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A new approach to the theory of the temperature dependence of the properties of magnetic 
materials with itinerant collectivized electrons is formulated. The effect which thermal phonon 
fluctuations exert on the magnetism via the magnetization dependence of the Debye temperature 
is taken into account. This magnetization dependence of the Debye temperature results from the 
particular form of the elastic modulus found from a common expression for the free energy at a 
constant magnetization density. New expressions are derived for the temperature dependence of 
the magnetization, the volume, and the thermal expansion coefficient ofweak ferromagnets. A 
new interpretation is offered for the anomaly in the thermal expansion ofan iron-nickel alloy of 
the Invar type. The baric derivatives and the isotopic effect are calculated. The phonon-induced 
temperature dependence of the magnetic susceptibility of paramagnets and ferromagnets is 
analyzed. 

1. INTRODUCTION per retains the Stoner ground state of a ferromagnet at 
~h~ general expression for the free energy which we will T = 0, but it leads to a different temperature dependence for 

be using below is certain properties. To a significant extent, this temperature 
dependence is determined by thermal fluctuations of phon- 

FM (T, V. M )  =p0 (v) +Feu (T, V, +@ (v, M )  f ( y (: ), ons, which are described by the function @f(T/@) in the 
present paper. 

(1.1) 
where F,( V) = FM (0, V,O),FeM is the magnetic component 
of the electron free energy, and Of( T/@) is the lattice com- 
ponent of the free energy, which corresponds to the law of 
corresponding states.' An important point is that the Debye 
temperature O depends on not only the volume but also the 
magnetization density M. The reason for this M dependence 
can be seen from the dependence of the Debye temperature 
on the bulk modulus, which is known to depend on the mag- 
netization d e n ~ i t y . ~  Here K,, the bulk modulus at constant 
density, is given by the following expression: 

a2F,w (0, V I  M )  d2Fa 
K,,,=v( =v- a2F,M (0, V ,  M )  

a vZ .v av2 

The temperature is assumed to be zero in this expression, 
which implies that we are ignoring the temperature depen- 
dence of quantities like O (  V,M). The use of ( 1.1 ) and ( 1.2) 
along with an explicit expression found for F,, in some way 
or other is the basic content of the self-consistent fluctu- 
ation-phonon approach to magnetism which we are present- 
ing in this paper. We will restrict the discussion to weak 
ferromagnets with collectivized itinerant electrons, so that 
the consequences can be analyzed exhaustively. 

We stress that an approach similar in its original form 
to our own was proposed by Kim et However, they used 
a result of a dynamic theory for the bulk modulus, which 
differs with that found by the standard method, ( 1.2). It can 
be shown that the bulk modulus used in Ref. 3 corresponds 
to that which would be found in the standard thermodynam- 
ic approach, but at a constant magnetic field (more precise- 
ly, at a constant magnetic induction) B instead of at a con- 
stant magnetization density. Such a modulus K ,  is k n ~ w n ~ - ~  
to differ substantially from K,, and for this reason the ap- 
proach of Ref. 3 rules out the Stoner ground state of a weak 
ferromagnet with itinerant electrons. In contrast, the self- 
consistent fluctuation-phonon approach of the present pa- 

2. MAGNETIC COMPONENT OF THE ELECTRON FREE 
ENERGY 

To derive the electron magnetic component of the free 
energy of a ferromagnet we use Stoner's model (Refs. 7 and 
8, for example), which is based on the two relations 

Here N is the total number of magnetic electrons, 0 is the 
magnetic moment of an electron, B is the magnetic induc- 
tion, 1C, is the exchange-interaction constant, V(E)  is the den- 
sity of electron energy states, and fF (E,T) is the Fermi distri- 
bution function. 

In the theory of weak ferromagnets with collectivized 
electrons, expansions in powers o fB  and M are carried out in 
(2.1 ) and (2.2 ) . Determining the Fermi energy E, from 

bfi 

finding the difference 77 - E, from (2.2), and eliminating it 
from (2.1 ), we find 

Here v = v ( E ~ ) ;  the prime means differentiation with re- 
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spect to the Fermi energy; on = v'/vn, and x is the Boltz- 
mann constant. 

