
A black hole in a magnetic universe 
V. I. Dokuchaev 

Nuclear Research Institute, USSR Academy of Sciences 
(Submitted 25 March 1986; resubmitted 20 November 1986) 
Zh. Eksp. Teor. Fiz. 92, 1921-1935 (June 1987) 

The general properties of a rotating electrically charged black hole in an external magnetic 
field are examined, using the Ernst-Wild metric. We find the electromagnetic potential 
corresponding to a uniform magnetic field oriented parallel to the rotation axis of the black 
hole. It is shown that in the presence of an external magnetic field, a rapidly rotating black 
hole may have angular momentum and electric charge exceeding those permitted for a Kerr- 
Newman black hole. Such a highly extreme black hole nevertheless possesses an event horizon, 
and does not evolve into a naked singularity. We find the parameters of a black hole in 
electrical equilibrium in a uniform magnetic field. The magnetic flux through a hemisphere of 
arbitrary radius which is symmetric with respect to the equatorial plane is calculated in the 
Ernst-Wild metric. The magnetic flux through the upper hemisphere of the horizon of an 
equilibrium black hole in a uniform magnetic field is found not to depend on the angular 
momentum of the black hole. We determine how the parameters of a highly extreme black hole 
transform when the uniform magnetic field is turned off. 

1. INTRODUCTION 

The physics of electromagnetic phenomena in the vicin- 
ity of accreting black holes has undergone active develop- 
ment in recent years.'-' This field, known as black hole elec- 
trodynamics, holds out the prospect of a quantitative 
explanation for quasars and active galactic nuclei. The elec- 
tric and magnetic fields engendered by plasma accretion 
onto massive black holes make it possible, in principle, to 
accelerate particles to the highest energies observed in cos- 
mic rays.',',' The schemes proposed for electrodynamic ac- 
cretion assume that a magnetosphere with a regular distribu- 
tion of electric and magnetic fields, induced by the plasma 
flow onto the black hole, is formed around the latter. Al- 
though there is as yet no self-consistent picture of such a 
flow, qualitative arguments and simple model calculations 
indicate that it is possible for a quasiuniform magnetic field 
distribution to be produced dynamically near the black hole 
horizon, due to rapid smoothing of fine-scale irregularities 
and loops in the accreting plasma.'s8-'0 A model with a uni- 
form external field is therefore a fairly good approximation 
with which to explain the qualitative features of black hole 
behavior in a magnetic field. The external field is usually 
considered to be a probe of the black hole metric back- 
ground. Wald" has shown that a stationary axisymmetric 
black hole in equilibrium, with angular momentum J ,  pos- 
sesses an electric charge q, = 2B J,  where B, is the external 
magnetic field strength. In particular, for a Kerr black hole 
of mass m, the angular momentum is J = ma, and the angu- 
lar momentum per unit mass can take on values ii2<m2. The 
existence of a finite electric charge on a rotating black hole in 
equilibrium, if Wild's result holds qualitatively in the pres- 
ence of plasma, will have a significant effect on charged par- 
ticle trajectories, and can result in rearrangement of the 
whole magnetosphere. Another question which arises is how 
a black hole in extreme rotation can acquire a charge 
q, = 2B,m2 without becoming a naked singularity. One can 
only answer this question by considering the reciprocal in- 
fluence of the external magnetic field on the black hole. 

In the present paper, we will examine some of the prop- 
erties of a black hole in an external magnetic field using the 
Ernst-Wild metric, which is an exact solution of the Ein- 
stein-Maxwell equations. The Ernst-Wild solution is a sta- 
tionary, axisymmetric magnetic universe having a magnetic 
field of arbitrary strength, containing a rotating, electrically 
charged black hole. In the limit of a gravitationally weak 
magnetic field in a finite region around the black hole, this 
metric describes a Kerr-Newman black hole immersed in a 
uniform magnetic field. Consideration of the more general 
case, which allows for the effect of the magnetic field back on 
the black hole, makes it possible to detect qualitatively new 
features of the behavior of a black hole in an external field, as 
well as clarifying the physical meaning of previous results 
obtained via perturbation methods. In particular we will 
show that a magnetized, rapidly rotating extremal black 
hole can have a specific angular momentum and electric 
charge which exceed the allowable values for a Kerr-New- 
man black hole. The excess specific angular momentum and 
electric charge will not, however, transform such a highly 
extreme black hole into a naked singularity. We will find a 
potential to specify an external magnetic field which is uni- 
form at large distances from an arbitrarily charged, rotating 
black hole. In equilibrium, as it turns out, such a black hole 
has the same electric charge as that given by Wald", even 
when the rotation parameter takes its limiting value a = m. 
The presence of an electric charge has a considerable effect 
on the magnitude of the magnetic flux passing through the 
upper and lower hemispheres of the black hole horizon, 
which in turn may influence the efficiency of extraction of 
black hole rotational energy. Specifically, the magnetic flux 
through the upper hemisphere of the horizon of a maximally 
rotating uncharged black hole whose rotation axis is parallel 
to an external probe magnetic field is zero.'*." It will be 
shown, however, that when a black hole has an equilibrium 
electric charge, the magnetic flux does not depend on the 
angular momentum. We will also consider the possible 
transformation undergone by the parameters of a highly ex- 
treme black hole when a uniform external magnetic field is 
turned off. 
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2. THE ERNST-WILD METRIC 

