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The effect of an alternating homogeneous magnetic field H of frequency w on the boundary of 
a type-I1 superconductor located in a homogeneous stationary magnetic field perpendicular to 
the surface is investigated. It is shown that an inhomogeneous magnetostatic wave with a 
wavelength equal to the distance d between the layers of the vortex structure of the 
superconductor is induced. Conversely, an inhomogeneous magnetostatic wave of wavelength 
d induces a homogeneous alternating magnetic field of frequency w. In this case the amplitude- 
transformation coefficient for the exciting and induced waves is K z 4 . 5  X 10-2x-2, where x is 
the Ginzburg-Landau parameter. It is shown that this property of the boundary of a type-I1 
superconductor can be used to detect surface Rayleigh waves of frequency - 10"-5 x 10" s-' 
in concentrated paramagnetics with an acoustic energy flux density of 10-3-10-4 W.cm-'. 

INTRODUCTION 

In a concentrated paramagnetic material in an external 
constant magnetic field, the propagation of sound causes os- 
cillations of magnetization such that the acoustic wave is 
accompanied by a magnetostatic wave of the same frequen- 
cy. The surface acoustic wave is accompanied also by a mag- 
netostatic wave above the surface of the paramagnetic sub- 
stance, but its amplitude drops exponentially with 
increasing distance from the surface at a distance on the or- 
der of the acoustic wavelength A,. Similar magnetostatic 
surface waves accompany oscillations in magnetization 
caused by collective excitations of spin systems in solids (for 
example, by spin waves, magnons, etc.). At frequencies 
w - 10" to 5 x 10'' per second we have A, - lop5, so that 
excitation of this sort of surface excitation directly by a mag- 
netostatic wave is not possible. In addition, even the genera- 
tion of similar excitations causes difficulties, since this re- 
quires an alternating inhomogeneous magnetic field having 
an inhomogeneity period it,, so that the method of "edge 
excitation" must basically be used,' which is only slightly 
effective at frequencies w>lO1' s-I, and is not used for the 
excitation of surface waves. 

In this study it is proposed that the boundary of a type- 
I1 superconductor be used for the excitation and detection of 
similar surface magnetostatic waves. It is knownZ that in an 
external constant homogeneous magnetic field H perpendic- 
ular to the surface of a superconductor (H,, < H < Hc2, 
Hc,,c2 are the first and second critical fields), an ordered 
two-dimensional vortex structure consisting of currents and 
a magnetic field is formed in a type-I1 superconductor. The 
period of the structure determined by H can easily be select- 
ed to be equal to the acoustic wavelength it, at frequencies 
w - 10"-10'2 s-'. If a disk of this superconductor is laid on 
the surface, say, of a paramagnetic substance, along which a 
supersonic surface wave is propagated, then the magnetosta- 
tic field accompanying the sound causes a perturbation of 
the periodic structure of the superconductor. Any small per- 
turbation of the vortex structure can be represented as a su- 
perposition of various modes of a reciprocal two-dimension- 
al vortex lattice, in which the various modes interact with 
one another as a result of the nonlinearity of the nonstation- 

ary equations of superconductivity (Ref. 3), so that a non- 
homogeneous exciting mode will induce a homogeneous 
mode which can be detected by microwave radio methods. 

In the inverse problem, a homogeneous mode induces 
an inhomogeneous one, and ifA, turns out to be equal to the 
distance between the vortex layers, it may prove to be suffi- 
ciently effective to excite sound in the paramagnetic sub- 
stance. 

In order to clarify these possibilities, we solve here two 
boundary-value problems of the nonstationary supercon- 
ductivity equations (Ref. 3) for the half-space occupied by 
the superconductor with: 1 ) a uniform alternating magnetic 
field of frequency w at the superconductor boundary; 2) an 
inhomogeneous magnetic field of frequency o ,  with a period 
equal to the distance of the superconductor vortex layers, at 
the superconductor boundary. 