Recalling the expression 

we can write the following expression for the electron com- 
ponent of the magnetic part of the free energy: 

(2.6) 
Finally, incorporating the free-energy component 
- iy(  V) T', where y (  V) is the coefficient in the formula 
C, = y (  V) T for the magnetization-independent electron 
heat capacity, we find the following expression for the elec- 
tron free energy of the metal: 

1 
FeM ( T ,  V ,  M )  =Feo(V) -- Y ( V )  T2  

2 

We will use this expression below for both paramagnets and 
ferromagnets. If we use the inequality 

which holds for weak ferromagnets and for strong paramag- 
nets, we find that (2.7) takes the form (cf. Ref. 9 )  

1 
FeM ( T ,  V ,  M )  =F,o(V) - - y ( V )  TZ 

2  

where we are using the standard notation 

P2v xo(V)=- 
6 ( 1 t 2 $ v )  

T,2 ( V )  = 
1+2~rv ' ( x x ) ~ o , '  ' 

In writing (2.6), (2.7), and (2.9), and in writing the term - M we used the inequality M > P  2vB. The volume depen- 
dence of the coefficients in (2.10) results from the corre- 
sponding dependence of the exchange-interaction constant 
$( V) and the energy-state density at the Fermi level, v, and 
its derivatives. This dependence of v on the volume arises 
(first) by virtue of condition (2.3) and (second) because of 
the volume dependence of the electron energy. Following 
Ref. 10, we assume 

where W( V) is the volume-dependent width of the band. We 
then find 

and Eq. (2.3) yields 
er: V ) / W ( V )  

N/2V= dE p ( E ) .  (2.13) 
0 

Finally, according to Ref. 11 we can assume In W = rln V, 
where we would have r = - 5/3 in the case of a d band. By 
using Eq. (2.3) and relations (2.11 b ( 2 . 1 3 )  we are able to 
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write the final results in a form which can be compared with 
model calculations. 

3. THERMODYNAMIC RELATIONS 

Shimizuh drew attention to the systematic use of ther- 
modynamic relations in the microscopic theory. In particu- 
lar, Shimizu contrasted and compared the quantities charac- 
terizing ferromagnets at a constant total magnetization of 
the ferromagnet and at a constant induction. In the con- 
struction of microscopic and semiphenomenological models 
in the theory of ferromagnetism, however, frequent use is 
made of such an order parameter as the magnetization den- 
sity as a thermodynamic variable. This approach requires 
contrasting and comparing thermodynamic quantities at a 
constant magnetization density and at a constant induction. 
We make such a comparison in the present section of the 
paper. 

Thinking of the magnetization density M as an order 
parameter in the theory of ferromagnetism, we find it con- 
venient to use the free energy FM (T, V,M), a function of T, 
V, and M. Here 

where S = - (d&/dT) , ,  is the entropy, B = V-' 
x ( c ~ F , / ~ M ) ~ , ,  is the magnetic induction, and PM 
= - (dFM/dv) , ,  is the pressure at a constant magneti- 
zation density. We can also write quantities which are deter- 
mined by second derivatives of the free energy: 

the isochoric heat capacity at a constant magnetization den- 
sity; 

the isothermal bulk modulus at a constant magnetization 
density; and 

the isothermal and isochoric magnetic susceptibility. The 
mixed second derivatives ( d  2FM/dTdM), and ( d  2FM/ 
dVdM) ., also play a definite role in a description of experi- 
mentally observable results. 

In experimental situations, the magnetization density is 
usually not constant. In contrast, conditions under which 
the magnetic induction B is constant are quite natural. In 
such a case it is convenient to use the free energy F, , 

which is a function of the temperature, the volume, and the 
magnetic induction. The magnetization density M on the 
right side of (3.5) is also a function of T, V, and B, governed 
by Eq. (2.5). This approach naturally emphasizes the pri- 
macy of the free energy FM. In accordance with (3.5) and 
(3.1) we have (cf. Ref. 6) 

where P = P, = P, + B M  = - (dF,/dV) ,, is the pres- 
sure at constant induction. The following relations also arise 

V. M. Zverev and V. P. Silin 402 



for the second derivatives of the free energy: 

which is the isochoric heat capacity at a constant magnetic 
induction, and 

(3.8) 
which is the isothermal bulk modulus at a constant magnetic 
induction. 