In the stationary axially symmetric case, the Einstein- 
Maxwell equations reduce the equations for the complex po- 
tentials g and @, which depend on two variables such as the 
radius rand polar angle $.'4,'5 The metric can then be repre- 
sented in the formI6 

where the real functions f < O,P,p,w, and the complex conju- 
gate functions < and 5 * depend on R and 8 and e, and tare the 
azimuthal angle and the time, respectively. For the Kerr- 
Newman metric, 

db=A-'"dr+id0, P=(A'" sin 0) - ' ,  p=A'" sin 0 ,  
I ? \  

In these expressions m, a, and e are the mass, specific angular 
momentum, and charge of the metric as measured by an 
observer at infinity. For the Kerr-Newman metric, the com- 
plex potentials Z? and @ are given by 

@=CDa=-ie cos 0+ea sinZ 0 (r+ia cos 0 ) - ' ,  (4) 
8=8,=- [ (r'+a2) sin2 O f  ez cos2 e ]+i2ma  cos 0 (3-cosZ 0 )  

-2a sinz 0 ( m a  sinZ 0+ie2 cos 0 )  (r+ia cos 0) -'. ( 5 ) 

The orthonormal components of the electromagnetic field in 
a locally nonrotating frame of reference (LNFR)  , in which 
the observer moves along world lines with r = const, 
6' = const, and q~ = wt + const, may be expressed in terms of 
the potential @ as follows: 

The Ernst-Wild metric,I7 which generalizes the Kerr-New- 
man solution to the case in which there is a magnetic field of 
strength B, parallel to the rotation axis of a black hole, can 
be obtained by replacing the functions f, and w, in (2 )  by 
new functions f and w with 

f=1'21-2fo, (7 )  

and deriving the potentials @,and 87, from (4)  and (5 ) .  The 
angular rotation speed w of the metric can be represented in 
the form 

when e = 0, with 

and when e# 0, to first order in B,, with 

The electromagnetic field components in a LNFR in the 
Ernst-Wild metric can be found using (6), in which 

where @,, go, and A are given by ( 4 ) ,  ( 5 ) , and ( 8 ) respec- 
tively. As is the case in the Kerr-Newman metric, the black 
hole horizon in the Ernst-Wild metric can be obtained by 
setting A = 0 in ( 3 ) .  The radius of the black hole horizon, 
which is equal to the larger of the two roots of the equation 
A = 0, is 

and is independent of B,. Just as for the Kerr-Newman met- 
ric, it is necessary to have a2 + e2<m2 for a black hole hori- 
zon to exist, and this determines the possible values of the 
parameters a and e. For m = 0, the Ernst-'Wild solution is 
transformed into a solution known as the Melvin magnetic 
u n i ~ e r s e . ' ~ - ~ ~  The latter is a stable self-gravitating magnetic 
field configuration with a single nonvanishing component 
along the symmetry axis; it varies according to 

where I is the coordinate distance along the symmetry axis. 
With m # O  and a magnetic field gravitationally weak com- 
pared with the black hole, and characterized by the dimen- 
sionless parameter 

there exists a region defined by the condition BO2r'< in a 
magnetic Ernst-Wild universe within which test particles do 
not "feel" the gravitational influence of the magnetic field 
B,, by virtue of the small contribution it makes to the curva- 
ture compared with that of the black The outer- 
most part of this region, specified by (B,r) ' < m/r < 1, is al- 
most flat (Newtonian). At the boundaries of the Newtonian 
region, the magnetic field can be considered uniform. All 
realistic astrophysical objects apparently satisfy condition 
(15).  The "curtailed" part of the Ernst-Wild metric 
BO2r3 4 m, with B,m 4 1, can be treated as a physical model of 
a black hole in a uniform magnetic field, assuming that the 
sources of the magnetic field are confined to within this re- 
gion. Outside the magnetic field region occupied by the 
sources, the "curtailed" Ernst-Wild metric then goes into an 
asymptotically flat metric with a black hole "weighed 
down" by the matter and magnetic field which surround it. 