1. LINEARIZATION OF THE NONSTATIONARY 
SUPERCONDUCTIVITY EQUATIONS 

In Ref. 3, a nonstationary generalization of the Ginz- 
burg-Landau superconductivity equations was obtained for 
zero-gap superconductors at frequencies w < rs- ', where 
rS- ' is the frequency of collisions with spin flip of the conduc- 
tion electrons. We introduce the dimensionless radius vector 
r = rl/A, the time t = y-'6 -*t I ,  the reciprocal coefficient of 
conduction-electron diffusion in the normal state yo = yit, 
the electric conductivity coefficient a,, = 4 ~ 2 0 ,  the dimen- 
sional coefficient of electrical conductivity and the recipro- 
cal diffusion coefficient a and y, the depth of magnetic field 
penetration into the superconductor it, the coherence length 
6, the radius vector r', and the time t ' ( k  = f i  = c = 1 ). In 
dimensionless units the nonstationary equations of super- 
conductivity take the following form (Ref. 3) : 

7ofZuf div (f Q) =0, 

rot H=ooE-f Q, 
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Here f = A1/A0; A' is the amplitude of the order parameter; 
A, is the amplitude of the order parameter in the absence of 6 = 8.1 ~ X P  ( iGd) ,  q = zal exp (i~.,r) ,  

k.1 L I ...- 
fields (Ref. 4 ) ;  E and H are the dimensionless intensities of ( 6 )  
the electric and magnetic fields (Ref. 5 ) ;  Q = A - xP'VX; u = ukl exp (iGklr), 
u = q, + %yo- 'dx/dt; x = A /,$' is the Ginzburg-Landau pa- k.1 

rameter; A and 6 are potentials of the electromagnetic field; 
x is the phase of the order parameter. 

Let the superconductor under study occupy the half- 
space z ) 0 .  We apply to the sample a uniform magnetic field 
H0 (O,O,H O) . We designate by Q, and f, the stationary solu- 
tions of the equation set ( 1) in the field H, ( u  = 0 ) .  We 
assume in addition that weak nonstationary perturbations 
make their appearance at the boundary z = 0 ,  where the so- 
lution of the equation set ( 1 ) can be presented in the form 
Q = Q O + q ( r , t )  and f= f o + S ( r , t ) ,  where q 4 Q 0  and 
S 4 f O. The equations ( 1 ) linearized with respect to the non- 
stationary perturbations q, u, and S take the form 

6 - ~ - ~ V ~ 6 +  (3f02-1) 6=-2f0QOq-q26, 

aoyo-'xzk-bq+ V div q+aoVu+fOZq=-2fOQO6, ( 3 )  

yofOu-tfO div q+2VfOq=-2QOVS. 

It is necessary to add to these equations the boundary condi- 
tions at the surface z = 0 (Ref. 3 ) :  

and the continuity of the magnetic field vector h ( r , t )  and of 
the tangential component of the vector E. 

Equations ( 3 )  are a set of linear equations, whose coef- 
ficients Q0 and f O are periodic functions of the two-dimen- 
sional vortex lattice. We define the set of coordinates in such 
a way that the basis vectors of the triangular vortex lattice 
have the form a = ai, b = ( a / 2 ) i  + (311'/2)aj. We obtain 
for the basis vector of the reciprocal lattice: 

Q0 and f O can be represented in the form of an expansion in 
the vectors of the reciprocal lattice, G,, = k A + 1 B: 

k.1 

We further assume that x ) 1 and H0 is such that a -A, 
that is, a ) { .  In these equations Q0 can be represented as a 
superposition of isolated vortices of a London superconduc- 
tor, and f O z  1. (We note that since f O varies from 0 to 1 at 
distances of -6, it follows that f & -- 1 and f E, ==.x-' at 
k,l # O . )  The coefficients Q i ,  ( Q  &,Qi ,  ,0)  are defined in the 
Appendix, and have an order x - ' .  On assuming in Eq. ( 3 )  
f O = 1 and restricting ourselves to terms of highest order in 
x-'  we obtain: 

GOYO-'xZq-Aq+ V div q+aoVu-tq=--2q8, ( 5 b )  

The solution of the equation set ( 5 )  should be sought in 
the form6 

where S,, , u,, , q,, ( q i , ,  &, , q;, ) are functions of z .  We sub- 
stitute these expressions in Eqs. ( 5 ) .  Then the modes k and I 
are "intermixed" in the right side of Eqs. ( 5 ) ,  so that there is 
a parametric interaction between the various k and 1 modes. 
We note that the terms describing the parametric interaction 
of various modes k and I are -%-I,  and they can be consid- 
ered to be small in comparison with the left-hand side of Eq. 
( 5).  Then solution of Eq. ( 5 ) with the boundary conditions 
taken into account can be sought by iterations with respect 
to the weak parametric interaction between the various 
modes k and I .  In the zeroth approximation we assume the 
right-hand side of Eq. ( 5 )  to be equal to zero, and we seek for 
the homogeneous equations (5 )  a solution satisfying the 
boundary conditions. We substitute then the obtained solu- 
tion in the right-hand side of Eq. ( 5 ) ,  and seek a solution of 
the inhomogeneous equations (again with the boundary 
conditions taken into account). The solution obtained will 
take into account the parametric interaction between the 
modes k and I .  

