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Self-induced transparency is investigated theoretically for Rayleigh waves interacting with the 
electron-nuclear spin system of paramagnetic impurities. Explicit solutions are found which 
correspond to McCall-Hahn and breather 2~-solitons. The parameters of the nonlinear 
Rayleigh waves are shown to depend on the transverse structure of the field. The possibility of 
detecting the self-induced transparency experimentally is discussed. 

1. INTRODUCTION 

The phenomenon of acoustic self-induced transparency 
(SIT) can be used to investigate the properties of acoustic 
solitons in resonantly absorbing condensed media. The theo- 
retical treatments consider a model in which volume plane 
waves propagate in an unbounded medium. The problem 
then reduces to solving a nonlinear system of equations in- 
volving time and a single spatial coordinate. This system is 
exactly solvable by the inverse scattering method,' and its 
solutions were analyzed in detail in Ref. 2. Such a model 
correctly describes the experimental data on acoustic SIT 
when the propagation of the acoustic waves is not signifi- 
cantly affected by the presence of solid b~unda r i e s .~ .~  

In bounded (multilayer) systems the situation is differ- 
ent, because the interfaces between the layers, which have 
different elastic properties, can generate surface acoustic 
waves whose structure differs greatly from that of internal 
plane waves. The most important case involves Rayleigh 
waves, which can propagate either near a free solid surface 
or along the interface between a solid half-space and a solid 
layer. High-frequency Rayleigh waves are easily produced 
and are currently the subject of numerous experimental in- 
vestigations (see, e.g., Ref. 5 and the bibliography cited 
therein). If the Rayleigh waves travel in a medium contain- 
ing paramagnetic impurities, the wave-impurity interaction 
can excite resonant transitions in the impurities. There are 
two situations of particular interest: 1)  the paramagnetic 
impurities form a thin resonance layer on the solid surface; 
2) the entire medium is resonant. In contrast to the case of 
internal plane waves, the analysis of SIT for Rayleigh waves 
requires that one solve a nonlinear two-dimensional system 
of equations (two spatial coordinates plus time) self-consis- 
tently together with the evolution equations for a spin sys- 
tem interacting with the Rayleigh wave. No general method 
is available for doing this analytically, and a detailed nu- 
merical analysis lies beyond the capabilities of existing com- 
puters. Self-induced transparency for Rayleigh waves inter- 
acting with paramagnetic impurities is investigated 
theoretically in the present paper, where we employ approxi- 
mate methods to find some explicit solutions (breather and 
McCall-Hahn 2.rr-solitons). 

2. DERIVATION OF THE EQUATIONS 

The basic features of SIT for Rayleigh waves can be 
analyzed by considering a simple model in which a nonme- 
tallic diamagnetic solid contains a small number of para- 
magnetic impurities with electron and nuclear spins S and I. 

For simplicity we takes = I = 1/2 and assume that the solid 
medium fills a half-space x < 0. We consider a Rayleigh wave 
pulse whose duration Tis much shorter than the irreversible 
relaxation times; the wave has wave vector Q and frequency 
wQ , and it propagates along the positivez axis on the surface 
x = 0. A constant magnetic field Ho is also applied along the 
z axis. We will analyze the case when the Rayleigh wave 
excites forbidden transitions in the electron-nuclear spin 
system (transitions in which both the electron and the nu- 
clear spins change direction). In this case wQ ,--#, + w,, 
where w, and w, are the Zeeman frequencies for the electron 
and nuclear spins (see Ref. 6 for the case of internal acoustic 
plane waves). 

The deformation vector u in the Rayleigh wave is ex- 
pressible as u, + u, , where V X u, = 0 and V .u, = 0 (Ref. 
7 ) .  In accordance with the above model, we assume that no 
strain is present on the free surface x = 0: 

Among the solutions satisfying these boundary conditions 
we consider those that correspond to Rayleigh waves, whose 
amplitude decays exponentially inside the solid as x - - m .  
Using V X u, = V.u, = 0, we can write 

for the z-component of u of interest, where the quantity 

determines the transverse structure of the field; the creation 
and annihilation operators a: and a, for the Rayleigh 
modes satisfy the commutation  relation^'.^ 

[ah, ah/] =[ah+,  ah/+]  =0, [a,,  a , ,+]  =6,,; 

the quantities x, ( k )  and x, ( k ) ,  which determine the rate of 
wave damping along the x axis, are given by 

where c, and c, are the longitudinal and transverse wave 
velocities; p is the density of the medium, and w, is the fre- 
quency for the k th mode. 