The quantities which characterize a black hole in a 
magnetic universe, such as mass, angular momentum, and 
electric charge, will depend on B,,. In a magnetic universe, 
the parameters m, a, and e therefore lose the physical signifi- 
cance they had in the case B, = 0. Below, we find the B,- 
dependence of the fundamental characteristics of a black 
hole in an Ernst-Wild universe. 

3. ELECTRICAL CHARGE OF A BLACK HOLE IN A 
MAGNETIC UNIVERSE 

The total electric charge q on the three-dimensional hy- 
persurface Z, containing a black hole and the currents jp 
external to the black hole horizon is 

where the electric charge q, of the black hole is given by 
Gauss' Law expressed as an integral of the electromagnetic 
field F p v  over the surface of the black hole horizon: 
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Here we employ the following parametrization of the surface 
element in the coordinate system of the Xu 

where E,,,,~ is the antisymmetric unit tensor. We may write 
the Maxwell equations Fpvjv = 417-7 in the form 

where the determinant of the metric tensorg,, for the Ernst- 
Wild metric is 

Using (6) for the components of the electromagnetic 
field in a locally nonrotating coordinate system, and express- 
ing the field components Fv in terms of these in the 
(t,r,O,p) system, we obtain for the electric charge density 
outside the black hole 

Taking the time-independence of the metric into account, 
and choosing as the hypersurface 8, a volume bounded by 
the radius r+ a, we obtain for the charge due to external 
currents in ( 16) 

Thus, the entire electric charge of the Ernst-Wild metric is 
contained in the black hole.'' Taking Gauss' Law and Eq. 
(22) into account, we can write the electric charge on the 
black hole in the form 

where r, and r, are the points at which the rotation axis of the 
black hole intersects an arbitrary closed surface of integra- 
tion r(8,p) enclosing the singularity. The last equality in 
(23) makes use of (6),  which relates the components of the 
electromagnetic field to the potential cP. It can be seen from 
(4), (5) ,  (8),and (12) thatwhenO=OorO=n,thepoten- 
tial cP is independent of r, and consequently, as might be 
expected the integral in (23) does not depend on the shape of 
the surface of integration. Substituting cP from (12) and 
(23), we obtain 

All of this charge is concentrated at the singularity. For 
B,m 4 1 (uniform magnetic field approximation), the elec- 
tric charge on the black hole is 

When a = 0, this charge can exceed in absolute value the 
allowable electric charge on a Kerr-Newman black hole with 
the same parameters m and a. 

The fact that the electric charge on a black hole depends 
on the quantity B, permits us to suggest that an equilibrium 
charge may be induced on a magnetized black hole by an 
external magnetic fieId. To determine this charge, we find 
the electromagnetic potential A, around a magnetized black 
hole. The time-independence axisymmetry of the Ernst- 
Wild metric enable us to use the gauge A,  = A ,  = 0. In the 
formalism of E r n ~ t , ' ~ . ' ~  the potential cP giving the electro- 
magnetic field is 

the component A,  and the auxiliary field A : by the differen- 
tial equation 

where 

Herep,A,f,andwaredefinedbyEqs. (2) ,  (3), (7),and (9)  
respectively. To first order in B, (or to second order when 
e 0), it is easy enough to solve for the real and imaginary 
parts of Eq. (26), giving 

The potential found in this way specifies the electromagnetic 
field distribution about a rotating charged black hole in a 
magnetic field of strength B,&rn-' which is oriented paral- 
lel to its rotation axis and is uniform at large distances from 
the black hole. This is a generalization of the potential given 
by Wald" to the case of a black hole with arbitrary electric 
charge, and is consistent with the results of Wald to terms 
linear in e, taking into account the relationship (25) between 
B,, a, e, and the charge on the black hole. 

In order to find the equilibrium charge on a black hole 
in a uniform magnetic field, we make use of the concept of 
the comoving potential24 

in the stationary and axially symmetric gravitational field 
( 1 ), which is characterized by the Killing vectors 
$ = ( 1,0,0,0) and +" = (0,0,0,1) . The comoving potential 
Vis a generalization of the electrostatic potential to the case 
in which an angular rotation rate w is present in the metric. 
In point of fact, when moving in the gravitational and elec- 
tromagnetic fields in question, a test particle of mass m and 

