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The region in which a nonuniform superconducting state exists in quasi- 1D superconductors is 
considerably larger than that in quasi-2D or quasi-3D superconductors. The finite magnitude of 
the paramagnetic limit in this case results from scattering by impurities. Near the tricritical point, 
the nonuniform phase arises through a second-order transition. The phase diagram and the 
properties of the nonuniform superconducting state are examined. Possibilities for observing it 
experimentally in quasi-1D superconductors are discussed. 

1. INTRODUCTION 

Organic superconductors of the types (TMTSF) ,X and 
(BEDT-TTF),X which have recently been synthesized are 
characterized by substantially anisotropic electronic prop- 
erties (see, for example, the reviews in Refs. 1-3). The com- 
pounds (BEDT-TTF),X are actually quasi-2D supercon- 
ductors, while the compounds (TMTSF),X are closer to 
being quasi-1D superconductors. Near the superconducting 
transition temperature Tc, the upper critical field in the 
(TMTSF) ,X family is highly anisotropic; it reaches its max- 
imum when the field is directed along the stacks of TMTSF 
molecules, i.e., in the a direction (the conductivity is a maxi- 
mum along this axis). This is because electrons experience 
difficulty in making transitions from one conducting chain 
to another. The slope of the Hc2 ( T) curve becomes greater 
than that in an ordinary isotropic superconductor by a factor 
of (t ,  / E ~  ) -2, where t, is the width of the electron band in 
the directiod transverse to the chains. As a result, the condi- 
tion Hc2 2 Hp , where Hp = 2-1/2A0/pB is the paramagnet- 
ic limit,4 becomes satisfied as the temperature is lowered (in 
the BCS model we would have A, = 1.76Tc ). It is pertinent 
in this connection to note that Lebed' has shown that the 
orbital effect is incapable in principle of suppressing the su- 
perconductivity completely in a description of the transverse 
motion of electrons in the strong-coupling approximation. 
Consequently, the paramagnetic effect may play an impor- 
tant role in the behavior of the critical field at low tempera- 
tures. 

At low temperatures, T < T * = 0.56Tc, the field 
h = p, H, acting on the electron spins, gives rise through a 
second-order phase transition to superconductivity in the 
form of a nonuniform state with Cooper pairs that have finite 
momentum. This nonuniform superconducting state, the 
Larkin-Ovchinnikov-Fulde-Ferrell state6.' ( LOFF state), 
exists in a 3D system at T = 0 only in a narrow field interval 
0.7A0 < h < 0.755A0 (in fields below 0.7A0, there is an ordi- 
nary BCS ground state. 

The region in which the LOFF phase exists in the 3D 
case becomes even narrower when impurity scattering is 
present.' The net result is that in 3D systems it is essentially 
impossible to weaken the orbital effect in comparison with 
the paramagnetic effect and to set the stage for the onset of 
an LOFF phase. Exceptions to this rule may be magnetic 
superconductors9 or superconductors with magnetic impur- 
ities. In such systems, the electron spins will also be acted 

upon by the exchange field of magnetic atoms polarized in 
the external field, and the large value of the exchange inte- 
gral will result in a sort of amplification of the paramagnetic 
effect. Unfortunately, at this point we have no experimental 
evidence of any sort pointing to the appearance of an LOFF 
phase in these compounds. 

In layered superconductors, the region in which the 
LOFF phase exists becomes slightly wider, and the critical 
field is hi = A, = 2 1 / 2 ~ p p B  (Ref. 10). Even in this case, 
however, impurity scattering" suppresses the nonuniform 
state and severely complicates an experimental observation 
of this phase. 

