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Analytic results are obtained for resonance self-focusing. They describe the evolution of the 
average beam radius under saturation conditions. The neck of the nonlinear focus is discussed 
in detail. It is shown that the transverse and longitudinal dimensions of the focal region have 
discontinuities as functions of the laser-beam parameters and density of the medium. 

1. INTRODUCTION 

The phenomenon of self-focusing' is quite general: after 
an intensity threshold has been reached, it accompanies the 
propagation of high-intensity radiation through any medi- 
um in which the polarizability is a nonlinear function of the 
electric field in the beam (cf., the reviews in Refs. 2-4). The 
self-focusing process is relatively simple to describe in gen- 
eral terms,5 but turns out to be quite complicated when an 
attempt is made to carryout a detailed and comprehensive 
investigation of it. This applies particularly to experimental 
studies, in which the use of high intensities ensures that the 
phenomenon of self-focusing is accompanied by the stimu- 
lated generation of new waves6.' and by the ionization of the 
molecules. 

Apart from factors such as the initial shape of the trans- 
verse beam profile, the time dependence of its intensity, and 
the ratio of the input to critical intensities, the saturation of 
the nonlinearity of the permittivity of the medium plays an 
important part in s e l f - fo~us in~ .~ - '~  This saturation leads to a 
weakening of the focusing properties of the medium, a re- 
duction in the final focal diameter, the possibility of 
quasiwave propagation, and the evolution of a substructure 
in the beam intensity profile. 

There is particular interest in the study of self-focusing 
under resonance c~nditions"-'~ because resonance pro- 
cesses play an important part in quantum electronics and 
nonlinear optics. The absence of thermal effects and the fact 
that ionization is of minor importance ensure that resonance 
gases are convenient for the investigation of self-focusing in 
its purest form. It is no accident that the agreement between 
theory and experiment on self-focusing (self-defocusing) of 
laser radiation has been achieved precisely for resonance 
gases.'7-26 We also not Ref. 18, which reports the observa- 
tion of self-channeling and quasi-wave propagation of reso- 
nance radiation. 

When self-focusing (self-defocusing) with allowance 
for permittivity saturation was investigated, the analytic re- 
sutls were obtained for paraxial rays. Analysis of the com- 
plete transverse distribution, on the other hand, is usually 
based on the numerical intergration of the parabolic equa- 
tion describing the propagation of the beam in a passive me- 
dium. In the present paper, resonance self-focusing is exam- 
ined by the method of moments,27 which enables us, in the 
nonlinear saturation region, to obtain analytic results for the 
mean radius of the beam. We shall show that the dimensions 
of the nonlinear focal caustic exhibit discontinuities as func- 
tions of the density of the medium, the intensity, and the 
geometric beam factors at entrance to the medium. 

2. SELF-FOCUSING AND SELF-DEFOCUSING WHEN THE 
OPTICAL TRANSITION IS STRONGLY SATURATED 

For sufficiently large detuning from resonance, the in- 
teraction of high-intensity radiation with a resonance medi- 
um is adiabatic in character (precisely this case is considered 
below), and the permittivity of the medium can be represent- 
ed by the expression28325 

~=l+p( l+g)- ' "  sgn A. (1)  

wherep = 477-N Id I2/fil A I, N is the number density of reso- 
nance atoms, d is the transition matrix element, A = w, - w 
is the detuning from resonance, w, is the optical transition 
frequency, w is the frequency of the high-intensity wave, 
= 41d ' 1 I E 1 '/fi2A2 is a dimensionless intensity parameter 

of the light wave, and E is the electric field amplitu !e in the 
wave. The propagation equation has the following form in 
the quasi-optical appro~imation'.~ 

where k is the wave vector, z the propagation coordinate, V: 
the two-dimensional Laplace operator, written in terms of 
transverse coordinates, and 

E,, (IE12)-~-~(IE12=0)=p[(lf~)-"-l] sgn A (3)  

is the nonlinear part of the permittivity ( 1 ). 
For the chosen adiabatic interaction conditions, there is 

no absorption (the permittivity E is real), so that we have the 
quantity29 

is conserved; apart from the factor c/277, this is the total 
energy flux flowing through the beam cross section. What- 
ever the particular form of E,  there is a further conserved 
q~ant i ty , '~  namely, 

where G( IE 1') is a solution of 

Using (2), (4) ,  ( 5 ) ,  and (6) ,  we find that the mean square of 
the beam radius is given by27 
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and 

In the first nonlinear approximation, the integrand in (8 )  
vanishes, and the resulting equation predicts the collapse of 
the beam for FI, < 0 (self-focusing) or the blowing up of the 
beam for n, > 0 (self-defocu~ing).~' 

Substituting&,, and G from (3 )  and (6)  into the right- 
hand side of (8) ,  we can rewrite this equation in the form 

