
Averaged description of waves in the Korteweg-de Vries-Burgers equation 
A. V. Gurevich 

P. N. Lebedev Physical Institute, Academy ofsciencesof the USSR 

L. P. Pitaevskii 

Institute of Physical Problems, Academy of Sciences of the USSR 
(Submitted 17 March 1987) 
Zh. Eksp. Teor. Fiz. 93,871-880 (September 1987) 

We generalize Whitham's averaged equations for the amplitude, velocity, and period of waves 
described by the Korteweg-de Vries equation to the case where there is a small dissipation 
present. We find the stationary solution of the equations obtained. We study the conditions at the 
boundaries of the region occupied by oscillations. 

I. INTRODUCTION 

The aim of the present paper consists in taking into ac- 
count the effect of a small dissipation on the dynamics of 
nearly periodic waves described by the Korteweg-de Vries 
(KdV) equation. 

The high effectiveness of the method proposed by 
Whitham for describing nearly periodic solutions of partial 
differential equations was made clear in the past few years. 
The idea of this method consists in that one constructs to 
begin with a strictly periodic solution of the equation. After- 
wards one assumes that the arbitrary constants occurring in 
that solution are slowly varying functions of the coordinates 
and time, for which one derives equations.'.2 This program 
has been studied most completely so far for waves described 
by the KdV equation: 

One can reduce Whitham's equations for this case to a 
symmetric "Riemannian" form. They have been used to 
solve the "collisionless shock wave" problems which are of 
considerable physical interesL3 These equations possess im- 
portant mathematical properties, as they are in a well de- 
fined sense completely However, Eq. ( 1 ) de- 
scribes undamped waves: there is no dissipation in it. 
Usually, when the dispersion law w(k) for small k can be 

for it an ordinary differential equation which has a first inte- 
gral: 

u,=GB+Uu-u2/2, (4)  

and furthermore 

L/2~,Z=-36A+6B~+ i / 2 U ~ 2 - 1 / B ~ 3  ( 5 )  

='lB(6a-u) (u-6p) (u-6y),  a>P>y. 

Here A, B, U, a ,  B, yare constants and 

Instead of a ,  P, y we shall in what follows normally use their 
combinations r, : 

The periodic solution of Eq.(5) has the form 

where dn(y,s) is a Jacobi function of modulus s, a deter- 
mines the amplitude of the oscillations 

expanded in powers of k, the damping of the wave is given by and a, s, and U can be expressed in terms of the r ,  according 
Im w cc k2 In that case the waves are described by the equa- 
tion to 

The function W, which was introduced by Whitham and 
which in the literature is sometimes called the Korteweg-de 

which plays the role of an adiabatic invariant for Eq. (4)," Vries-Burgers e q ~ a t i o n . ~  (I t  changes into the Burgers equa- 
will be important in what follows: 

tion if we neglect the term with the third derivative.) The 
presence of dissipation in itself destroys the strict periodicity Ba 

of the waves. For the waves to remain nearly periodic it is w- $ u , d u = - -  
necessary that the dissipation be small, i.e., that the param- 36 

J [ (Go-u) (u-Gp) (u-6y) 1"' du 2.3"~ 
na 

eter Y satisfy the condition 
a 

(A is the wavelength), and we shall assume in what follows 
P 

that it is satisfied. One can express the wavelength A in terms of Was follows: 

We recall some properties of the periodic solutions of h=(dWldA)., .= W,.  
Eq. ( I ) ,  which are necessary for what follows. If the func- 

(9)  

tion u depends on x and t in the combination x - Ut we get The function Wand its derivatives can be expressed in terms 
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of complete elliptical integrals. These expressions are given 
in the Appendix. 

2. DERIVATION OFTHE EQUATIONS 

We now assume that the quantities a, s, and U ( or, what 
comes to the same, the r,  ) are slowly varying functions ofx 
and t and we obtain equations for these functions. The meth- 
od developed in Ref. 1 for that purpose is based on the fact 
that Eq. ( 1 ) has three conservation laws of the form2': 

where 

If we now average ( 10) over a fixed range of wavelengths /Z 
in the vicinity of the point x then, in view of the commutabi- 
lity of the differentiation and averaging operations, Eq. ( 10) 
reduces to 

In first approximation we can assume in the averaging that 
the parameters of the solution (7)  are constants so that 
and Q turn out to be simply given functions of the r, ,  and 
(12) are the required Whitham equations for the latter. 
These equations turn out to be first order homogeneous in 
the derivatives of the r,  . 