A special situation in regard to the paramagnetic limit 
occurs in quasi-1D superconductors. In the limit T+O, in 
the absence of impurities, there is no paramagnetic limit, and 
the region in which the nonuniform superconducting state 
exists becomes significantly broader for T <  T *. In this case 
it is possible to find a complete description of the LOFF 
phase, which is a soliton lattice.I2 

In the quasi-1D superconductivity model, only the 
presence of impurities makes the paramagnetic limit finite. 
This circumstance is responsible for the interest in the prob- 
lem of the effect of impurity scattering on the (h, T) phase 
diagram of the LOFF state in a quasi-1D superconductor. 
This problem is taken up in Sec. 2 of this paper. Numerical 
calculations have made it possible to construct a family of 
phase diagrams for various impurity concentrations. Near 
the tricrital point T * (at T <  T *) the phase transition to the 
LOFF state becomes a first-order transition. As the impurity 
concentration increases, the region in which the transition is 
first-order increases, and at a mean free path I = 0.42vF/Tc 
the transition occurs as a first-order transition for all T < T *. 

In Sec. 3 we analyze the Ginzburg-Landau expansion 
for the superconducting order parameter, which can be con- 
structed near the tricritical point T*. In Sec. 4 we describe 
the nonuniform state in quasi-1D superconductors at low 
temperatures. In the Conclusion (Sec. 5) we discuss the 
question of the experimental observability of the LOFF 
phase in organic superconductors. 

2. PHASE DIAGRAM OF A QUASI-1 D SUPERCONDUCTOR 
WITH NONMAGNETIC IMPURITIES 

Assuming that the magnetic field is directed parallel to 
the superconducting chains (the z axis), we can ignore the 
orbital effect. The Hamiltonian of this system can then be 
written as follows in the mean-field approximation: 
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I? = j dr {9fl+ (r) iqc (r )  (r) $a(r) +u (r) $0' (r) %(r) 

+ [ ~ ( r ) q : ~ ( r ) $ f l ( r ) +  H. C.11, (1) 

where a = 1 ( - 1) if the electron spin is directed parallel 
(antiparallel) to the field h = Hp,; U(r) is the potential of 
the impurities distributed at random along the chains; and 
the superconducting order parameter is 
A(r) = A  ($(r) -$(r))  (A is the electron-phonon interac- 
tion constant). 

The electron spectrum in a quasi-1D superconductor 
(TMTSF),X is described well in the strong-coupling ap- 
proximation for the transverse motion of the electrons1-3 
even in the momentum representation: 

where t ,  and t,, are transition integrals for the corresponding 
directions, and a and b are the periods in these directions 
(for simplicity we are assuming a model with an orthorhom- 
bic structure). 

The mean-field approximation used in writing ( 1 ), and 
thus the simplification of ignoring 1D fluctuations, is valid if 
the deviation from one-dimensionality is significantly large: 
t ,  ) T, (here t ,  means t, or t,, ). This condition holds in 
quasi-1D superconductors.3 At the same time, all the specif- 
ic features of the quasi-1D situation for the LOFF phase are 
manifested for t, <E,  =p$/2m, i.e., for open Fermi sur- 
faces. Our approach is thus valid for T, t ,  ( E , .  

Our analysis of the behavior of the field at which the 
transition to the LOFF phase occurs and the nature of this 
transition is carried out on the basis of a solution to order 
A3 ( r )  of the Gor'kov equations for the normal Green's func- 
tion G(r,, r,) and the anomalous Green's function F(r,, r,) 
(Ref. 13). In the temperature technique these equations take 
the following form after an average is taken over the impuri- 
ties, which are assumed to interact as points: 

( i a ( r ) - i + ) ~ ( r ,  r1)+AU(r)F(r ,  r') =6(r-r'), 
( i ~ ( r ) + i - )  ~ ( r ,  r' )+A,'(r) G(r, r') =0, o= (2n+ l )nT1  

where 
i 1 Q ( r ) + - G w ( r , r ) ,  Aw(r )=A(r )  +--F-*(r ,r)9  

2~ 27 

and T is the mean free time of the electrons. 
As usual, the system (3)  is supplemented with the self- 

consistency equation 

Switching to integral equations for G and F, as in the 
procedure used to derive the Ginzburg-Landau equations,13 
and solving them by an iterative method to terms of third 
order in A, we find 