4. PHONON COMPONENT OF THE MAGNETIZATION- 
DEPENDENT PART OFTHE FREE ENERGY 

With Eq. ( 1.2) in mind, we write the bulk modulus at a 
constant magnetization density in the form 

where KO = Vd 2Fo/dV2 corresponds to the value of K ,  at 
M = 0; using (2.7), we find the following expression for 
AKM : 

where 

is a dimensionless parameter. In particular, making use of 
the small value of the parameter (2.8), and applying (2.11)- 
(2.13) to the case of weak ferromagnets or strong paramag- 
nets, we can write the following expression for r: 

d l n  V 
We will use these expressions to determine the magnetiza- 
tion-density dependence of the Debye temperature O ( V,M). 
We assume a constant derivative 

this assumption corresponds, for example, to the case in 
which the longitudinal sound velocity is described by 
u, -K 'I2, while the transverse sound velocity u, does not 
depend on K. In this particular case we have 

In a phenomenological treatment, r and s can be regarded as 
parameters of the theory. For their product we use the nota- 
tion ;i = rs. It is not difficult to see that at small values of M 
we have 

This expression allows us to write the last term in ( 1.1 ) in 
the following approximate form: 

. .  . 
T c M 2 0 ( V )  T 

= @ ( ' ) I ( -  @ ( k )  )+ 4 p ~ ~ ~ ~  q g (4.8) 
where 

As a result, we can now write the following expression for 
the free energy of a weak ferromagnet found by expanding in 
powers of M 2: 

VM' . (4.10) 

We wish to stress that a temperature dependence arises in 
the magnetic part of the free energy not only because of the 
thermal spreading of the Fermi level ( - T2) ,  as is usual in 
the Stoner approach, but also because of thermal phonon 
fluctuations [the appearance of the expression Oe,( T/O) 1. 

5. FERROMAGNETIC STATE; TEMPERATURE DEPENDENCE 
OF THE MAGNETIZATION 

One of the most important consequences of expression 
(4.10) for the free energy is an equation which determines 
the dependence of the magnetization density M of the ferro- 
magnet on the temperature T, the volume V, and the mag- 
netic induction B. According to (2.5), we have the Belov- 
Arrott equation 

In the case B = 0, T = 0, we evidently have M = M(0,0, V). 
The Curie temperature T,-the temperature at which the 
spontaneous magnetization vanishes in the absence of a 
magnetic induction (B = 0)-in Eq. (5.1 ) is determined by 
the equation 

The following asymptotic expressions will be useful below: 

In general we would have C,, (T)  = - (T/O)fV(T/O)  
here. From (5.2) and (5.3) we find the following expression 
for ferromagnets whose Curie temperature exceeds the De- 
bye temperature (T, > 6 )  and to which we apply the label 
"high-temperature," under the assumption T, 4 To: 

By way of comparison we recall that in the Stoner approach 
we have7 Tc - 11 + 2$vJ 'I2, while in the magnetic-fluctu- 
ation approach we T, - / 1 + 2$vIw4. A qualita- 
tively different dependence arises for low-temperature ferro- 
magnets, i.e., for ferromagnets with a Curie temperature 
lower than the Debye temperature ( Tc < O).  In this case we 
find from (5.2) and (5.4) 

4P2vK 0 3 V  41 1+2$v 1 K,Vo3 T ' = - . O =  
7 xoco c C, 

(5.6) 

where again we have assumed Tc 4 To. 
It is obvious from (5.6) that there is an isotopic effect in 
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the dependence of the Curie temperature on mi, the mass of 
the lattice atoms. According to (5.2) we have 

d In T ,  - 1 dlnT, --_-- Oq (T,lO) 
d In m, 2 dlnO 2 TcCph (Tc) 

1. (5.7) 

The right side of (5.7) varies from 0 to - 3/8. This result 
does not contradict the experimental results of Ref. 14. 

At high temperatures T> O, Eq. (5.1) takes the form 

A temperature dependence of this type is characteristic of 
(for example) the iron-nickel alloyk5 Fe,,, Ni,,, of the In- 
var type over the wide temperature range 0.5 
T, 5 T <  T, -- 500 K.  The Debye temperature of this alloy is 
350 K. 

