- 
trariness ofA,(t) the physical content of Eq. (8)  is the same 
as that obtained from Eq. (8)  by taking the gradient 

This equation has a completely hydrodynamic form. 

2. THE FERMI PART OF THE ACTION 
A characteristic peculiarity of jHe-A is the fact that in 

addition to the usual ground-state degeneracy related to 
spontaneous breaking of continuous symmetries, there ex- 
ists an additional degeneracy related to the vanishing of the 
quasiparticle energy at two points of the Fermi surface. It 
turns out that the states 

(where 10) is the quasiparticle vacuum, and a,+ and a,+ are 
the creation operators for quasiparticles with momentapFl 
and - pFl, respectively) have ground state energy. Similar- 
ly to the way in which the usual degeneracy leads in the 
hydrodynamic description to the appearance of Bose fields 
which vary slowly in space and time, this additional degener- 
acy leads to the appearance of "Fermi goldstones," i.e., 
slowly varying anticommuting fields a ,  (x) ,  a,(x), a: ( x ) ,  
a,* (x) ,  where x = (r,t) . In fact, it is more convenient in this 
case to make use of certain linear combinations of these 
fields. The reason for this is that in systems with Cooper 
pairing the quantities a,, . . . are subject to complicated 
gauge transformation laws. We introduce their linear combi- 
nations p , (x) ,  p,(x), cp:(x), cpT(x), SO that they satisfy 
the same anticommutation relations 

{cpl*, TI) = {cpl, cpz) = {cpz*, q1:- . . . =o 
as before, but under the gauge transformations they trans- 
form as 

We note that on account of the known properties of the 
mentioned linear (Bogolyubov) transformations for spatial- 
ly homogeneous systems, the subscripts 1,2 refer, as before, 
to states with momentap,l and - pFl. 

The presence of the additional degeneracy of the 
ground state and the related Goldstone character of the 
fields p is due to the symmetry properties of the A-phase. We 
shall convince ourselves below of this independently, by de- 
termining the general form of the fermionic part of a Lagran- 
gian satisfying all the necessary symmetry requirements. 

We call attention to the following important circum- 
stance. Hydrodynamics deals with slowly varying quantities 
corresponding to low statistical volume near certain points 
of momentum space. For fermionic variables (in contradis- 
tinction to bosonic ones) this leads automatically to a small 
spatial fermion density. In the Lagrangian we can therefore 
limit ourselves to the consideration of terms which are qua- 
dratic in p,  p *. 
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The Lagrangian L,  of the Fermi subsystem, which to- 
gether with L,  forms the total Lagrangian of superhydro- 
dynamics, must be hermitean, invariant to rotations and 
gauge transformations, as well as with respect to the reflec- 
tions z- - z, t -  t, where the z axis is directed along the 
vector 1. Moreover, on account of momentum conservation, 
the Lagrangian L ,  must contain the products q, :q,, q, :p2, 
p,, p2, . . . but not q, fp2, q, Tp, . . . . The fields q,, q, * behave 
as scalars under rotations. Under reflections they have the 
transformation properties: 

Here the superscripts z and T denote respectively the opera- 
tions z- - z and t -  - t .  The operation T is accompanied, 
as always, by a reversal of the order of factors. 

There is a unique expression not containing derivatives 
and satisfying the enumerated requirements: 

The coefficient g appearing here is in reality a function of the 
magnitude of the momentum, a function that vanishes at 
some point p = p , .  One may assume that the term under 
discussion is absent from the Lagangian, since the equation 
g(p,) = 0 is in fact a definition of the excitation momentum 
p,. The existence of a zero in the functiong(p) is that "topo- 
logical" property of 3He-A which, together with the vector 
character of the order parameter A, is responsible for the 
gapless nature of the fields q,. 

There exists a unique hermitean invariant involving the 
time derivatives: 

There are two invariants which are linear in the spatial 
derivatives. One of them contains the vector 1. Owing to the 
conditions 1' = 1, lT = - 1 it has the form 

The second invariant contains A and on account of the trans- 
formation properties b' = A, AT = - A* it equals 

Thus, 

where u, and v, are functions ofthe density. In real 3He-A the 
condition u, - ( T, / E ,  ) U ,  < U ,  - uF is satisfied. 