1081 Sov. Phys. JETP 65 (6), June 1987 V. I. Dokuchaev 1081 



charge e conserves its total energy E = -p, 7, = pU- 
- &A,, w h e r e p  is the generalized momentum of the parti- 

cle, and u,  and A,, are the covariant time component of the 
particle four-velocity and electromagnetic potential in the 
(t, r, 0, p )  coordinate system. If the particle is stationary, the 
electromagnetic contribution to E consists of its electrostatic 
energy. For w #0, however, the concept of immobility loses 
its global sense, and becomes locaL2 Particles at rest in a 
LNFR will in fact be stationary with respect to the metric. 
Such particles rotate with the geometry along trajectories 
given by p = wt + const, r = const, 0 = const. In the coor- 
dinate system (t,r,O@;d@ = d p  - wdt), which is rotating 
with respect to a distant observer, the total particle energy 
may be written in the format E = - p U, + E V + EL, where 
V is given by Eq. (30),  and L =p, V = p, is the conserved 
generalized angular momentum of the particle. For a parti- 
cle which is stationary in the it, r, 0, @) coordinate system, 
and is therefore stationary with respect to the LNFR, the 
energy 

is the sum of the mechanical potential energy, the electro- 
static energy E V, and the energy of rotation wL relative to a 
distant observer. It can be seen from these expressions for E 
that the quantity V = - (A, + wA, ) physically represents 
the electrostatic potential in a metric with w #O. 

The electrostatic energy of a test particle injected slowly 
with respect to the LNFR from infinity into a black hole is 

By "infinity" in the present case, we mean a Newtonian re- 
gion (Bor) '<m/rg 1 in the truncated Ernst-Wild metric. 
Then V( w ) = 0. On the other hand, according to a theorem 
of Carter (Ref. 24, p. 173), the comoving potential at the 
horizon, V, = V(r, ) is a constant. The electrostatic injec- 
tion energy (31) therefore turns out not to depend on the 
path taken by the injected particle. This energy is essentially 
the energy difference between charged and uncharged parti- 
cles of differing mass injected into the black hole slowly rela- 
tive to the metric, or the energy of slow injection of a charged 
particle of negligible mass. When E, < 0, it is energetically 
favorable to have accretion of particles with the same sign of 
E ;  conversely, when E, > 0, charges with sign opposite to E 

are accreted. Making use of (9) ,  (28),a nd (29),  we obtain 

Hence, we find that the condition for electrostatic uilibri- 
um E, = 0 is satisfied when e = 0. In equilibrium, z :ording 
to (25), a black hole has a charge q, = 2Boma. The equilibri- 
um charge qo is the same as that found by Wald" in consider- 
ing the equilibrium of a weakly charged black hole in a uni- 
form test magnetic field. In the present case, however, the 
equilibrium condition has been derived with the influence of 
the magnetic field back on the black hole taken into account, 
and it is also valid for the extreme value of the rotation pa- 
rameter a = m. It is significant that a black hole rotating at 
its extremal rate, with equilibrium charge q, = 2B0m2, has a 
horizon at r, = m, according to (13), and does not evolve 
into a naked singularity. 

In the case of an equilibrium black hole, the comoving 
potential V is identically zero everywhere outside the black 

hole, as follows from (9 ) ,  (28),  and (29) with e = 0. For 
particle injection along the black hole rotation axis, where 
immobility in the LNFR corresponds to absolute immobi- 
lity, the electrostatic injection energy then vanishes by virtue 
of the absence (to second order in B,) of an electric field 
anywhere on the rotation axis, with e = 0.17 In particular, in 
the Newtonian region, the electric field in the LNFR takes 
the form 

E(')= (e+3Roma sin2 0)  /r" E(e'=-2R,ma' sin ' O cos f1/ri. 

(33) 
In section 6, we will drive the equilibrium condition 

e .= 0 for black hole in a uniform magnetic field, starting 
with the first law of black hole in a uniform magnetic field, 
starting with the first law of black hole thermodynamics. 
For a gravitationally strong magnetic field Bo 2 m-', there 
is no Newtonian region, and the electric equilibrium state of 
the black hole becomes indeterminate. We will nevertheless 
refer to a black hole in a strong magnetic field with e = 0 as 
being in equilibrium, meaning that it is actually in the transi- 
tion to a week field B,<m-'. 