F~ (r, r) = dr'G-a- (r-r') Gw+ (rf-r) A@* (r') 

-J drr dr" dr"'G-.-(r-r') 

.G,,,+ (rr-rfl) G--- (rff-r"') G-+ (rr"-r) A,,,' (r') A,,, (rf') Awe (r'") 

x G--- (r' -rfl) A@' (rff) Gm+ (rfl-r) , (6)  

where the functions G * solve the equations 

and in the momentum representation we have 
G ,f ( p )  = (iw' - 6 f h) -' . The function G L2'(r, r )  deter- 
mines the correction to Z(r )  which is quadratic in A(r) and 
is given by 

(2) 
G,,, (r, r) = - 1 drl drIf G,,,+ (r-r') G--- (rf -rrl) 

x Gm+ (rf'-r) A* (r') A@* (r") . (8)  

We will be interested in solutions of Eq. (6)  of two 
types: 

An (r) = ~ ~ ~ e ~ ~ ~  with FO(r,  r) =QOaeiqr (9a) 

and 

Ab ( r )  = A: sin qr with F, (r, r) = Qb, sin qr. (9b) 

These two solutions obviously give the same field for the 
second-order transition, h ( T), but the nature of the transi- 
tion may be completely different in the two cases. 

Substituting (9)  into (6) ,  and omitting the superscripts 
"a" and "b" (to avoid overburdening the notation), we can 
write 

where the expressions for K L1' and K L3' follow directly from 
(6)-(8) and will be given below only for particular cases of 
interest. Solving ( 10) for a , ,  we find the self-consistency 
equation (5 ) in the form 

The field of the second-order transition can be found 
from the linearized version of ( 11 ) (in the case of a first- 
order transition, this field will be the boundary for an abso- 
lute instability of the supercooled normal state) : 
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where ~ ; l ) a  - - ~ ( 1 ) b  = ~ ( 1 )  
e, , . Equation (12) implicitly 

specifies a relationship among the temperature, the critical 
field h, and the wave vector q. At a fixed temperature, a 
transition occurs to the state which corresponds to the maxi- 
mum value of h. 

Equation (12) can easily be solved in the absence of 
impurities near the tricritical point ( T * = 0.56Tc, 
h * = 1.01 Tc ). In this case the wave vector q is small, and we 
can restrict ( 12) to an expansion in powers of q. As a result 
we find 

h ' 
A [h-ha (T) ] +aiBqt2 [- T-ha (T) ] + BijCq,'q:=O;. 

T' 

where 

A=ImY'(z)/4nT', B =  v P z  

2 (4nT') 
ImYm(z) ,  

\V is the digamma function, 

The field ho( T) is the well-known field of the second-order 
transition from a normal state to a uniform superconducting 
~ t a t e . ~  

The reason why terms - q4 must be considered in ( 13 ) 
is that the term I ah/& 1 enters with a minus sign for T <  T * 
(it changes sign at the tricritical point), in contrast with the 
usual situation in the free-energy functional. The result is to 
favor the appearance of a nonuniform LOFF state. 

As can be seen easily from ( 13 ), the strongest critical 
field is reached when the wave vector q is directly along the 
chains (qllz). In this case we have q = 9, = B/2C,  and the 
transition field is 

Using ( 141, we can write Eq. ( 12) as follows, making use of 
the digamma functions: 

- + C.C. = 0, ( 2-w;inT 1) 
where 

In the limit T = 0 and at large values of T (T-' g Tc ), Eq. 
( 15 ) reduces to 

where4 h, = h , ( ~ = b )  = Ad2z0.88TC. 
The expression in the radical in ( 16) vanishes when the 

maximum field is attained: 

Here the modulation wave vector is 

The presence of impurities thus causes a qualitative change 
in the behavior of the critical field at low temperatures. It 
gives rise to a finite paramagnetic limit. 