We now take damping into account, i.e., we change 
from Eq. ( 1) to Eq. (2).  The term with v leads, firstly, to a 
change in the expressions for Pa and Q,. This change is, 
however, unimportant since the extra terms, containing Y 

are small by virtue of Eq. (3).  Moreover, Eq. (2)  has only 
one conservation law of the form Eq. ( 10) (to such a form 
one can reduce the equation itself). This means that there 
are on the right-hand side of the equations for P, and P, 
terms proportional to v, and after averaging they take the 
form 

where the expressions for pa and Q, are unchanged. The 
quantities V E ,  do not contain derivatives of r ,  but on the 
other hand they are proportional to v. All terms in Eqs. ( 13) 
can thus, generally speaking, be of the same order. 

We now actually carry out the projected calculations. 
Differentiating Eq. ( 11 ) with respect to t , taking the expres- 
sion for u,  from Eq. (2) ,  and averaging we get, dropping 
small terms in the fluxes and expressions which vanish on 
averaging: 

- - 
= -v (uz21,,/2+u,,2), (14) 

where u,  on the left-hand side of the last equation is assumed 
to be the expression from Eq. ( 1 ) . 

The averaging in Eq. ( 14) is carried out according to 

using Eqs. (4)  and ( 5 ) . Introducing the wave number 

we write Eqs.( 14) in the form ( W, = d W/dA, W, 
= aw/aB,  W, = d w / d u )  

When there is no dissipation, i.e., when Y = 0 ,  Eqs.( lS), as 
should be the case, change to Eqs. (45) of Ref.l. At first 
sight, only the first of Eqs. ( 15) has the form of a conserva- 
tion law. One checks, however, easily that from Eq. (15) 
there still follows a conservation law for the "number of 
waves" in the form3 

ax a - + - ( U x )  =o. 
at ax 

Using this relation we can rewrite Eq. ( 15) in the more com- 
pact form corresponding to Eqs. (47) of Ref. 1: 

where D /Dt = d /dt + U(d /ax). Equations ( 17) are con- 
venient for solving several simple problems. We shall, in par- 
ticular, use them in the next section to find a stationary solu- 
tion. To study more general cases and for a numerical 
integration it is necessary to have equations for the "Rie- 
mannian" variables r,. The change to these variables re- 
quires very cumbersome calculations. It is advisable first to 
obtain equations for a, /3, and y. It is then useful to take into 
account that each of these quantities satisfies the equation 

and so on. Finally, the equations have the form 
a r, - ar, + v, - = vp, 
d t  d x  

(no summation over a is implied!). The dissipative termsp, 
are equal to 

3W 6 s 2  " 3W 
P' = - 2 (K-E) ( ' " = ( E - s ' z ~ )  

We note that p, >p, >p . The Riemannian velocities, on the 
other hand, have the same form as when there is no dissipa- 
tion: 
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(We corrected a misprint which had slipped in in Ref.3 and 
somewhat transformed the expression for v,.) Here 
K = K(s) and E = B(s) are complete elliptical integrals of 
the first and second kind. We note that Eqs. ( 18), in contrast 
to the usual Whitham equations do not have solutions with 
constant r,, meaning that there are no strictly periodic solu- 
tions of Eq. (2) .  

Equations ( 18) are invariant under the transformation 
( Cis an arbitrary constant) 

in view of the invariance of the original equation under the 
transformation 

Moreover, Eqs. ( 18) are invariant under the additional 
transformation 

3. STATIONARY SOLUTIONS 

Sagdeev considering a set of magnetohydrodynamic 
equations for a plasma taking friction into account found in 
1961 (in some reference frame) a stationary solution corre- 
sponding to a shock wave.' For small dissipation the struc- 
ture of the wave had an oscillating, almost periodic nature. 
One can therefore use the equations obtained in the preced- 
ing section to study it and this enables us to find the complete 
solution of the problem. This gives a simple, though instruc- 
tive, example of their application. 