2. SOLUTION OF THE HOMOGENEOUS EQUATIONS 

The fundamental solution of the set of equations ( 5 )  
with zero right-hand side has the following form (we assume 
S, q, u -eiwf ), 

4;i - P,, cos rp,, 

= [- p15n ''1 ex. (ipt,zi 

Ukl  

- sin rp,, 

+ .,. [ ] exp(ip,lz) 

Go - i Gkl sin p,, 

where qoo and u,, are obtained from Eq. (7) at p,, = 0. A,,, 
B,, , C,, , and D,, are arbitrary constants. 

3. SOLUTION OF THE BOUNDARY-VALUE PROBLEM FOR 
THE CASE OF AN ALTERNATING UNIFORM FIELD 

We assume that a uniform alternating magnetic field 
h = hooei"' , hoo(O,hoo,O) is incident on the surface of the su- 
perconductor. It causes a perturbation in the periodic struc- 
ture of the superconductor, and in the vicinity of the bound- 
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ary there appears an alternating electromagnetic field with 
different modes k and I ,  so that the exact value of h at the 
boundary x = 0 cannot be specified, but in the zeroth ap- 
proximation in the interaction between modes it is possible 
to put q = qooei"', qoo(qoo,O,O) at z = 0 .  We note that the 
boundary conditions of Eq. ( 4 )  should be met exactly at any 
step of the iterations, since they indicate the absence of a 
normal current through the boundary of the superconductor 
(Ref. 3 ) .  In the zeroth approximation in the parametric in- 
teraction of modes we then obtain, using the solutions ( 7 )  
and ( 8 ) ,  subject to the boundary conditions 

qk(P)* = 0 (k, If 0) , ( 9 )  

We substitute Eq. ( 9 )  in the first equation of set ( 5 ) ,  
and find a general solution of the inhomogeneous equation 
that is obtained: 

We find the constants D,,, from the boundary condition 
d8L:'/dzlz =, = 0.  We obtain 

6::' (z) = 
2Qhrxqoox2 [ POO -- eap (id.,z) + exp (ipoOz) ] . ( I I )  
dhL2-p"O2 d k l  

The coefficients 6:)' determine the nonstationary part of the 
order parameter 8"' to a first order in the parametric interac- 
tion of modes. This part determines the right-hand sides of 
the equations for q"' and u"' in Eq. ( 5  ) . Further, it is possible 
to find a general solution of the inhomogeneous equations 
obtained from Eq. (5) for u:) ' (z)  and 9;;' ( z )  with arbitrary 
constants A,, , B,, , CkI, which are then determined from the 
boundary conditions. We find the coefficients uh:' and qh:', 
since just they will determine the alternating inhomogen- 
eous electromagnetic field having an inhomogeneity period 
equal to the distance between vortex layers of the supercon- 
ductor. To do this it is necessary to separate out in the right- 
hand sides of Eqs. ( 5 )  the expansion terms corresponding to 
the mode 0 1 : 

To prove Eqs. ( 13) and ( 14) we note that there expres- 
sions contain sums of the form: - 

where q is some function of the arguments k ~ n d  21 - k.  
Then S is equal to: 

We make the replacement I  = I '  - k in the second sum. In 
this case the summation with respect to 1 ' for each k will be 
from - co to co so that we have: 

Thus, the right-hand sides of Eqs. ( 5 )  for uh:' and q$' are 
determined by Eqs. ( 12) to ( 14).  Taking into account the 
boundary conditions q"'zl,, , = 0 and E '"z(, , , = 0 ,  the 
general solution of the obtained equations takes the form. 