In the opposite case of a dirty superconductor, with 
r-')TC, we find from (15) 

from which we find in turn 

The functional dependence hi ( T) is given in Ref. 12 for arbi- 
trary temperatures and for q = q,; in the limit T-0 there is 
no paramagnetic limit. 

In the case q, = 0, q = q, , the kernel K "' is the same as 
the corresponding kernel in a 2D superconductor, so the 
field at T = 0 is hi = d h ,  = A, (Ref. 10); i.e., there is a 
paramagnetic limit. In a quasi-2D superconductor we would 
have cF %t ,  ) Tc, and at T = 0 we would have 
hi = d H P p B .  However, there is a degeneracy with respect 
to the direction of q both in the plane of the layers and for the 
direction perpendicular to the layers. 

All these results are evidence that the most favorable 
direction for a modulation of A(r) in a quasi-1D supercon- 
ductor is along the chains. We will accordingly assume be- 
low that the vector q is directed along the z axis. 

For the kernel K"' in this case we have the following 
representation: 

The phase transition in this case, however, is of first 
order, and the field ( 19a) is only the field corresponding to 
the supercooling of the normal phase. The actual field of the 
first-order transition is not known, but it might be assumed 
to be close to h, = d h 0 ,  which is the field of the first-order 
transition from the normal state to the uniform supercon- 
ducting state. In a dirty superconductor the LOFF phase 
apparently is possible only as a metastable phase. 

Numerical methods have been used to study Eq. ( 15) 
for the general case of an arbitrary impurity concentration. 
The numerical calculations yielded curves of hi (T)  and 
qi (T )  over a broad range of T; some of these curves are 
shown in Figs. 1 and 2. It can be seen from Fig. 1 that the 
impurity scattering may substantially reduce the field of the 
transition to the LOFF phase. It is important to note that the 
presence of impurities gives rise to a first-order transition on 
the h ( T)  curve below the point ( T *, h * ) . In this case, the 
coefficient of the gradient term ldA/d11~ in the Ginzburg- 
Landau functional is positive, while in the case I A, = , l 4  it is 
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FIG. 1. The (h, T )  phase diagram for various impurity concentrations. 
Dashed lines-regions of a first-order transition; heavy line-the field 
h,( T )  , at which the transition to a uniform superconducting state occurs. 

negative. With increasing impurity concentation, the region 
of the first-order transition becomes broader, and at 
T - I  = 2.4TC it reaches the point T = 0. 

Numerical methods are again mandatory for studying 
the nature of the phase transition over the entire tempera- 
ture range. A first-order phase transition corresponds to a 
positive coefficient of A; in Eq. ( 1 1 ). Its magnitude depends 
strongly on the type of solution. Our calculations show that 
the solution Ab = A: sin qr has a lower energy than the heli- 
coidal solution P = A: eiqr everywhere. 

For the first type of functional dependence of the order 
parameter we have 

FIG. 2. Temperature dependence of the wave vector of the LOFF phase 
on the transition for various impurity concentrations. 

Using expression (20) in ( 1 1 ) , and using as q ( T) and h ( T) 
the values they have at the point of transition to the LOFF 
phase, we numerically determined the coefficient of A;. As a 
result we also found the region of the first-order transition, 
which is shown by the dashed line in Fig. 1. 

For the solution Aaeiq' on the other hand, we have 
0 9 

and the transition always occurs as a second-order transi- 
tion. This result again emphasizes the fact that the solution 
A: sin qr is favored from the energy standpoint. 

To conclude this section of the paper we note that in the 
3D case the transition to the LOFF phase occurs as a first- 
order transition near the tricritical point, even in the absence 
of impurities. As the temperature is lowered, it becomes a 
second-order transition. l4 Our analysis shows that in the 2D 
case and also in the quasi-2D case with t, ) T, the transition 
to the LOFF phase always occurs as a second-order transi- 
tion in the absence of impurities. '' 

In addition to the scattering by nonmagnetic impurities 
we studied the effect of magnetic impurities on the phase 
diagram of the LOFF state in quasi-1D superconductors. 
According to our numerical calculations, the curves of 
hi ( T) and qi ( T) are similar to those in Figs. 1 and 2 (when 
we allow for the decrease in the critical temperature T, with 
increasing concentration of the magnetic impurities). The 
transition to the LOFF phase, however, always occurs as a 
second-order transition, and the region in which the LOFF 
phase exists decreases with increasing impurity concentra- 
tion much faster than it does in the case on nomagnetic im- 
purities. 