We shall seek for the set (17) a solution which is sta- 
tionary in some reference frame, i.e., which moves with a 
constant velocity. This means that we must put in (17) 
U =  const and look for a solution that depends on 
x - Ut = X. Then D /Dt = 0, and the first of Eqs. ( 17) is sat- 
isfied identically, and it follows from the second one that 
dB /ax = 0, B = const. The third equation then gives W, 
dA /ax = - W or, using the fact that U and B are constant 

W ( X ) =  W(X, )  e x p  [ v  ( X - X o )  I .  (24) 

We show that the solution obtained determines com- 
pletely the structure of the shock wave front. Indeed, with- 
out loss of generality we can take the magnitude of the jump 
at the shock wave front to be unity, i.e., put u = u + = 0, as 
X- + cc and u = u- = 1 , as X- - W .  After that using 
(4)  we can express B in terms of the averaged values ii and - 
u2: 

Here S = ( 2 - ii2)/2 is a quantity proportional to the en- 
ergy of the oscillations. Using the fact that there are no oscil- 
lationsasx- f w,S=Oandulx- ,  = u t  =O,ii I*-.- cc 

= u - = 1, we find from Eq. (25) that 

Using Eqs. (25) and (26) and the formulae for ii and S given 

in the Appendix, we can easily express all quantities of inter- 
est to us-the average value ii, the amplitude a of the oscilla- 
tions, and the wave number x-in terms of the single param- 
eter s2: 

- 
u= (l-j,f," ) /2, a=/;" /2, 

The functions (27) are shown in Fig. 1 (a ) .  It is interesting 
that the energy S of the oscillations remains always a small 
quantity-its maximum value S, = 0.125 is reached for s2 
~ 0 . 9 6 .  

The way the parameter s2 depends on the coordinate X 
is given by Eq. (24) : 

It is shown in Fig. 1 (b)  ( X ,  is an arbitrary point fixing the 
beginning of the wave). We have thereby found the behavior 
of all average quantities. Substituting Eqs. (26)-(28) into 
Eq. (7) we can determine also the oscillating structure of the 
wave front which is shown in Fig. 2 for Y = 10 - 

The structure of the stationary shock front in the 
Korteweg-de Vries-Burgers equation thus has a universal 
character and is completely described by Eqs. (27), (28), 
and ( 7 ) .  The average value ii increases very steeply near the 
leading front of the wave XzX,: 

The oscillations have a maximum amplitude a = 3/4 . ~ h k i r  
structure has a soliton character but a distinct splitting off of 
a chain of solitons occurs only for rather small values of 
Y 5; 10 4. The distance between the first and the second soli- 
tons is A, z d 2  (3.75 + In Y -  I ) .  Away from the leading 

FIG. 1. Distribution of average values in a stationary shock front: a)  Z, 
k = ~ T X ,  a, and S as functions of the parameter sZ; b) ii, a, and s2 as 
functions of the distance X - X,. 
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front the oscillations take on rapidly a sinusoidal character. r 
Their amplitude then decreases exponentially, and similarly 
ii approaches its asymptotic value u = 1 exponentially: 

a=yl,s" (6/5n)'" exp [-v ( X , - X ) / 2 ] ,  

ii-I=-17/15n exp [ - v ( X , - X ) ] .  

The wavelength of the oscillations tends then to5 A, 
= 2 d 2 .  

It is important to emphasize that the width of the shock 
wave front is AX-v- '. It is, in fact, independent of the 
magnitude of the jump ti. This significantly distinguishes 
hydrodynamics with dispersion and a small dissipation from 
the usual hydrodynamics, where the width of the shock front 
increases with increasing viscosity v and decreasing discon- 
tinuity: AX-v/ii. The reason for this difference is that the 
dissipative process in the case considered by us is connected 
with oscillations and not with a change in the average value 
ii, as is directly clear from Eqs. ( 17). 