4. MASS AND ANGULAR MOMENTUM OF A BLACK HOLE IN 
A MAGNETIC UNIVERSE 

When the metric is both stationary and axisymmetric, 
the existence of temporal and axial Killing vectors 7p and 
V enables one to write out integral relations for the mass 
and angular momentum contained within an isolated region: 

The manipulations involved in (34) and (35) employed the 
Einstein equations 

where R,, is the Ricci tensor, and T,, is the energy-momen- 
tum tensor of the matter; the equation for the commutator of 
the second derivatives of two arbitrary vectors, 

where RPpva is the Riemann tensor; the equation for the 
Killing vectors, 

and finally Stokes' theorem. The final expressions in Eqs. 
(34) and (35) can be considered to define the mass and 
angular momentum inside some closed two-dimensional 
surface, for metrics which contain black holes. Integration 
to spatial infinity then gives the total mass and total angular 
momentum for an asymptotically flat The Ernst- 
Wild metric is not asymptotically flat, and the total mass 
given by (34) is formally infinite. However, the total angular 
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momentum for this metric is finite, at least when the angular 
rotation rate of the metric given by (9)-( 1 1 ) is known. As 
already noted in section 2, in a real universe, only the trun- 
cated part of the Ernst-Wild metric is physically realizable, 
containing the black hole and a regular magnetic field with 
sources restricted to a finite volume. In that event, the total 
metric is asymptotically flat, and the integral relations (34) 
and (35) retain their usual meaning of mass and angular 
momentum for an observer located in the Newtonian part of 
the metric. Even in the case of a total Ernst-Wild metric, 
however, we will use the designations "mass' and "angular 
momentum" for the M and J derived from (34) and (35), 
considering these to be characteristics which generalize the 
corresponding concepts to the case of a gravitationally 
strong magnetic field. For the mass and angular momentum 
contained in a sphere of radius r, we then obtain 

where the integrands are given by Eqs. (3) ,  (8) ,  and (9).  
Specifically, for the case B, = 0 (Kerr-Newman metric), we 
have 

and the total angular momentum is J( w ) = ma. In the 
Kerr-Newman metric, the expression for M( r )  is quite com- 
plicated, but it simplifies considerably at r = rH : 

r2+a2 
& f ( r H ) = m - L Z ( l + -  arctg 2 ). 

2 TH arH rH 

The total mass in the Kerr-Newman metric is 
M(  w ) = m. We will call the quantity MH = M(r, ) the 
mass of the black hole, and JH = J(r, )its angular momen- 
tum. In the Kerr-Newman metric withe # 0, a fraction of the 
angular momentum and mass are included in the electro- 
magnetic field outside the black hole horizon (this follows 
from (41 ) and (42) ), and the specific angular momentum of 
the metric, a = J( cc ) / M (  cc ), is not the same as that of the 
black hole, a, = J,/M,. For a black hole in a magnetic 
universe, with the limiting value of the rotation parameter 
a = + m and the equilibrium electric charge (24), carrying 
out the integration in (39) and (40) with r = r, gives 

4BoZmZ 
M,x=m 1  - ( I-B..mL arctg 

Similarly, in the uniform magnetic field limit for a rapidly 
rotating extremal black hole with parameters m <B,-' ,  
a2 +- e2 = m2, e2gm2 we obtain (to terms bilinear in e and 
Bo). 

where the electric charge on the black hole is 
q = e + 2B,ma, and q, = 2B,ma. The specific angular 

momentum of such a black hole is a, 
= + [ 1 + q,(q - qo)m-2]m, and the sign of a, is deter- 

mined by the sign of a .  For a black hole rotating extremally, 
with equilibrium charge q = q,, we see from (44) that 
a, = + ( 1 - BO4m4)m. Clearly, in a uniform magnetic 
field, the absolute value of the specific angular momentum of 
a rapidly rotating extremal black hole with electric charge 
q>qo (if q, > 0 )  or q<q, (if q, < 0)  is larger than for an extre- 
ma1 Kerr-Newman black hole with the same value of m. 
Such a highly extreme black hole nevertheless possesses an 
event horizon with r, = m. 

The condition for the absence of rotation of a black hole 
in an external magnetic field is J, = 0. The integration in 
(40),  to first order in B,, and with a g m  and r < B  ; ', gives 

Hence, for the rotation parameter a, of the corresponding 
black hole in a uniform magnetic field, we obtain 

Bearing in mind the approximations being used, the ra 
dius of the event horizon in this expression is r, 
= m + (m2 - e2) ' I 2 .  

5. THE MAGNETIC FLUX THROUGH A HEMISPHERE OF THE 
BLACK HOLE HORIZON 

One important quantity which characterizes the inter- 
action of a black hole with an external magnetic field is the 
magnetic flux through one of the two hemispheres of the 
horizon which are separated by the equatorial plane of the 
black hole. The effectiveness with which the black hole acts 
as a unipolar inductor may possibly depend on the magni- 
tude of this magnetic flux. The case of rapid black hole rota- 
tion, with (m2 - a2) /m2g 1, is of great interest here, as it 
provides the opportunity, in principle, for energy to be ex- 
tracted from the black hole at the Eddington 
which is a feature of quasars and active galactic n u ~ l e i . ~  