Now consider the case of high intensities: 

in which case, the permittivity of the medium (in the central 
part of the beam) is found to saturate to a considerable ex- 
tent. We note that, for asymptotically high intensities 
({- co ) , the medium becomes completely trnasparent 
( E -  1 ) and the laser radiation propagates in the medium as 
if it were a vacuum, retaining its initial Gaussian profile. 
This suggests (see also Ref. 3 1 ) that we can use the Gaussian 
profile 

E(z ,  p)=EoR-'(z)  exp 1-pZIRY(z 1 

to evaluate the integral in (9) ,  subject to condition (10). 
Retaining after integration all terms up to the first order in 
the small parameter R (z)/{,, we obtain the following equa- 
tion for the mean beam radius T(z) = [R (z)/R (0)  ] ' I 2 :  

where R, = kR (0)/2 is the diffraction length, r is the radi- 
us of curvature of the wavefront at entry into the meqium, 
and R j = R (0)  f y/16p is a parameter determining the fo- 
cusing properties of the medium. Note that the radiation 
intensity and density of the medium are represented by the 
single parameter R j in ( 1 1 ). An increase in intensity is com- 
pletely analogous to a reduction in the medium density. This 
is natural for the saturation region because an increase in the 
intensity smooths out the transverse profile of the permittiv- 
ity of the medium and thus reduces the focusing or defocus- 
ing properties of the medium. A reduction in the density of 
the medium also results in a weakening of the focusing or 
defocusing properties. 

For A < 0, Eq. ( 1 1 ) describes the self-focusing and, for 
A > 0, the self-defocusing of high-intensity radiation. In the 
latter case, a beam that converges on entering the medium 
becomes irreversibly divergent after a single contraction. 
From now on, we shall mostly confine our attention to the 
self-focusing regime. 

A relatively simple analysis of ( 1 ) for A < 0 shows that 
a high-intensity wave propagates under quasi-wave condi- 

tions through the resonance medium. In general, the radius 
of the high-intensity beam that is focused on entering the 
medium will subsequently oscillate between the minimum 

r,=q, [ 1-2 cos ( ~ / 3 - ~ / 3 )  ] (12) 

and the maximum 

r2=q2[ i+2 cos ( ~ 1 3 )  ] (13) 

values, where 

The initial contraction of the beam from T(z = 0 )  = 1 to - 
r (z)  = TI is described by 

~ ( ? Z + ~ ~ ) - ' ~ { T ~ [ F ( ( P ( Z ) ,  k ) - F ( ( ~ ( o ) ,  k ) ]  
- (F1+r3) [11 ((p ( z ) ,  kL,  k )  -n (9 ( O ) ,  k 2 ,  k )  1) = z / ~ R / ,  

( 14) 
and hence, for T(z) = T,, we obtain the focal length, as well. 
The following designations are used in ( 14): 

cp ( z )  =arcsin 
( f 2 - T I )  [1 . ( z )  + F 3 1  

r2-ri '" 
k =(-) , 

rZ+r3 

and F(p ,k ) ,  n ( p , k  2,k) are the elliptic integrals of the first 
and third kind, respectively. An expression analogous to 
(14) can readily be written down in terms of elliptic inte- 
grals for the beam expansion stage. 

Let us now briefly consider the case where a parallel 
beam ( r  = cc ) is incident on the medium. When the intensi- 
ties are not too high [condition (10) is, of course, assumed 
to be satisfied], so that R < 0.5R 2, the beam entering the 
medium contracts and then expands to its initial size, and so 
on. However, when R j > 0 . 5 R  2 ,  the beam at first expands 
and then contracts to the initial size, and so on. When 
R j = 0.5R 2, diffraction is exactly balanced by nonlinear re- 
fraction, and self-channeling takes place. Substituting for 
R and R 2, we can rewrite the last condition in the form 

This essentially determines the new threshold for self-focus- 
ing, i.e., the maximum possible field above which focusing 
by the medium is weaker than diffraction, and a beam that is 
parallel at entry is found to expand. In contrast to the usual 
t h r e ~ h o l d , ~ . ~  which lies in the low-intensity region, in the 
present case, an expanding beam is brought together again 
because the beam intensity falls as the beam expands, there is 
weaker saturation and a corresponding increase in the focus- 
ing properties of the medium. At the same time, diffraction is 
also reduced, and focusing becomes stronger than diffrac- 
tion. An analogous propagation picture obtains in the parax- 
ial approximation. The latter has been examined in some 

by numerical methods. The focal region plays a spe- 
cial part in different nonlinear interactions between intense 
laser radiation and a medium. Let us examine the dimen- 
sions of the neck of the nonlinear focus as functions of the 
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FIG. 1 .  Radius a ( 1 ) and length l ( 2 )  o f  the neck o f  the nonlinear focus as 2 'i R(0) 102,cm 
functions of Rf  (radiation intensity and/or density of the medium). Here 
and in the subsequent figures, the broken lines are portions of  the graphs FIG. 3. Radius a ( 1 ) and length 1 ( 2 )  as functions of  the initial beam 
on which the discontinuities are small. The calculations were performed radius R ( 0 )  (for a constant energy flux in the beam: 11, = const), The 
for the 3s,12-3p3,2 transition in Navapor. Rd = 125 cm, R ( 0 )  = 0.05 cm, system parameters were chosen so that R f  = 150 cm, R ,  = 125 cm for 
7= 15 cm. R ( 0 )  = 0.05 cm and r = 15 cm. 