The formation of a shock wave can be considered as the 
result of the decay of an initial discontinuity of the quantity 
u, assuming, for instance, that at t = 0 we have u = u - for 
x < 0 and u = u + = 0 for x > 0. The present authors have 
solved the problem of the decay of such a dis~ontinuity.~ 
During the decay a region is formed which spreads, is 
bounded on both sides, and is filled with oscillations. The 
leading front, on which the condition 2a = 3 Uis always sat- 
isfied for solitons, moves with a velocity U =  2u -/3. If one 
takes dissipation into account, the solution of Ref.3 must be 
regarded as describing the initial stage of a process which 
subsequently reaches asymptotically the solution (27), 
(28). The velocity of the leading front then decreases from 
2u-/3 to u-/2, with a corresponding reduction in the soli- 
ton amplitude. On the other hand, the trailing edge simply 
moves asymptotically to X -  - a. 

In concluding this section we show that the simple form 
of the solution (24) is connected with the existence of a gen- 
eral mechanics theorem about the change of an adiabatic 
invariant under the action of linear friction. 

We consider a particle of mass m performing a finite 
motion in a field and we evaluate the change in energy due to 
a small friction force f = - yx. The average change in ener- 
gy over a period is equal to the average of the work done by 
the friction force ( T  is the period of the oscillations): 

FIG. 3. Intersection of the Riemann variables r ,  ( x )  and r, ( x )  at various 
times t. 

dI/dt=-yI/m or I=I, exp (-ytlrn). (30) 

We note now that Eq. (4)  has the form of the equation 
of motion of a particle [if we consider ( - x )  as the time], 
and if we change to Eq. (2),  there is added on the right-hand 
side of Eq. (4) a "linear friction" of the form vu,. On the 
other hand, the integral W is proportional to the adiabatic 
invariant of the system described by Eq. (4),  so that Eq. 
(24) is completely analogous to Eq. (30). 

4. EFFECT OF DISSIPATION ON THE STRUCTURE OFTHE 
LEADING FRONT 

A characteristic property of the Whitham equations is 
the possible existence of unique features in their solutions. 
We have in mind here the already mentioned leading front 
on which the wave number vanishes, and the trailing edge on 
which the amplitude of the oscillations vanishes. These fea- 
tures, which were first discovered in Ref. 3 in an analysis of 
some self-similar solutions of the equations, were studied in 
their general form in Ref. 8 (see also Ref. 9, Ch. IV, Sec. 4). 
Avilov and Novikovlo have investigated numerically the for- 
mation of the initial problem for solutions with such singu- 
larities and established the admissible classes of initial condi- 
tions. 

We consider now the effect of dissipation on the struc- 
ture of the leading front. (We shall show that there is no 
effect of the dissipation on the trailing edge.) First, though, 
we recall the properties of that front when there is no dissipa- 
tion. On the leading front sZ = 1, i.e., r,f = r 2  = r + (we 
shall label all quantities on the leading front with a super- 
script + ). Then 

(29) um:,=~+=rl+, 

The integral in this formula is equal to the adiabatic uzf=vs+= U+= (2u,,,,+umin) /3= (r1+2rs) /3. 
invariant I, multiplied by 2a. Using the fact that 
T = 21r(dl/dE) we can write Eq. (29) in the form Of most importance is the problem of how 1 - s2 or r ,  - rz 

493 Sov. Phys. JETP 66 (3), September 1987 A. V. Gurevich and L. P. Pitaevskil 493 



tends to zero as x - + x  + . As r, and r, are different functions 
satisfying different equations it may appear that the most 
natural way for the curves r, (x )  and r, (x )  to intersect is "at 
an angle," as shown in Fig. 3 (a).  In fact, this case is singular. 
Indeed, from the equations written in the form 

it is clear that as time goes on the values of r, and r3 are 
transferred with velocities u, and u, . Since u,+ = u:, it is 
clear that under such a deformation of the curve of Fig. 3 (a)  
the value of r +  at which the intersection occurs will remain 
constant, which is impossible in the general case. In order 
that the value of r +  change with time it is necessary that the 
curves r, (x )  and r, (x )  merge "smoothly" without a kink 
and that is possible only if at the point where they join they 
have a vertical tangent [see Fig. 3 (b)  ] : 