Let a closed curve in the equatorial plane, 1 = 1(p) ,  en- 
circle the singular point r = 0. Then the magnetic flux in an 
Ernst-Wild universe through an arbitrary surface r(6,p)  ly- 
ing above the equatorial plane and bounded by the curve 
l(p) will be 

where *Pv = 1 / 2 ~ ~ ' " ~ F , ~ .  The last equality in (49) has 
been derived using Eq. (6) .  The quantity @(r,O) does not 
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depend on r, so the magnetic flux ( 4 9 )  is entirely determined 
by the shape of the equatorial curve I ( p ) .  When the curve is 
a circle, I ( p )  = r, we obtain 

Hence, we obtain for the magnetic flux FH = F(rH ) through 
the upper half of black hole horizon, with e = 03' 

Equation ( 5 0 )  also implies that the magnetic flux F( co ) in 
an Ernst-Wild universe is finite. One case of practical inter- 
est is that of a black hole in a uniform magnetic field, corre- 
sponding to the approximation for Eq. ( 5 0 )  which is linear 
in B,. The magnetic flux through the upper half of the hori- 
zon is then 

It can be seen that for a black hole with equilibrium charge 
q, = 2Boma, corresponding to a parameter e = 0, the mag- 
netic flux through the upper (lower) hemisphere of the 
black hole horizon does not depend on the rotation param- 
eter a, and it is equal to its Schwarzschild value 
FH = 45-Bom2. This in fact means that it is independent of 
the black hole angular momentum, since as can be seen from 
( 3 9 )  and ( 4 0 ) ,  withe = 0 in the truncated Ernst-Wild met- 
ric, to first order in B,, the mass satisfies MH = M (  CQ ) = m,  
and the angular momentum satisfies JH = J(  co'ma. Figure 
1 shows qualitatively the regions with FH > 0 and FH < 0 for 
a black hole in a uniform magnetic field with 0 < B, 4 m -  ' as 
a function of the parameters a and e the allowed values of 
which are bounded by the circle a2 + e2<m2. The heavy 
curves correspond to q = 0 and JH = 0 in ( 2 5 )  and ( 4 7 ) .  
The dashed curves show the characteristic level lines 
FH = const, and the lighter lines correspond to FH in ( 5 2 ) .  
These intersect the line a = 0 at the points e = ~f (3'12/ 
2 ) m .  Two separatrices, on which FH takes on its Schwarzs- 
child value, pass through the coordinate origin. One of these 
coincides with the e = 0 coordinate axis, corresponding to a 

FIG. 1 
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black hole with equilibrium charge q = q,. The second se- 
paratrix (dashed curve) tends to a = 0 as B,-0. It can be 
assumed that when the magnetic field B, is turned on, the 
curves on the axes a = 0 and e = 0 are distorted and trans- 
formed into curves a = a, and e = go, corresponding to a 
black hole with no angular momentum or charge, respective- 
ly. 

Using ( 2 5 )  and ( 5 2 )  for a black hole with electric 
charge q = 0 in the linear approximation in B, and e, we find 

In this expression, the radius of the horizon is 
rH = m + ( m 2  - a*) ' I 2 .  Equation ( 5 3 )  was derived in 
Refs. 12 and 13 by calculating the flux of a uniform test 
magnetic field through a hemisphere of the horizon of a Kerr 
black hole. The electromagnetic field distribution around 
the black hole can then be found by taking into consideration 
the requirement that it carry no electric charge. The need for 
this requirement is dictated by the fact that the electromag- 
netic characteristics of a black hole, such as charge q and 
magnetic flux F H ,  depend linearly on B, and e. At the same 
time, the influence of small values of B, and e on the metric 
can be neglected, since the components of the metric depend 
on these at least bilinearly, which justifies the use of the Kerr 
metric in Refs. 12 and 13. Taking the reciprocal influence of 
a uniform magnetic field on a black hole with magnetic flux 
( 5 3 )  into account is equivalent to the black hole having 
e = - 2B,ma, whereupon it will have no electric charge. In 
Fig. 1 ,  varying FH according to ( 5 3 )  corresponds to moving 
along the heavy line e = - 2Boma. Similarly, making use of 
( 4 8 )  and ( 5 2 )  for a black hole with angular momentum 
JH = 0, we find 

This expression is consistent with the result obtained in Ref. 
27 for the magnetic flux through the upper hemisphere of the 
horizon of a Reissner- Nordstrom black hole in a uniform 
magnetic field. The reciprocal effect of the magnetic field in 
this case is equivalent to the black hole having a rotation 
parameter a = a, (the second heavy line in Fig. 1 ), as given 
by Eq. ( 4 8 ) .  In the approximate expressions ( 5 3 )  and ( 5 4 ) ,  
FH = 0 for a = m and e = m respectively. In the figure, this 
is equivalent to the intersection points of the circle 
a2 + e2 = m2 with the lighter curves, which correspond to 
the condition FH = 0 in Eq. ( 5 2 ) ,  the exact expression in a 
and e. 