3. GINZBURG-LANDAU FUNCTIONAL FOR A QUASI-1 D 
SUPERCONDUCTOR 

Near the tricritical point, we can use the Ginzburg-Lan- 
dau functional to describe the LOFF phase. In contrast with 
the ordinary situation, the coefficient of the gradient term is 
negative, and terms with second derivatives must also be 
retained in the functional. 

A functional of this sort was studied in Refs. 15 and 16 
for electronic phase transitions to a nonuniform state in the 
3D case (corresponding to the LOFF transition in an iso- 
tropic superconductor); a functional of this type was also 
studied for quasi-2D superconductors in Ref. 17. 

In the case at hand, that of a quasi- 1D superconductor, 
we have 

where B = B/vi and = C/u& We wish to call attention 
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to the structure of the terms in braces (curly brackets) here. 
This structure arises because the superconducting order pa- 
rameter A(r) is complex. This circumstance distinguishes 
the functional for the LOFF phase from the corresponding 
situation in the case of electronic transitions, e.g., the Peierls 
transition. 

The equation for the superconducting order parameter 
found by varying function (22) is 

Equation (23) is an extremely complicated nonlinear 
fourth-order equation. It is not difficult to see that Eq. (23) 
has a trivial complex solution for which the order parameter 
has a constant modulus, A" = hoei qr.  In this case, it is also a 
simple matter to derive an exact solution of the Gor'kov 
equations. A helicoidal solution, however, does not corre- 
spond to the ground state of the functional (22). If we are 
interested in a real solution of (23), which depends only on 
one coordinate, we can immediately recognize the one non- 
trivial solution A(z) -sn(z), which has an energy lower 
than A -eiqr and which in the limit h + hi goes over to 
Ab = A. sin qr (Ref. 12). The reader is directed to Ref. 18 
for a more detailed discussion of solution (23). 

Functional (22) ignores the effect of the orbital field on 
the superconductivity. If the orbital effect is weak, it can be 
incorporated in (22) by the standard substitution d /  
dxi +a /dxi - (2ie/c)Ai, where Ai  is the vector potential of 
the orbital field [in principle, we would also need to incorpo- 
rate a term I A 1 'B2, where B = curl A, in (22) 1. 

Interestingly, the expression which is found for the cur- 
rent from functional (22) is quite different from the usual 
expression in the Ginzburg-Landau theory. Writing the 
variational derivative SF/SA, we find 

where 

[we are omitting from (24) a small paramagnetic contribu- 
tion which comes from the dependence of the coefficients of 
the functional on the field h; generally speaking, this field is 
the field p, B which is acting on the electron spins]. 

That expression (24) is specific in nature is emphasized 
by the fact that the solution A = Aoeiqr of Eq. (23), which 
describes the current state in an ordinary superconductor, 

corresponds in our case to j = 0. It is easy to see that the 
expression for j is the same as the derivative dF/dq2. 

The problem of calculating the orbital critical field for 
the functional (22) differs from its standard formulation for 
an ordinary s ~ ~ e r c o n d u c t o r . ~ ~  This problem has not been 
finally resolved for a quasi- 1D superconductor. 

The specific nature of the LOFF state is also manifested 
in its thermodynamic properties, which are different from 
those of an ordinary superconductor. For example, the dis- 
continuity in the specific heat at the second-order transition 
from the normal state to the LOFF phase is 

where the derivative dho/dT is taken at the point T = T *. 
The divergence of the discontinuity in the specific heat 

at the tricritical point results from the vanishing of the coef- 
ficient of 1AI4 in the Ginzburg-Landau functional at this 
point. 