We note that in both cases considered the front moves 
with a velocity U+ : 

In the first case this follows directly from Eq. (3  1) by virtue 
of the fact that r + is constant on the front. In the second case 
we have 

by virtue of Eqs. (3  1 ) and (32). 
We now elucidate the way 1 - s2 tends to zero on the 

basis of Eqs.(l8), i.e., when dissipation is taken into ac- 
count. We assume then, as will be confirmed by calculations, 
that condition (32) remains valid also when there is dissipa- 
tion present, so that the curves have the shape of Fig. 3 (b) .  
We note first of all that it follows from ( 19) that as r, -+ r3 

Since p, and p3 are finite, it follows at once that the frort 
velocity is given as before by Eq. (33 ) . Indeed, near the front 
r, =f, [X - x+(t) , t  1. The term containing dx +/d t  in the 
equation has thus the form 

ar, dx+ -- 
a~ dt ' 

But by virtue of Eq. (32) this term tends to infinity as 
x-+x + , so that the finite dissipative term p, is unimportant 
for determining dx + /dt. 

The following expressions hold for the velocities u, and 
u, near the front: 

One checks easily that Jr, - r, ( 9 Ir2 + r, - 2r + 1 .  Substi- 
tuting 

dx+ dr+ 
( % ) z = ( $ )  t x + ~  

into the equation for r2 we get after dividing by Su2 

Subtracting a similar equation for r, we get an equation for 
srz: 

whence we finally have 

For Y = 0 this formula goes over into Eq. (9) of Ref. 9 (Ch. 
IV, Sec. 4) .6 We note that when there is no dissipation the 
case dr  + /dt = 0 is singular, as the right-hand side of Eq. 
(35) vanishes and one must take into terms of higher order 
in (X - x + ). Just such a situation occurred in the problem 
of the decay of an initial discontinuity in Ref. 3. However, 
for finite Y this case is not at all special. Indeed, one can easily 
verify that the behavior of s" on the leading front of the 
solution (27), (28) completely agrees with Eq. (35). 

As to the trailing edge, the presence of dissipation does 
in no way affect in this case the way the amplitude of the 
oscillations tends to zero. Indeed, the functionsp , andp, are 
for small a proportional to a and such terms are unimportant 
as compared to the finite quantity dr-/dt, so that Eq. (37) 
from Ref. 9 (Ch. IV, Sec. 4) remains valid. 

It is interesting that the presence of the trailing front 
violates the "number of waves" conservation expressed by 
Eq. (16). Indeed, the velocity u- of the trailing edge is less 
than the velocity U - of the wave on the front. Therefore in a 
unit time the length of the oscillation region increases by 
( U - - u p ) ,  and x-(u--  U p )  = [+(r< - r i ) ] 3 ' 2 p  
wave periods are generated. 

APPENDIX 

We give the formulae which express the function Wand 
its derivatives with respect to A, B, and U in terms of the 
complete elliptical integrals K(s) and E(s):  

Between these quantities there exist simple relations: 

"The KdV equation is written in Ref. 1 in the form 7, + 61/11, + r lxxx = 0 
so that our u = 677. The notation in the present paper is, however, chosen 
such that the function W(A,B, U) has the same form as in Ref. 1 .  

2'In actual fact there follow from Eq. ( 1 )  an infinite number of relations 
such as Eq. ( 10). This is, however, unimportant for what follows. 

3'The fact that Eq. ( 16) must remain valid also when a small dissipation is 
taken into account was noted in Ref. 2 (9  14.10 ). 

4'0ne makes the transition to an arbitrary jump in u- simply by multiply- 
ing by u- the average velocity ii, the amplitude of the oscillations a, the 
Riemann variables r,, and so on. We note that if u + # O  then U = ( u  + 
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+ u -  )/2, B = - u-ut/12, and the magnitude of the jump in u -  
- u + .  

"S. P.Novikov has informed us that with V. V. Avilov and I. M. Krichever 
he has also obtained the averaged Eqs. ( 18) and found their stationary 
solution. 

6'There is a wrong coefficient 6 instead of 12 in Eq. (35) of Ref. 9. 
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