The boundary condition ax,, 1, =, = 0 implies that the 
deformation vector u in the Rayleigh wave lies in a plane 
perpendicular to the surface and containing the z axis, i.e., 
u, = 0. It follows from the remaining boundary conditions 
in ( 1 ) that w, and k  are related by 
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Comparison of (2)  and (3) yields w, = ck, where c is the 
velocity of the Rayleigh wave. 

In the rotating wave approximation,'0 the Hamiltonian. 
of the system is given by 

where we have set fi  = 1. Here g = AHJzZzzP /2wo; P is the 
Bohr magneton; A is the hyperfine interaction constant; 
E, = auZ/dz = i(A - - A + ); the F,,, are the components 
of the deformation and spin-phonon coupling tensors; and 

A , * = Z   xi) qkakf exp ( ~ i k z , ) ,  qk= (zpok) -xk, 
h 

The Hamiltonian (4)  leads to the following Heisenberg 
equations of motion for the spin and field mode operators: 

where 

u(k, s) =Pk(xl) qk exp (ikz,) 

(we neglect relaxation and phase modulation effects). This 
system of SIT equations for Rayleigh waves is valid for any 
distribution of paramagnetic impurities in the half-space 
x<o. 

Further simplification can be achieved by replacing the 
operator equations (5) by the corresponding equations for 
the expectation values. In the semiclassical approximation, 
for which the expectation values for a product of operators 
of the type A * S can be factored as" 

(A*Sz>=(A*>(Sz>, 

we obtain the equation 

d,=-iokak + g z 8 , - u ' ( k ,  r , )  
1 

for the acoustic field and the following system of equations 
for the variables B ,* and Nl : 

Bl+=i (os+or -ok)Rl++2gNla l+ ,  

N,=-g(B,+a,-+B,-a,+), ( 7 )  

where the quantities a,, j? ,* , and N1 are defined by 

Here lak ) gives the k th coherent-state mode for the surface 
phonon~.'.~ 

3. THE MCCALL-HAHN 2~-SOLITON 

We consider the case when the paramagnetic impurities 
are contained in a monolayer at the surface of the medium. 
The number of active particles per unit volume is then 
N(xl ) = N,G(x, ),. and the quantity p, is given by - 
B ; = 6(x, )i? , (z ,  , t ) .  Since all of the basic properties of 
SIT can be studied at the precise resonance wQ = w, + w,, 
we will solve the SIT equations in this case: 

u,=-'/~ sin Y (z,, t), v,=O, N,=-'1, cos Y ( z , ,  t ) ,  (9)  

where 

B,- (z,, t) = (u , - iv , )  exp [ -i (mQt-QzI) I ,  

Y is the area of the envelope of the Rayleigh wave pulse. 
Multiplying Eq. (6)  by p, (0)77, exp(ikz, ), summing 

over k, and using Eq. (8) ,  we obtain 

where 6, = &Ik (O),  and L refers to the yz plane. 
We expand 6, as a Taylor series about the mean value of 

the wave vector Q: 

Substituting this into Eq. ( lo ) ,  discarding terms of order 
( Ak /Q)', and separating real and imaginary parts, we get 
the relation 

between wQ and Q and the equation 

d2YldtZ+cd2Y/dtdz,=-a,2 sill Y,  

for the area Y of the envelope; here 

Equation ( 1 1 ), the familiar sine-Gordon equation, is 
exactly solvable by the inverse scattering method and admits 
a soliton solution.' Equation ( 1 1 ) can be solved more simply 
by passing to the variable T = t - zl /V, where Vis the veloc- 
ity of the soliton. Equation ( 1 1 ) then becomes 
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d z Y / d ~ 2 = T - 2  sin '4, where 

where T is the width of the pulse, and it has the solution 

which corresponds to a McCall-Hahn 2~-pulse (soliton). lo  

It is evident from these expressions that unlike the case of 
internal plane-wave solitons, the parameters of the Rayleigh 
wave soliton depend on the factor PQ (0)  = c2/2c:, which 
allows for the transverse structure of the field. 

These results can be generalized as in Ref. 2 to the 
slightly off-resonance case and to allow for inhomogeneous 
broadening and relaxation effects, for which the transverse 
field structure plays no role. 

Since c = (,c,, where 0.87 < 6, < 0.96 (Ref. 7), it is evi- 
dent from Eq. (12) that for a given duration T, the soliton 
velocity for a Rayleigh wave is of the same order of magni- 
tude as for internal plane-wave solitons. Moreover, the solu- 
tions ( 12) can be observed experimentally under roughly 
the same conditions (field and two-level system parameters) 
as for the internal plane waves studied experimentally in 
Refs. 3 and 4. 