( I ) *  - 
9 --Boi exp (ipoiz) + goo akl exp (ipooz) 

We find B,, from the remaining boundary condition-the 
continuity of the magnetic field intensity h,, at z = 0.  We 
assume for simplicity that the superconductor borders a 
vacuum; it is then easy to show that h Y, ,  / h  = i at z = 0.  
This relation determines B,,. The term with the sum b,, 
need not be taken into account in the calculations, since it 
will give a contribution -x - '  relative to the previous term 
with a,, . Finally we obtain at z = 0 

4. SOLUTION OF THE BOUNDARY-VALUE PROBLEM FOR 
THE CASE OF AN ALTERNATING INHOMOGENEOUS FIELD 

Let a magnetostatic wave with a wavelength equal to 
the distance between vortex layers be propagated along the 
boundary of a superconductor. In the zeroth approximation 
in the parametric interaction it is then possible to put at 
z = 0:  

q ( r , t )  = q,, exp(iwt + iGol y ) ,  

qo,(qo,,O,O), qkl = O(k #O,l# 1 )  9 

and the solution will be determined by Eqs. ( 6 )  and ( 7 ) .  
Using the boundary conditions we obtain for the zeroth ap- 
proximation: 

We substitute Eq. ( 2 0 )  in Eq. (5a)  and we obtain for 6:;' 
inhomogeneous equations whose solution with allowance 
for the boundary conditions aS"'/dzl, = , = 0 takes the form 

The solution of Eq. ( 2 1 )  determines the right-hand side of 
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Eqs. (5b) and (5c) to first order in the parametric interac- 
tion of modes q:!' and u:!'. Let us find q,, and ug ' ,  since it is 
they which will determine the homogeneous electromagnet- 
ic field induced by the surface of the superconductor. To do 
this it is necessary to separate out the 00 mode in the right- 
hand sides of Eqs. (5b) and ( 5c) : 

Note that the sum encountered in Eq. (23) has the form of 
Eq. ( 15), while the sum in Eq. (24) has the following as a 
multiplier: 

Equations (221424) determine the right-hand sides of 
the set of equations (5) for the components ug'  and qg'. 
Solution of these equations with the use of boundary condi- 
tions in Eq. (4) gives: 

'Jo:"'= B J ~  ZI 4 1 '  ex$ (ipolz) + 9.1 C bkl1  erp   id,,^), (25) 

From this we obtain the alternating uniform magnetic field 
induced on the boundary of the superconductor (the term 
with b ;, is dropped, since it gives a contribution on the order 
of x-  ' relative to the preceding one) : 

where h Y,, is the amplitude of the y-component of the mag- 
netic field of the inhomogeneous wave. 

5. DISCUSSION OF RESULTS 

As is evident from Eqs. ( 19) and (27), the ratio of the 
amplitudes of the induced and exciting waves is determined 
for both boundary-value problems by the sums Zak, and 
Za;, . To estimate these sums we note that a sufficiently large 
class of type-I1 superconductor exists with x = 10-50 and 
A - 1000-2000 A, for which 7;'- 5 x 10'' to 1013 s-' (Ref. 
71, so that these superconductors can be used for the detec- 
tion and excitation of magnetostatic waves with w - 10"- 
1012 s-'. On the assumption that a = 10" s-' (see, for ex- 
ample, Ref. 8),  we obtain P z  1 for the frequencies under 
consideration. Then a,, and a;, are approximately equal, 
and for Za,, -Za; = K we have 

G,, = (21i-/a)R,,. (In calculations of K the value 1 in the 
denominator of Qk, is neglected in comparison with 
(4d/a2)R ;, so that terms with k = I = 0 and with k = 0 
and I = 1 should be put equal to zero in K. 

The sum in Eq. (28) converges rapidly and to estimate 
this sum it is sufficient to retain terms in k,l up to the first 
root of the Bessel function, that is, (2n/xa)Rk, ~ 2 . 5 .  At 
x = 10 and a = 1 it is enough to take into account the first 
two or three coordination layers and the coefficient 
K = 4.5 X 10-2x-2. Note that the parametric interaction is 
strongest between modes with neighboring k and I, for when 
calculating the amplitude ratio of exciting and induced 
waves whose k and I differ by more than 1, sums analogous to 
Eq. (28) obviously appear, but with a still large dephasing in 
the arguments of the Bessel functions, so that the values of 
these sums decrease sharply. 