Idlis and Kopaev16 have called attention to the growth 
of fluctuations near the tricritical point. In an isotropic su- 
perconductor, as the boundary for an absolute instability of 
the normal phase with respect to a transition to an LOFF 
state is approached, the fluctuational increment in the spe- 
cific heat becomes 

where 
h-h' 

To = - 
h' ' 

It is not difficult to show, through the use of expression 
(22) for the free energy, that in a quasi-1D suprconductor 
we would have 

The power-law dependknce OFT is different from that in the 
3D case because the degeneracy with respect to the direction 
of the wave vector q is lifted. 

The requirement that Acp be small in comparison with 
the discontinuity in the specific heat yields an estimate of the 
size of the fluctuation region: T> (T,/t, ) 4 / ~ ,  (this estimate 
is valid under the condition 7472, ). 

4. THE LOFF PHASE IN QUASI-1 D SUPERCONDUCTORS AT 
LOW TEMPERATURES 

The nonuniform LOFF state can be determined for all 
temperatures in pure quasi- 1D s ~ ~ e r c o n d u c t o r s . ~ ~  A similar 
approach was proposed by Machida and Nakanishi19 for 
analyzing the LOFF phase in a 1D model of a ferromagnetic 
superconductor. The description is based on an exact solu- 
tion of the Peierls continuum model at T = 0, with an ap- 
proximately half-filled band.20 

In this section of the paper we examine the description 
of the properties of the LOFF phase at low temperatures, 
T 4  T,, extending the approach of Ref. 12. 

We start with the Bogolyubov-de Gennes equations for 
a superconductor in an exchange field2': 

These equations are written for the case of a spin oriented 
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parallel to the field; similar equations with h - - h hold for 
the opposite field direction. The functions u and v perform 
the transformation 

which diagonalizes the Hamiltonian ( 1 ) in terms of the op- 
erators y nd y+. We restrict the discussion below to the 
equations for (u ,  , v,  ) -+ (u, u )  , since the equations and the 
spectrum for u, , v, are analogous, because of the symmetry 
under the substitution h + - h (this symmetry corresponds 
to the electron-hole symmetry in the problem of the Peierls 
transition). 

The self-consistency equation for system (26) is 

where E, is an energy eigenvalue of (26) for h = 0, and n (E) 

is the Fermi distribution function. 
We seek solutions of (26) in the form 

[ ( '(PA)) z+ipLrL\ , v=Ff (z) exp f i pa - - 
VF (29) 

where p, = (p , , py ) ,  ~ ( p , )  =t ,  cosp, + ty  cosp,b, and 
C(z) and E(z) are slowly varying functions ofz. Substituting 
(29) into (26), and ignoring the second derivatives of C and 
E, we find the following equation for ii+ and B+ (the equa- 
tions for i i- and B- are similar and are found by making the 
substitution u, - - u,; we will be omitting the indices + 
and - ): 

We might also note that in deriving (30) we assumed v2/ 
E~ &A at T,I -t- 50-100 K, in accordance with real quasi-1D 
organic superconductors.1-3 This condition holds; at the 
same time we have t$A, T, and 1D fluctuations are sup- 
pressed. 

Squaring both sides of (30), and transforming to the 
new functions 

we write (30) as 

where E, = En - h,  and where we are assuming A (z) to be a 
real function. The self-consistency equation is 

the factor of 2 arises because of the relations 6- = ii+ and 
5- = E+.  