4. PULSATING SOLITON (BREATHER) 

We now consider the case when the paramagnetic im- 
purities are distributed uniformly throughout a bulk solid 
medium. To solve the system (6), (7)  at the precise reso- 
nance wQ = ws + w,, we recall that (dBk /dk), = - Q -' 
and obtain 

where 
1 

~ , ( x , z , ~ ) = 2 p ~ ( ~ ) g  j & ( z , t P ) d t 1  
- s 

is the area of the envelope of the Rayleigh wave and n is the 
number of active particles per unit volume. We note that in 
contrast to the previous case, Y, also depends on the trans- 
verse coordinate x .  

Equations ( 13) can be solved if all the amplitudes are 
assumed to vary only slowly with z and t:  

Multiplying Eq. (6)  by 77, exp(ikz,. ), adding over k, and 
using (8 ), we obtain 

Expanding sk (x, ) as a Taylor series about the average 
wave vector Q, we obtain the system of equations 

after some straightforward algebra, where 

Y l l  = 2g  5 e ( z ,  t f )  d l1 ,  B2=g'nQ/2pe. 
- m 

The last equation can be solved for small Rayleigh wave am- 
plitudes Y' < 1. Using the series expansion of sin (pQ Y; ), we 
get the following nonlinear equation 

where 

a i2=RZk, ,  u ~ ~ = ~ I ~ H ~ ~ ~ ,  

L 

If one seeks a solution of the form 

Eq. ( 14) can be solved explicitly as in Refs. 11 by transform- 
ing it into the nonlinear Schrodinger equation. In order to do 
this, the condition Y; - lo-' must be satisfied. 

In this paper we seek a solution of ( 14) of the form 

'f! ,'=rp(t-zlu,)cos(Qt-hz), cp=cp', (15) 

where v, is the velocity of the nonlinear wave, 

Under these conditions we can get an explicit expression for 
the soliton when Y; - lo-', which is less restrictive than in 
Refs. 11. Indeed, inserting ( 15) into ( 14), separating real 
and imaginary parts, and equating terms of the same order, 
we obtain the relation 

between 52 and A, and the nonlinear equation 

( d q l d r )  2=T12~Z-DzZcp4, 

where 

where TI is the duration of the pulse. The contribution from 
the small higher-order terms can be found without difficulty 
by the standard procedure. 

Equation ( 16) admits the soliton ~ o l u t i o n ' ~  
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where the soliton velocity vo satisfies c > v, > c/2. The area of 
the pulse envelope is then given by 

which corresponds to a pulsating soliton (breather). 
For frequencies fl- 10' Hz (R < a, ), all of the above 

conditions are satisfied for typical Rayleigh waves and low 
paramagnetic impurity concentrations (w, - 101° Hz, 
transverse relaxation time T2 - s, pulse length 
T, - 10V6 s, c- lo5 cm/s, a, - los Hz, cf. Refs. 3 and 4).  
This suggests that the solitons may be observable experimen- 
tally. 

We note that for the above parameter values the soliton 
length is - 1 cm, and for given parameter values a Rayleigh 
wave breather moves much faster than the McCall-Hahn 
2a-soliton considered in Sec. 3. 

5. CONCLUSIONS 

We have thus found that Rayleigh wave solitons can 
form during self-induced transparency. A McCall-Hahn 27r- 
soliton forms if the resonant particles are confined to a sur- 
face monolayer, while breathers form if the paramagnetic 
impurities are uniformly distributed throughout the interior 
of the medium. Equations (12) and (17) give the explicit 
form of the nonlinear waves at x = 0; for x < 0 the wave am- 
plitudes decay exponentially at the rates x ,  and %,. 

In this paper we have discussed in detail the case when 
the Rayleigh waves excite forbidden transitions in the im- 
purities. Our results extend easily to the case when the Ray- 
leigh waves excite allowed transitions in paramagnetic im- 
purities with an effective spin S = 1. For internal plane 
waves, this case was studied theoretically and experimental- 

ly by Shiren for MgO crystals activated with Fe2+ and Ni2+ 
ions (Ref. 3), and in Ref. 4 for LiNb03:Fe2+ crystals. We 
note that MgO and LiNbO, crystals are both widely used as 
substrates in experiments on surface acoustic waves (see, 
e.g., Ref. 5) .  

Although our analysis of the basic properties of SIT for 
Rayleigh waves was carried out for an isotropic elastic half- 
space, the results hold quite generally. In particular, they 
remain qualitatively valid for self-induced transparency of 
Rayleigh waves in anisotropic materials. Inverted (amplifi- 
er) media correspond to a different initial condition and can 
be treated analo~ously. This case may prove to be of interest 
in strongly damping media. 
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