On the other hand, at temperatures below the Debye 
temperature, T< O, Eq. (5.1 ) yields the following equation 
for a ferromagnet with a Curie temperature higher than its 
Debye temperature: 

Finally, we write Eq. (5.1) for the case in which the Curie 
temperature is lower than the Debye temperature: 

Equation (5.1) allows us to write the following expression 
for the magnetic susceptibility of a ferromagnet: 

where 
xGM"0, 0, C') B 

G = - .w ' 
In the limit B = 0, in which Eq. (5.1 ) takes the form 

the magnetic susceptibility of a ferromagnet at constant vol- 
ume has the temperature dependence 

The limiting expressions for the temperature depen- 
dence of the combination in brackets here are the right sides 
ofEqs. (5.8), (5.9), and (5.10). The magnetic susceptibility 
xv  is positive because of the inequality X, < 0, which holds 
for ferromagnets. 

6. MAGNETOTHERMOELASTIC EFFECTS 

To describe the change in the volume of a ferromagnet 
when the temperature and magnetic induction change, it is 
convenient to use the thermodynamic potential as a function 
of the pressure, the temperature, and the magnetic induc- 
tion: 

@ ( P ,  T ,  B)=@o(P)+6FlT, Vo(P), M ( T ,  B, V o ( P ) ) I ,  

(6.1) 
where the small increment SFis given by (4. lo),  the volume 
Vo(P) is given by the expression Vo(P) = d@,(P)/dP, and 
the magnetization density is given as a function of the tem- 
perature, the magnetic induction, and the volume by (5.1 ). 

Correspondingly, using (6.1 1, we find the following expres- 
sion for the volume of a ferromagnet: 

Using the magnetization-independent bulk modulus 
KO = - ( d  In Vo/dP) - ' and the explicit expression for S F  
according to (4. lo ) ,  we find from (6.2) 

Here the relative volume change which is unrelated to the 
magnetism is given by (cf. Ref. 1 ) 

and the magnetoelastic relative volume change w, due to 
the change in the magnetization is given by (cf. Ref. 6)  

where 

For a weak ferromagnet we find the following approxi- 
mate equation by virtue of the small value of (2.8), in accor- 
dance with (2.10) : 

- dlnxo(V) - dlnM2(0,O,V) 
- 

d ln I.' dln V 
(6.7) 

We can thus write (6.6) as 
1 d In M  (0, 0, V) 1 d In A M ( O , O ,  V, (I-') ) A = - ---- = - - 

dP 2Koxa d l n  V 2x0 

Equation (6.7) becomes progressively more accurate as 
d In M (0,0, V)/d In V increases. We might also note that 
the coefficient A is a directly measurable quantity. Also di- 
rectly measurable arex, and the baric derivative of the loga- 
rithm of the magnetization at T = 0 and B = 0. 

The coefficient given by (6.8) also substantially deter- 
mines the induced magnetostriction, 

measurements of this quantity could also reveal the value of 
A .  

Expression (6.5) has a temperature dependence unu- 
sual in comparison with that in the Stoner approach because 
of the unusual dependence of the magnetization, given by 
(5.1). The situation has been seen directly in an experi- 
ment15 on the alloy Fe,,, Ni,,, , where the spontaneous 
magnetostriction o, was observed to have a linear tempera- 
ture dependence in the region 0.5 T, < T <  T,, in accordance 
with Eq. (5.8), which actually holds for T> 0 / 4 z  10' K. 
Another manifestation of the new temperature dependence 
of the magnetization predicted by (5.1 ) arises in a consider- 
ation of the thermal expansion coefficient 
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Here a, corresponds to the temperature dependence which 
results from the thermal spreading of the electron Fermi lev- 
el and is given by 

This is the thermal expansion coefficient which arises in the 
Stoner theory. The second term in (6.10) corresponds to the 
phonon component and is given by 