The system (32), (33) is analogous to the equations 
which describe a Peierls transition near a half-filled band. 
For it, the exact solution at T = 0 is known,20 as is the gener- 
alization of this solution to nonzero t empera t~ re s . ' ~ ,~~  The 
behavior of the superconducting potential is described by a 
Jacobi elliptic function 

i.e., A(z) is essentially a soliton lattice. 
The thermodynamic potential of the system is conve- 

niently written in the form 

Transforming to the new variable 6 = zA(1 + k,)/ 
uF2kl and from (34) to the function sn of the new modulus 
y, wherey'= (1 -f)" 'and k l =  ( 1 -  y l ) / ( l  + y ' ) ,  we 
find the following equation for V: 

where ~ 2 ,  = E: kl/A2. An equation for U can be found from 
(36) by introducing the shift f-f +K(y) ,  i.e., 
U = V(f + K( y)  ). Equation (36) is a Schrodinger equa- 
tion with a potential sn2, and its solution is 

Making use of the cyclic boundary conditions, we find 
from (37) a relationship between the energy and the wave 
vector q = 2m/L (L  is the length of the chain, and 
- r < q < r ) :  

2K(T) 

C 
9 = 1  

a t  
sn2(1, y ) + b  ' (38 

where 1 = 2v, (1 - yl)K(y)/A is the period of the soliton 
lattice. The solution (37) satisfies the self-consistency con- 
dition (33); in this case we find equations for the soliton- 
lattice parameters A (h, T )  and y(h, T). The same equation 
can be derived more conveniently, however, by varying the 
thermodynamic potential of the system (35). 

The spectrum of Eq. (36) consists of three bands," sep- 
arated by two energy gaps with boundaries: Z+ = l/y, 
S.- = ( l/f - 1 ) 'I2, and the forbidden energy region 
E? <E2<&:. 

Evaluating the thermodynamic potential (35) at T = 0, 
we find 

where 0, is the value of the potential in the normal state 
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Calculating SS1( T), we find 

Q ( T ,  A, y) =Q (T=O, A, y )  

FIG. 3. Nonlinear dependence of the magnetic moment on the field for a 
superconducting soliton lattice. 

with h = 0, and A = A/k :I2. Varying (39), we find A = A, 
and 

In the case h < h, = 2A0/.rr there exists a uniform phase 
with y = 1, A(z) = const, and A = A,. At h = h, we reach 
the threshold for the production of solitons, and at h > hd the 
system goes into a soliton-lattice phase (the period of this 
phase diverges logarithmially as h + h, + 0).  

As has already been mentioned, there is no paramagnet- 
ic limit for the case of the LOFF phase in quasi- 1D supercon- 
ductors; this phase constitutes a soliton lattice. 

In the strong-field region we have 

and the paramagnetic susceptibility X,  = pic3 'fl/c3h is es- 
sentially the same as the susceptibility of a normal metal 
(while in an ordinary superconductor, with A = const, we 
would havex, = 0). A nonzero paramagnetic susceptibility 
arises only in the soliton-lattice phase, and near the thresh- 
old h, the functional dependence M(h) is highly nonlinear: 

The function M(h) is plotted in Fig. 3. 
In general, numerical analysis would be required in or- 

der to determine how the temperature affects the soliton- 
lattice pha$e. For T< A, however, we would need to consider 
only the excited states in the outer bands, E' 2 E: , since the 
chemical potential lies close to the edges of these bands in a 
field h. Furthermore, we can restrict the analysis to states at 
the band edges. The thermal increment in S1 is 

n 

Near a band edge, we find from (38) 

~ ~ = e + ~ + u ' ~ ( q - q ~ ) ~ ,  (43) 

where q = go = P A / ~ ~ K (  y )  v, corresponds to the band 
edge, and 

u* = ~(3) 
A K-E ' 

K-E h-A/y 
-.V(0)A2 (,) (f)" ( $ ) " ' e ~ p [ ~ 1 .  (45, 

Expression (45) can be used to determine the temperature 
dependence of the field of the second-order transition from 
the uniform superconducting phase to the soliton-lattice 
phase (see also Ref. 12): 

(46) 

It follows from (45) that the specific heat in the soliton- 
lattice phase depends exponentially on the temperature, in 
contrast with the predictions for the LOFF phase in the 3D 
model of Refs. 6,  7, and 23. 