The Lagrangian ( 10) refers to the spatially homogen- 
eous case, when 1 = const, A = const. To treat the spatially 
nonhomogeneous case it is necessary to note the following. 
Since the states 1 and 2 have a finite momentum + p,l, the 
"genuine" fields $,,, are related to the slowly varying fields 
p ,,, by the equations 

For curl l+O transformations of the fohn ( 1 1 ) do not exist. 
It is necessary to make use of the fields $and expand not only 
in terms of gradients, but in terms of the combinations 
V f ip,l. The corresponding Lagrangian is obtained from 
the expression in ( 10) by means of the substitution q, -+ $ and 
v-v +_ @,l. 

Up to total derivatives (which appear when the differ- 
entiations are transposed either completely to $, or com- 
pletely to ly;) we have then 

where the curly brackets stand, as before, for anticommuta- 
tors. 

In addition, it is necessary to add to the Lagangian inde- 
pendent invariant terms which contain explicitly the spatial 
derivatives of A. The time derivatives may be omitted, since 
according to Eqs. ( 7 )  they are quadratic in the spatial de- 
rivatives. 

The invariants which are linear in the spatial deriva- 
tives aAi/dxk and are at the same time of zero order in the 
derivatives of the fields $ can be of two types. They may 
contain expressions obtained by means of contractions with 
Sik or E+, , or terms of the form 

and their complex conjugates, or terms of the form 

All terms of the first type are obviously genuine scalars. 
They are therefore invariant with respect to the transforma- 
tion z- - z and consequently they must be multiplied by the 
combinations of the $-fields $:$: + $:$: and $,$, + $,$,, 
which vanish on account of the anticommutation relations. 
There exist only three independent expressions of the second 
type which are invariant with respect to rotations. These are 
div 1, I-curl 1 and v, . 1 .  These are all pseudoscalars,and there- 
fore must be multiplied by $:$, - $:$,. Only the last two 
are invariant with respect to the transformation t-+ - t .  
Taking all this into account we have 

where 

i v , l ( V - i p J )  iv,  A v  
A - i - +  a ( i v ,AmV - iv , l (V- ipJ)  

at 

and a and b are functions of the density. The function b(p) is 
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determined from the requirement of Galilean invariance of 
the Lagrangian. Under a Galilean transformation 
r = r i + V t ,  we havev, = v l  +V,and (seeRef. 13): 

From this it is clear that, acting on quantities which trans- 
form like $,,, , the invariant operators are the expressions 

and, correspondingly, acting on the quantities which trans- 
form like $:,,-their complex conjugate operators. Since in 
the adopted approximation one should neglect terms involv- 
ing uf, the Galilei-invariant Lagrangian is obtained from the 
expression for v, = 0 by means of the substitution 

V - t  Vrimv,, 

where the upper sign refers to operators acting on quantities 
transforming like $,,, , and the lower sign-to quantities 
transforming like $:,. As a result of this we find 
b = mu, - p,. In the weak coupling approximation we have 
u, = u, and b = 0. In this approximation the Lagrangian L, 
corresponds to the known (Refs. 1 ,2)  Bogolyuov equations 
for the A-phase, linearized in V + ip,l. 

3.THE EFFECTIVE BOSE ACTION 

We apply the results obtained above to a calculation of 
the effective action of the bosonic subsystem. For this it is 
necessary to eliminate the fermionic subsystem by calculat- 
ing the functional integral over the Fermi fields. To facilitate 
the calculations we go over to the Euclidean formulation by 
substituting - d /dr for id /at, and setting r = it. The effec- 
tive action is S, + ASB, where 

S. = J dkx L., 

x = (r , r ) ,  L, is defined in Eq. (4),  and (see, e.g., Ref. 14) 

AS, = In D$ Dlp* exp ( d4x In Det (M,-') 

Here A is defined in Eq. ( 13), A, is a normalizing oper- 
ator, F, = SAA, ', F, = (SAA; 6A = A - A,. The 
operator A, is usually chosen equal to the operator A in the 
unperturbed equilibrium state. In accord with the hydrody- 
namic character of the theory we are developing we choose 
A, in the following manner. 