1 d  ln O A M 2  (0 ,0 ,  V , )  (1-T,2/To2) 
aPh=Cph ( T )  [- --- - 

V o  d P  Ow(T , /O)  (1+E)  1 
While the first term on the right side of (6.12) corresponds 
to the ordinary thermal expansion of a solid' due to the lat- 
tice, the second term, due to the magnetoelasticity, is a new 
effect-a manifestation of thermal phonon fluctuations in 
the magnetothermoelasticity of ferromagnets. To emphasize 
the importance of this effect, we consider the thermal expan- 
sion coefficient of the Invar alloy Fe, ,, Ni, ,, at T-  Tc . 
Since the thermal expansion is governed by phonons at these 
temperatures in the paramagnetic phase, we focus on expres- 
sion (6.12). Using (5.3) and B = 0, we can write that 
expression in the form 

where the first term in (6.13) is the same as the correspond- 
ing term in (6.12), and 

The experimental data on this all0y~3"9'~ are Tc = 495 K 
and AM (0,0, V,) = 1.4-1.996. Accordingly, working from 
the experimental data we find ha$ = - (2.8-3.8) lo-' 
K - '  for this alloy at the Curie temperature. Another possi- 
bility for determining ha$ arises if we estimate 
AM (0,0, V,) from the experimental value of the induced 
magnetostriction at T = 0 which is given in the review in 
Ref. 6: h = 5.5. Oe-' andXo = - l.l.lOmsu/g-mole, 
M(O,O, V,) = 9438 msu/g-mole (Ref. 16). According to 
(6.9) we then have AM 2(0,0,Vo) = - h[M(O,O,V,)/ 
2xo] = 2.4%. This value gives us ha$ ( T, ) = - 4.8 . lo-' 
K-'. On the other hand, the measured bulk thermal expan- 
sion coefficient in the paramagnetic phase for the alloy 
Feo654 NiO 346, of nearly the same composition, is a;, 
~ 3 . 1 0 - ~  K-' at T =  T,, a:, ~4 .2 .10 - '  K- '  at T =  600 
K, and a:, ~ 5 . 4 .  lo-' K-'  at T = 700 K ,  according to Ref. 
17. For this alloy the two terms in (6.13) are evidently com- 
parable. Furthermore, they cancel each other out to a large 
degree in the sum, and we believe that this effect corresponds 
to the "Invar anomaly" observed experimentally. It can be 
seen from these estimates that an accurate calculation of the 
degree of cancellation of the terms in (6.13) will require 
corresponding measurements from a single sample. We 
would like to stress that the two terms in (6.13)-the nor- 
mal term and the thermomagnetoelastic term-depend on 
the temperature in the identical way, so that under condi- 
tions such that they cancel out one will observe the Invar 
anomaly over a broad temperature range. 

In summary, the unusual aspect of the alloy Fe, , N i x  
at ~ ~ 0 . 3 5  which leads to the Invar property results from the 
following set of properties, according to the approach devel- 
oped in this paper. First, the alloy has T, > O. Because of 
this relation, the thermal expansion is determined primarily 
by the phonon component, (6.13), at temperatures T >  O/ 
4- lo2 K. Second, this alloy has a fairly large derivativeI6 
d In M '(0,0, V)/d In V=: 10 [by way of comparison, the val- 
ues for pure Fe and Ni, for which the relation T, > O also 
holds, are16 d In M2(0,0, ~ ) / d  In V ~ 0 . 9 1 .  It is for this rea- 
son, as we showed above, that the components a:, and ha: 
are comparable in magnitude and cancel out in Invar. Third, 
the identical temperature dependence of a;, and ha; 
means that the two components will cancel out over a broad 
temperature range at T< Tc.  At low temperatures, T <  @/ 
4- 10' K, where the phonon component ( cc T 3 ,  is small, the 
electron component, (6.1 1 ), becomes important. This com- 
ponent could apparently lead to the observed" negative val- 
ues of the thermal expansion coefficient of Invar at fairly low 
temperatures. 