At a surface-wave velocity - 1.5 x lo5 cm.s-' we have 
A, z 1 . 5 ~  cm at frequencies w = 6~ 10LOs-' (at a = 1 
this corresponds to an external field H z 1 kOe) . A super- 
conducting slab of width 0.3 cm will span of N = 2X 10, 
vortex layers, so that although the amplitude of the inhomo- 
geneous magnetic wave, as follows from Eq. (20), is a 21i-K 
times less than the amplitude of the uniform alternating 
field, nevertheless the strength of the induced magnetic exci- 
tation for such a slab will be ( ~ T K N ) ~  times greater than the 
"edge excitation," that is, larger by three orders of magni- 
tude for the slab in question. 

A slab with these parameters can be also used to detect 
Rayleigh surface waves in concentrated, rare earth (RE) 
paramagnetic materials. It is known (Ref. 9)  that in a mag- 
netic field H0 a significant magnetostriction is observed in 
concentrated rare-earth paramagnetic substances and is due 
to the strong spin-phonon interaction of the RE ions. A term 
-0.5 deH2 appears therefore in the free-energy density of 
these substances, where e is the strain tensor with compo- 
nents (d  1 ~ 0 . 5 .  It can be shown that the magnetostatic field, 
accompanying a Rayleigh wave is h,, - 8 d d ~ A ;  'U, ( U, is 
the amplitude of the displacements in the sound wave). Thus 
for the Van Vleck paramagnet LiTmF, at a Rayleigh-wave 
acoustic-energy flux density - 1 ~ e c m - ~  (w = 6X 101° 
s-' ) we have h,, ~ 0 . 1  Oe. This means that a superconduct- 
ing slab with x = 10 placed on the surface of a paramagnetic 
substance will induce a homogeneous alternating field 
- 10W5 Oe. Such a field at these frequencies is easily mea- 
sured by the ordinary radio devices used, for example, in 
spin-echo work. The preceding arguments show that a su- 
perconducting disk can detect a rather weak surface wave - low3 to W . C ~ - ~ .  For higher frequencies it may 
even be possible to use superconductors with x = 50 in 
stronger external fields (a  = 0.2). 

Finally we note two more important properties of the 
system under study: the possibility of continuously varying 
the frequency of the excited sound (by changing the value of 
a by means of H  O), and the absence of acoustic contact be- 
tween the superconductor and the paramagnetic material, a 
very important property at such high frequencies. 
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APPENDIX 

Finding the coefficients Qi,,Q ;, 
We introduce the following notation: K, (x)  is a Han- 

kel function of imaginary argument and of order n, and 
J, (x)  is a Bessel function of order n. 

At x $ 1  and ax > 1 a model can be used of a vortex with 
a normal core, so that the magnetic field of single vortex 
centered about the z axis has the form: 

h (0, 0, h ) ,  h=x-'K,(p) 

a t p > x - '  and h = x - ' l n x  a tp<x- '  (p = (x2 +y2)112). 

For the vector q of a single vortex (h = curl q)  we obtain 

l n x  l n x  
n=sn(-TY.Tx,o), 

In the approximation considered, the vector Q is equal to 
m 

Q(P)= r( q ( l ~ - ~ - m b l ) ,  
n,m--- 

a and b are defined in Sec. 1, and n and m are whole numbers 
and 0. For the Fourier-components Q,, of the vector Q0 we 
have then 

Q k F s o - '  j,! q (P) eap (- iGkip)  d r  dy,  (-42) 

So is the area of the surfacez = 0 per vortex. It is convenient 
to continue the calculations in the polar coordinatesp and p. 
We note that 

Integration with respect to the angles is easily carried 
out (see, for example, Ref. 10). The integration with respect 
top is expressed through J, (G,, x -  ' ), for the normal part of 
thevortexand through J, (G,,x-I), J2(G,,x-'), K, (x- ')  
K ,  (x- ' ) for the superconducting part (see, for example, 

Ref. 11). Using the asymptote K ,,, at small values of the 
argument, the second integral can be expressed through 
J,(G,, x-  ' ). After carrying out the calculations it is evident 
that the contribution to Q Z y  from the normal part of the 
vortex - x - ~  ln x is smaller than the contribution from the 
superconducting part and can be neglected. Finally we ob- 
tain 
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