6. HIGHLY EXTREME BLACK HOLES AND THE PRINCIPLE 
OF COSMIC CENSORSHIP 

It was shown in section 4 that the specific angular mo- 
mentum and electric charge of a black hole in the presence of 
an external magnetic field depend on the magnitude of that 
field, and can exceed the allowed values for a Kerr-Newman 
black hole. One question which arises is what happens to 
such a highly extreme black hole when the external magnetic 
field is turned off. Because of the interaction of the black hole 
with the magnetic field, its parameters must change when 
the field strength changes. We can identify the possible 
change in parameters of a highly extreme black hole using 
the first law of black hole  thermodynamic^.^^.^^ This law is 
similar to the first law of thermodynamics, and governs the 

V. I. Dokuchaev 1084 



variation of total mass (energy) in a black hole and the sur- 
rounding material in two nearby asymptotically flat axisym- 
metric stationary configurations. In the uniform magnetic 
field approximation with B, <m-', the truncated part of the 
Ernst-Wild metric refers to such configurations. We can 
write the first law of black hole thermodynamics in a form 
which permits a familiar physical i n t e r p r e t a t i ~ n . ~ ~ , ~ ~  

where the subscript H refers to values of the corresponding 
quantities at the black hole horizon. The variations SU con- 
stitute the contribution to the change in total energy 6M 
from matter outside the black hole. It is assumed that the 
external material is distributed around the black hole as a 
ring of charged perfect fluid made up of different types of 
particles (summations over the various types of particles 
have been omitted), revolving the angular velocity 0 ,  and 
having a temperature T and chemical potential p relative to 
an observer at infinity. The quantities d 3q = jvd 3Z,, 
d 3J, ,d 3S,, and d 3N are the volume elements of electric 
charge, angular momentum, entropy, and particle number 
in the ring, respectively. The electromagnetic field is charac- 
terized by the azimuthal component of the potential A, and 
the comoving electric potential V, = - (A, + flAd ). The 
angular rate of rotation of the black hole RH equals the an- 
gular rotation rate of the metric (9) at the horizon, 
a, = E"' / 4 ~  is the effective electric surface charge on the 
black hole, and J,, 2, , S,, and k are the black hole angular 
momentum, electric charge, area of the event horizon, and 
surface gravity respectively. The area of the black hole event 
horizon in a magnetic universe is 

s,= $ dS,= $ A ' ~  sin 0 dB drp=4n (rB2+a2) . (57 
H 

It is independent of the magnetic field strength B,, and is 
identical to the horizon area for a Kerr-Newman black hole 
with the same parameters m, a, and e. The quantity 

which appears as an angular momentum of the effective sur- 
face charge of the black hole, is the angular momentum of 
the stationary electromagnetic field external to the black 
hole event horizon, with no contributions from external 
sources.29 The angular momentum contributed by external 
sources is contained in SU. The sum of the black hole and 
external electromagnetic field angular momenta, J = J 
+ x H ,  is therefore the total angular momentum of the met- 

ric, in which matter can be treated as a collection of test 
particles. In particular, in the Kerr-Newman metric, 
JH + xH = ma. 

Note that e = 0, the condition for electrostatic equilib- 
rium of a black hole in a uniform magnetic field derived in 
section 3, follows directly from the first law of black hole 
thermodynamics. In fact, according to (55), when the total 
angular momentum of the metric J = JH + xH , the area of 
the event horizon (black hole entropy) SH, and invariant 
energy of external matter U (if there is any) are fixed, a 

change Sq, in the charge on the black hole leads to a change 
SM = VHSqH in the total mass energy. In uniform magnetic 
field approximation, making use of (25) and (32), we obtain 
V,Sq, - (q, - qo)SqH, and consequently 

It can be seen that a black hole achieves electrical equi- 
librium (conditional minimum of the functional M )  when 
its charge is qH = q, = 2Boma, i.e., when e = 0. 