Finally, as can be seen from Sec. 3, the following quanti- 
ties are important: 

The last two expressions, along with (3.8), give rise to 
the following relation between the bulk modulus at a con- 
stant magnetic induction and that at a constant magnetiza- 
tion density (cf. Refs. 18 and 19) : 

M Z  (0, 0,  V )  d In M (0 ,  0, V )  
KB-K.v = (6.19) 

X G ( I + ~ )  ( dlnV 

The temperature dependence in the last equation arises ex- 
clusively from l. A comparison of this dependence2' with 
experimental results2' on the alloy Fe, ,, Ni,,, reveals that 
near the Curie temperature we should see, in addition to the 
effects which we have been discussing, some other effects, 
among which magnetic fluctuations should apparently play 
the leading role. ",I3 

We turn now to the baric dependence. We first note that 
the following relation obviously holds, according to (6.7) : 

Furthermore, the baric derivatives of the spontaneous mag- 
netization at T = 0 are frequently compared experimentally 
with the baric derivatives of the Curie temperature. In our 
analysis, a relation of this sort can be derived from (5.2) and 
(6.20). Specifically, when we make use of the small param- 
eter in (2.8) we find 

d In T, 20q (T,/O) rl In M (0,  0, V,) 
= - - - (6.21) 

d P  TL'ph (Tc) dP 

In this case the quantity 

2 0 ~  (T,./O) /T,C,h (T,) 
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varies between 2  at Tc > O  and 0.5 at Tc < O ,  according to 
( 5 . 3 )  and ( 5 . 4 ) .  In particular, according to experimental 
data presented in Ref. 15 the value of the quantity in ( 6 . 22 )  
for the alloy Fe,,, Ni ,,,, , with T,  > O ,  is 1.7, while for the 
alloy Zr(Fe,,,Co,, ),, with T,  < 0, the quantity in ( 6 . 2 2 )  is 
0.44. Accordingly, these and similar experimental results 
may be connected to some extent with the fluctuation- 
phonon dependence of the quantity in ( 6 . 22 ) .  

To conclude this section of the paper we write an 
expression for the heat capacity at constant induction. Ac- 
cording to (3.71, ( 6 . 15 ) ,  and ( 6 . 16 )  we have 

( O , O ,  V )  VT 
Cv,s=Cv,, - - [ l2 I i ~ O ~ . h ( ~ )  ] ' 

xo ( l + E )  2fi2vK0V 
(6 .23 )  

In particular, we find that in the limit T >  O  we have 

These expressions describe a discontinuity in the heat capac- 
ity at the Curie point at B = 0 .  According to ( 6 . 2 3 ) ,  the 
magnitude of this discontinuity is 

AC=- 
X o  

(6 .25)  
differing from the standard result22 by the second (compara- 
tively large) term in square brackets. It is interesting (cf. 
Ref. 23 )  to compare the discontinuity in the heat capacity 
with that in the thermal expansion coefficient. According to 
( 6 . 2 5 ) ,  ( 6 . 1 1 ) ,  and ( 6 . 12 )  we have 
Aa 1 d ln M (0 ,  0 ,  V o )  TC2 ZxOCph ( T c )  T e  
-=- 
AC V dP [F - 2P2vKoV 

(6 .26)  

Assuming the condition T f  4 T i ,  and incorporating the re- 
lation between baric derivatives given by (6 .2  1 ), we find 

Acz 1 20q3(Tc/@) d ln M (0, 0, V o )  1 d l n  T ,  
--=--- --- - 
AC V TcCph(Tc) dP V dP * 

(6 .27)  

The right side of ( 6 . 2 7 )  corresponds to Eq. ( 2 )  of Ref. 23. 

7. MAGNETIC SUSCEPTIBILITY OF PARAMAGNETS AND 
FERROMAGNETS IN THE PARAMAGNETIC PHASE 

In the case of normal metals, in contrast with ferromag- 
nets, Eq. ( 5 . 2 )  does not determine a Curie temperature. 
However, Eq. ( 5 . 1 )  holds, although the term M2/ 
M 2(0,0, V )  in this equation is small. Accordingly, we can use 
Eq. ( 5 . 1 )  to determinex = M / B ,  which is the paramagnetic 
susceptibility of a metal. We find 

This expression holds for both paramagnets and ferromag- 
nets in the paramagnetic phase; in addition-an important 
point-it holds for not only weak ferromagnets but also 
strong ones. We begin with the low-temperature case, in 
which the Curie temperature is lower than the Debye tem- 
perature. For a low-temperature ferromagnet ( T ,  < O )  we 
then find 

In addition, in the case of a high-temperature ferromagnet 
( T ,  > 0 ) ,  we have 

If ( T / T , )  is sufficiently small, ( 7 . 3 )  and ( 7 . 4 )  correspond 
to the Curie-Weiss law 

However, the values of T w  in these two cases are different. 
For the low-temperature ferromagnet, T w  may, under oth- 
erwise equal conditions, turn out to be smaller than the cor- 
responding value for the high-temperature ferromagnet. 