parameters of the interacting system. The neck radius a is 
given by a = F,R(O) and its length will be defined as the 
distance between the points at which two straight lines, 
drawn from the center of the caustic, touch the curve F(z). 
Since the lateral dimensions of the beam in the region of the 
neck remain sensibly constant, we find form ( 14) that 

Substituting for R in ( 16), we find that the ratio of the neck 
length I to it radius a is 

Since the expression under the square root on the right-hand 
side is on the order of or less than unity, g,/R 2(0) ) 1 and 
p<  1 (for gas media), we find that ] ) a ,  i.e., the length of the 
neck is much greater than its width under fairly general con- 
ditions. Numerical calculations show that this result re- 
mains valid even under relatively hard focusing conditions 
( r  5 10 cm) in the laser beam at entry to the medium. 

Figure 1 shows the typical dependence of I and a on the 
parameter Rf. For small values of Rf, the size of the neck 
increases monotonically with Rf. However, after the latter 
reaches a certain value (Rf -- 55 cm in Fig. 1 ), the depen- 
dence becomes discontinuous. The first few jumps are small, 
but their size increases as Ff is increased further. For exam- 
ple, the relative size of a jump near RJ = 100 cm is about 2%, 
near Rf = 150 cm it increases to 8%, and at Rf = 225 cm it 
reaches 40%. 

Analysis of the length of the neck in the paraxial ap- 
proximation does not reveal this discontinuous behavior. 

The jumps must therefore be a consquence of nonlinear dis- 
tortion of nonparaxial rays which, in turn, is due to the rela- 
tively complicated distribution of the focusing properties of 
the medium across the beam profile. In the central part of the 
beam, the medium is strongly saturated, so that, as shown 
above, its focusing properties deteriorate with increasing in- 
tensity. On the other hand, in peripheral regions, the field 
intensity is so low that there is no saturation and the focusing 
properties are enhanced with increasing intensity. These two 
regions are of course separated by an intermediate region in 
which the focusing properties of the medium are practically 
independent of the wave intensity. All this is taken into ac- 
count in (9) ,  in the integral on the right-hand side, since the 
expansion in terms of the parameter f -' is performed after 
the integral has been evaluated. 

The dependence of the neck size on r and R (0)  is also 
discontinuous. This is illustrated qualitatively by Figs. 2 and 
3. The discontinuities in a and I appear in a wide range of 
values of the parameters of the interacting system, and can 
be seen in different experiments using powerful laser fields 
that saturate the resonance transition. 

The lateral dimensions of the antinodes of the quasi- 
waveguide formed in the medium are continuous functions 
of the parameters of the system. As Rf increases, the anti- 
node thickness monotonicslly increases, which is a conse- 
quence of the corresponding reduction in the focusing prop- 
erties of the medium, whereas an increase in r and R (0) is 
accompanied by a monotonic reduction in this thickness. 

The discontinuous behavior of the dimensions of the 
neck of the nonlinear focus is also obtained for A > 0, for 
which the medium becomes defocusing. All that is required 
is that the high-intensity radiation entering the medium be 
focused. Figure 4 shows some typical curves of a and I as 

FIG. 2. Radiusa ( 1 ) and length I ( 2 )  o f  the neck as functions o f  the radius 
of curvature r o f  the wavefront; RJ = 150 cm R ,  = 125 cm, R ( 0 )  = 0.05 FIG. 4. Radius a ( 1 ) and length 1 ( 2 )  as functions of  Rf  during self- 
cm. defocusing. Rd = 125 cm, R ( 0 )  = 0.05 cm, r = 15 cm. 
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functions of Rf. As expected, the relative size of the discon- 
tinuities for self-defocusing is smaller than for self-focusing, 
other things being equal. 

We note in conclusion that the adiabatic resonance 
character of the interaction between high-intensity radi- 
ation and a medium manifests itself only in the fact that the 
permittivity E assumes the form given by ( 1 ). The resonance 
condition is not used in subsequent calculations. The results 
presented above are therefore valid for any medium whose 
permittivity saturation can be approximately described by 
E = A + B( 1 + I /Isat ) - ' I 2 ,  where A ,  B are constants, I is 
the radiation intensity, and I,,, is the saturated intensity. 
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