In the spatially homogeneous case the operator 
A- =G, an operator whose matrix elements G(x,,x,) coin- 
cide with the fermionic Green's function, can be determined 
easily by solving the equation AG = S(x, - x,). We have 

In the general case, when the quantities 1, A,p, ( p ) ,  . . . 
are slowly varying functions of the coordinates and time, we 
introduce in place of x ,  and x, the coordinates 
X = (x, + x2) and x = x,  - x,, and the "local-equilibrium" 
Green's function G(X,x) which is obtained from (15) by 
setting(1) =l(X),A =A(X),p, =p,(X),.  . .. Weconsid- 
er as a definition of the operator A, the requirement that the 
matrix elements (A; should be equal to the functions 
G(X,x). 

The product AG of A and any other operator G defined 
by its matrix elements G(x,,x,) has matrix elements which 
are obtained from G(x,,x,) by applying the operator (13), 
where all differential operators act on the first argument x,  
and the arguments l(x, 1, A(xl) ,pF (x, ), . . . contain also x,. 
The action of the operator A, inverse to G(X,x) is obviously 
defined by the first two terms in ( 13), where the differentia- 
tions must be with respect to x,, and X must appear in the 
arguments 1, A, p,, . . . . Making use of the equalities 
x ,  = X + (x/2),d/dxl = d/dx + (1/2)d/dXandexpand- 
ing in terms of the gradients of the slowly varying functions, 
it is easy to calculate the operator SA in Eq. ( 14). In doing 
this it should be kept in mind that in the theory under discus- 
sion only hydrodynamic asymptotic behavior is meaningful, 
i.e., the asymptotics for large 1x1, accordingly one has to 
retain only the leading terms for 1x1 - W .  Moreover, since 
the original action SB contains the density itself, but the 
quantities A and 1 enter only via derivatives, in the action 
AS, too, the zero order terms in the derivatives will by defin- 
ition be absent, the density may be considered constant, and 
one must take into account only the spatial derivatives of A, 
and 1 (as noted above, the consideration of the time deriva- 
tives would lead to terms of higher order of smallness). 

We write the formula ( 14) for AS, in terms of the ma- 
trix elements F, (X,x) of the operator F, in the (X,x) repre- 
sentation 

+ J d4x' F ,  ( X ,  z-x' )Fl ( X ,  z') +. . .}, 

where, in distinction from Tr, tr is to be understood as a 
matrix rather than a complete operator. 

We are interested in the part of AS, which consists of 
terms of the lowest (second) order in the spatial derivatives 
(d/dX). Such terms arise from the first term in the curly 
brackets in Eq. ( 16) and in this case they are proportional to 
l/lx 1 .  In addition, the matrix elements F, contain also terms 
which are linear in the derivatives d /dXand are proportional 
to 1//xI2. On account of the second term in (16), which is 
given by the integral in the curly bracket, they contribute to 
the curly bracket expressions proportional to (d  /ax)' and 
ln(A /Ixl), i.e., it is exactly these terms which determine the 
hydrodynamic asymptotics. Thus one may restrict one's at- 
tention to the integral term in Eq. (16). The resulting 
expression for F,, linear in the derivatives d /ax, in a refer- 
ence frame in which the coordinate axes for a given X are 
respectively along el ,  e,, and 1, has the form 

where x = x,  - x,. 
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where iii are the transposed Pauli matrices, ri = (x/v,, y /  
v,, Z/V, ), Ti = (X/ut, Y/vt, Z/V,),  and 

azi al,  
a i r = - - - *  a T ,  a T i  
Substitution into Eq. ( 16) yields 

We thank A. V. Balatskii, M. A. Baranov, G. E. Volo- 
vik, and K. G. Selivanov for a useful discussion of this work. 

The logarithmically diverging integral must be cut off 
at the upper limit, at the wavelength A of the motion, and at 
the lower limit at the length 1. In the chosen coordinate sys- 
tem, in view ofdl, = 0, one can represent the quantity wfk in 
the form 

where a, f l =  1, 2. 
Therefore Eq. ( 18) corresponds to the following invar- 

iant expression for the variation ALE of the bosonic Lagran- 
gian: 

The elimination of the Fermi degrees of freedom thus 
leads to the appearance in L, of nonlocal (albeit weakly 
logarithmically divergent) terms, similar to the known 
(Refs. 15, 16) terms in the energy of 3He-A in the region 
{<A</. 
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