Let us look at the corresponding equations for para- 
magnets, with X ,  > 0  (or, equivalently, with 1 + 2$v > 0 ) .  
According to ( 5 . 2 )  it is more convenient in this case to write 
( 7 . 1 )  as 

This expression takes the following form at temperatures 
below the Debye temperature: 

where 

We assume T :  > 0 .  Since the relation x,( V) > 0  holds for 
paramagnets, the right side of ( 7 . 7 )  is positive under the 
condition T f  < 2 T i .  While Tg is always positive in the the- 
ory of Stoner ferromagnets, in our analysis it may or may not 
be positive. The case T i  > 0 ,  however, is interesting because 
in this case the magnetic susceptibility goes through a maxi- 
mum as a function of the temperature according to ( 7 . 7 ) ,  in 
agreement with experimental results on palladium at com- 
paratively low  temperature^.'^ The temperature at which 
this maximum is reached is 

Near T,,, as given by ( 7 . 9 ) ,  the electron component ( a T  ') 
and the phonon component ( cc T 4 )  of magnetic susceptibil- 
ity ( 7 . 7 )  become comparable in magnitude. On the other 
hand, in the heat capacity of a metal these components be- 
come comparable' at temperatures - 0 / 4 .  In the case of 
palladium, the maximum in the susceptibility is seen at a 
t e m p e r a t ~ r e ~ ~  ( T,,, ) ,, --, 80 K ,  close to O,,  / 4  z 69 K .  

In the opposite situation, with T i  < 0, i.e., in the case 

the magnetic susceptibility falls off monotonically with in- 
creasing temperature. At temperatures below the Debye 
temperature we have 

x=2xo [1+T2/  j To12+T4/T14] I-', ( 7 . 11 )  

and at Opd  /4 =. 69 K expression ( 7 . 6 )  gives us 
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Expressions (7.11 ) and (7.12) describe a monotonic de- 
crease in the paramagnetic susceptibility with increasing 
temperature, in agreement with observations for many met- 
als (see, e.g., Refs. 6 and 24). On the other hand, there are 
many metals which exhibit an increase in the paramagnetic 
susceptibility with increasing temperat~re.~, '~ This possibil- 
ity can be seen easily, in particular, in (7.6) for T> O, where 
this expression can be written 

where 

The last expression may be positive if 7 < 0. If expres- 
sion (7.14) is to correspond to a paramagnet in this case, the 
denominator in (7.14) must not vanish. This condition is 
satisfied at all times if 2T3 > I T,I. In the latter case, accord- 
ing to (7.14), the magnetic susceptibility increases with in- 
creasing temperature and reaches a maximum at 

The temperature given by this expression is significantly 
higher than that given by (7.9) and may be related (for ex- 
ample) to the value of the temperature at which the maxi- 
mum is seen in the magnetic susceptibility of rhodium.*' 
However, a detailed comparison will presumably require an 
accurate account of the role of thermal e~pansion.'~ 

8. CONCLUSION 

The approach formulated above (certain aspects of 
which were summarized in Ref. 27) to the theoretical de- 
scription of the effect of thermal phonon fluctuations on the 
magnetic properties of metals with itinerant collectivized 
electrons differs from the approach of Refs. 3 in that it makes 
use of the change which is caused in the elastic properties of a 
metal by the magnetization and which arises in a self-consis- 
tent treatment of the problem. A change of this sort is de- 
scribed by a common expression for the free energy, treated 
as a function of the order parameters (the magnetization 
density). The behavior caused by thermal phonon fluctu- 
ations corresponds to several properties which have been 

exhibited experimentally by magnetic materials and which 
have been difficult to interpret theoretically. On the other 
hand, we must stress that we have dealt here with a very 
simple self-consistent model of the effect of thermal phonons 
on magnetism. Turning this model into one more appropri- 
ate for a description of specific magnetic materials will re- 
quire further analysis. 
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