The onset of modulation of the superconducting order 
parameter is accompanied by the appearance of a spin den- 
sity wave in the system6; i.e., the spin density has an oscilla- 
tory increment in addition to its constant component. 
Knowing the exact solution (37), we can easily calculate the 
distribution of the electron spin density s(z). At T = 0 we 
find 

Using the formula for transforming elliptic functions, 
A z 

sn2(g,  y) +sn2(E+K, y )  = ~ + ( ~ - ~ ' ) s n ~ ( - - ,  V F ~ I  h , )  . 
along with the expression for the state density of the spec- 
trum of the soliton la t t i~e, '~  

we can put (47) in the form 

FIG. 4. Sketch of the electron spin density (dashed line) and of the order 
parameter in a soliton lattice. 
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It can be seen from this expression that the spin density 
reaches a maximum in regions where the quantity A2(z) is 
small. Figure 4 is a sketch of the spin density in the soliton- 
lattice phase. In the region A(z) -0, the superconductivity 
is in a sense suppressed, and the spin angular momentum in 
the case y > 1 (in the limit of a sparse soliton lattice) reaches 
nearly the same order of magnitude as in a normal metal. We 
should stress that the amplitude of the spin density wave in 
the LOFF phase is low, at the level of the paramagnetism of 
normal metals. 

5. CONCLUSION 

The conditions for the existence of a nonuniform LOFF 
superconducting phase depend strongly on the nature of the 
Fermi surface. These conditions are optimized in pure quasi- 
1D superconductors, where there is no paramagnetic limit 
because of the appearance of an LOFF phase. Impurity scat- 
tering leads to a finite paramagnetic limit, as was shown 
above. However, the mean free path of the electrons along 
the chains in the quasi-1D superconductors (TMTSF),X 
reaches a magnitude of several hundred intermolecular dis- 
tances,' so that the Chandrasekhar-Clogstone limit4 can be 
exceeded by severalfold. A figure well above the paramag- 
netic limit has indeed been observed in the (TMTSF),X 
family of superconductors.' The nature of the functional de- 
pendence Hc2 (TI at low temperatures is also unusual and 
reminiscent of the H, (T )  curves in Fig. 1. At this point, 
however, we cannot assert with any confidence that the 
LOFF phase has been observed in quasi-1D superconduc- 
tors. It is possible that a description of real quasi-1D super- 
conductors will require going beyond the scope of the BCS 
theory and making use of the strong-coupling approxima- 
tion. In the quasi-2D organic superconductor (BEDT- 
TTF),Au12, for example, there should be a very strong elec- 
tron-phonon coupling according to tunneling measure- 

m e n t ~ . ~ ~  
It would be interesting to see a systematic study of the 

behavior Hc2 ( T) in the quasi-ID superconductors 
(TMTSF),X as the mean free path is varied in a controlled 
way, e.g., by means of irradiation. In this case the initial 
slope of the Hc2 ( T )  curve should increase (it is determined 
by the orbital effect ), and the value of Hc2 (T)  at low tem- 
peratures should decrease (it is determined by a paramag- 
netic effect). 

The phase of a superconducting soliton lattice has sev- 
eral unusual properties (Sec. 4) .  In principle, the distinctive 
electron spectrum in this phase could be observed by IR 
spectroscopy, and the spin density wave could be detected 
from the broadening of NMR lines. The situation may be 
complicated by the circumstance that the LOFF state 
should exist in a mixed vortex state; this situation would also 
give rise to levels in the gap because of the cores of the vorti- 
ces. It should also lead to a field modulation. The latter is not 
very important, since for HSHc this modulation would be 

weak, and the modulation of the field at the nuclei due to the 
spin density wave should play the major role. 

In addition to the organic superconductors, supercon- 
ductors in ultranarrow channels in strong fields might be 
suitable subjects for a study of the nonuniform state. Again 
in the case of these systems it has been found that the stan- 
dard paramagnetic limit is exceed by ~everalfold.'~ 

We wish to thank L. N. Bulaevskiy and V. V. Tugushev 
for a useful discussion of this work. 
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