Turning off the magnetic field, which is equivalent to 
removing the source of this field to infinite distance from the 
black hole or dissipating the source currents, is only feasible 
for the truncated Ernst-Wild metric discussed above, where 
the sources of the magnetic field are located within a finite 
volume about the black hole, and the magnetic field itself is 
gravitationally weak. Suppose that a highly extreme black 
hole, is situated in such a uniform magnetic field of strength 
B,, with parameters m <Bop', a2 + e = m2, and e2<m2. 
The electric charge is then IqH I = / e  + 2Bomal <m. For 
definiteness, we assume that a > 0, thereby fixing the direc- 
tion of the black hole angular momentum in space. For sub- 
sequent calculations, it will suffice to know the expression 
for the surface gravity of a Kerr-Newman black hole, 

Carrying out the calculations in (55) with 6M = 6qH = 0 
and using Eq. (57) for SH for the parameters of the Kerr- 
Newman black hole produced from a highly extreme black 
hole when the magnetic field B, is turned off, we obtain to 
bilinear accuracy in B, and q = q, 

where the quantity 7 < 1 characterizes how extreme the re- 
sulting black hole is, and is equal to 

The second term in this expression comes from the contribu- 
tions to 6M of the variation of the angular momentum of the 
black hole surface charge. In the present case, this angular 
momentum is equal to 

The principle of cosmic censorship,25 which prohibits a 
black hole from becoming a naked singularity, requires that 
7>0. Furthermore, Hawking has provenz6 that whenever 
the principle of cosmic censorship holds, SSH>O for any 
classical process. This theorem constitutes the second law of 
black hole thermodynamics, in which the area of the horizon 
SH plays the role of entropy.28 We see from (60) that there 
are possible ways of turning off the field B, such that, for 
certain values of SU which depends on 6xH, there is no in- 
crease in the area of the horizon of a highly extreme black 
hole (SSH = 0),  and it turns into an extreme Kerr-Newman 
black hole (7 = 0) .  Let us consider now one way to turn off 
the field B,, assuming that the energy in the current sources 

1085 Sov. Phys. JETP 65 (6), June 1987 V. I. Dokuchaev 1085 



in the ring dissipates into heat sufficiently slowly that 
SU = 0. Equation (60) then implies that when Bo>O, the 
field can be turned off adiabatically with respect to the black 
hole, so that SS, = 0. The transformation of a highly ex- 
treme black hole into an extreme Kerr-Newman black hole 
is in that case only possible when q = 0. When 6 U <  0 and 
Bog < 0, the principle of cosmic censorship unavoidably re- 
quires that the area of the horizon increase as the magnetic 
field is turned off. The minimum allowable increase in area 
under these conditions occurs with 7 = 0 in (60), corre- 
sponding to the transformation of a highly extreme black 
hole into an extreme Kerr-Newman black hole. Note that a 
highly extreme black hole with equilibrium electric charge 
go = 2B0m2 is transformed, when SU = 0 and the magnetic 
field is turned off adiabatically with respect to the black hole, 
into a black hole with 

7. CONCLUSION 

The accretion of plasma can result in the formation of a 
magnetosphere with a regular magnetic field distribution in 
the vicinity of a black hole. The simplest configuration 
which sheds light on some of the qualitative features of black 
hole behavior in an external magnetic field is a uniform field 
oriented parallel or antiparallel to the angular momentum 
vector of the black hole. This situation is described by the 
Ernst-Wild metric in the limit of a gravitationally weak mag- 
netic field. The presence of an external magnetic field results 
in the black hole parameters being dependent on the magni- 
tude of that field. 

Even for the limiting value a = m of the rotation pa- 
rameter, a rotating black hole in a uniform magnetic field 
may possess a nonvanishing equilibrium electric charge 
which is consistent with the charge found by Wald." A 
black hole achieves electrical equilibrium when the comov- 
ing potential vanishes; the later determines the electrostatic 
energy of test particles. A nonvanishing equilibrium charge 
on a black hole ensures a conditional minimum in the total 
energy (mass) of the metric in the presence of an external 
magnetic field. It is possible that a rotating black hole with a 
magnetosphere and nonvanishing electric charge can also 
come to equilibrium. In that event, the entire system will be 
electrically neutral because of the compensating charge con- 
tained in the magnetosphere. In a uniform magnetic field, 
the magnetic flux through the upper hemisphere of the event 
horizon of an equilibrium black hole turns out not to depend 
on its angular momentum. The angular momentum and 
electric charge of a black hole in a magnetic field can exceed 
the allowed values for a Kerr-Newman black hole. Because 
they acquire an equilibrium electric charge in their highly 

extreme state, massive black holes may be found in quasars 
and galactic nuclei, which rotate rapidly due to their accre- 
tion disk. When the magnetic field is turned off, in accor- 
dance with the principle of cosmic censorship, a highly ex- 
treme black hole must in general be transformed into a 
nonextreme Kerr-Newman black hole. Under certain cir- 
cumstances, such a transformation leads to an extreme 
Kerr-Newman black hole 
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