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The asymptotics of the edge-plasmon spectrum of a two-dimensional semi-infinite plasma (the 
electrons occupy a half-plane) in the presence of a screening electrode is obtained in the long- 
wave limit qd< 1 (q is the plasmon wave vector and d is the distance to the screen) in the 
absence of a magnetic field. The results differ qualitatively in cases when the screening is by 
one or two electrodes. The damping length of the boundary plasmons in the interior of the 
plasma is found to be anomalously large. For the more realistic circular geometry (the 
electrons occupy a disk of radius R ) only modes with sufficiently large azimuthal indices 
n > N- (R can be interpreted as boundary plasmons. 

A number of recent papers are devoted to the experi- 
mental and theoretical study of the spectrum of bounded- 
plasma oscillations localized near its boundary. What are 
involved in fact are two effects. The first manifests itself dis- 
tinctly in experiment and has been quite well interpreted 
quantitatively, viz., the splitting of the natural plasma oscil- 
lations w, of a bounded 2 0  system by a magnetic field H 
normal to the plasma layer. The mode for which awn /aH < 0 
tends to become localized, with increase of H and of the 
mode number, near the free edge of the 2 0  system, and can 
therefore be called an edge magnetoplasmon. 

In the second effect, an edge plasmon in a 2 0  semi- 
bounded system (the electrons occupy a half-plane) can ex- 
ist also without a magnetic field. This phenomenon is as yet 
not quite clear. Thus, it is indicated in Ref. 1 that an edge 
plasmon cannot exist without a magnetic field in the absence 
of a screening electrode (a metal surface parallel to the plas- 

um. An equilibrium 2d electron system was produced on the 
helium surface. The density no(x) ofthis system is shaped by 
potentials applied to the capacitor plates and to a guarding 
electrode represented in the figure by a vertical segment. The 
dielectric constant of helium is E z 1.06, the potential of the 
guard electrode is designated V. The capacitor plates occupy 
the planes z = 0 and z = d ' > d. The point x = 0 coincides 
with the boundary of the 2d system. The coordinate of the 
guard electrode, x = - L, is determined in this case from 
the solution of the electrostatic-equilibrium equation. The 
same equation yields also the equilibrium distribution of the 
electron density no(x). It turns out that in this case, when 
the two screening electrodes are at equal distances from the 
helium surface, no(x) has a square-root dependence as 
x- + 0 and rapidly reaches no( w ) at x k d.3 It is natural to 
assume that this no(x) dependence is preserved also in a 
situation with one screening electrode: 

ma layer). ~ a t e r  in which the spectrum of thekdge ~ , ( X ) - X ' ~  as x - t f 0 ,  c3n0/dx=0 at sad. 
plasmons was calculated approximately, attest to the exis- 

(1)  

tence in the same situation of an edge plasmon with a spec- A. Consider first a situation with one screening plane 

trum z = 0. The set of equations that describe the edge plasmon in 
the linear approximation contains the connection between 

op(q)=  const ol (q) ,  const <I, the electrostatic potential p (x,y,t) = p (x)  exp (iqy - iwt) 
where a, (q) is the spectrum of two-dimensional plasmons 
in an unbounded 2 0  plasma, and q is the wave vector of the 
plasmon along the plasma boundary. Volkov and Mikhai- 
lov,' reporting a more accurate solution of the problem of an 
edge plasmon in a screened plasma, obtained its spectrum in 
a number of ranges of q in the general case H # 0. However, 
in the limiting case q d 4  I, where d is the distance to the 
screening electrode at H = 0, was not discussed in their pa- 
per. Finally, in Fetter's paper6 in which contains a numerical 
solution of the edge-plasmon problem, it is stated that in the 
limit as qd-0 and H = 0 there is no edge plasmon if the 
screening is effected by two electrodes placed at equal dis- 
tances d from the plasma layer. In view of the foregoing, we 
wish to present here our own arguments in favor of the exis- 
tence of edge plasmons in the absence of a magnetic field in a 
screened plasma in the limit as qd - 0, and discuss the possi- 
bility of observing them. 

1. EDGE PLASMON FOR A SEMI-INFINITE 20  PLASMA 

Consider, for the sake of argument, the cell shown sche- 
matically in Fig. 1. A parallel-plate capacitor is partially (up 
to a heighth d above the lower plate) filled with liquid heli- 

and the oscillating density n (x,y,t) = n (x)exp(iqy - iwt) : 

(P ( x ,  Y, t )  =- 1 e 1 dx' J dy'K (s-+', y-y') n ( x r ,  y', t )  , (2)  

where e is the electron charge, y the coordinate along the 
half-plane boundary, K(x,y) is the Green's function of the 
Poisson equation of the corresponding electrostatic prob- 
lem; it includes also the continuity equation 

d  n  - + d i v [ n ,  ( x )  v] =O. 
at  

Here n,(x) the equilibrium density of the electrons, and u is 

FIG. 1 .  1-Guard electrode, 2-upper screening electrode, 3-lower 
screening electrode, 4--electrons above the helium. 
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the two-dimensional field of their hydrodynamic velocity. 
The value of u is obtained from the equation of motion 

dv 
m-= l e l  V 2 q ,  

at (4) 

where m is the electron mass and V2 is the two-dimensional 
gradient in the plane of the electron layer. 

One can obtain for K(x,y) the Fourier representation 
+ rn 

1 
K(x, u )  = 7 JJ erp {- i  (kXx+k,y) )K(k ,  k,) dk, dk.. 

(an) -_ 

(5)  
where 

m 

Substituting p and n in (2)  in a form that contains the factor 
exp(iqy - iwt), we obtain the equation - 

where 
m 

D = 2d, and KO is a modified Bessel function of the second 
kind. In the derivation of (5a), the presence of the guard 
electrode was not taken into account, since it is possible to 
meet the inequality L & d  by choosing a high enough guard- 
electrode potential. 

Since ( E  - 1 ) / ( E  + 1) 4 1 for helium, we can put E = 1 
in (7),  thereby simplifying greatly the expression for the 
kernel: 

f;(x)~L(x)=2{Ko(q(x()-Ko(q[xa+Da]") J. (8 ) 

It was assumed in Refs. 1,2, and 4-6 that the equilibri- 
um profile of the electron density no(x) is the step function 
8(x) .  In fact, as mentioned above, no(x) has a square-root 
dependence as x-+ + 0 and tends to a constant no( co ) at 
x 2 d. This behavior of no(x) asx 0 imposes certain restric- 
tions on p ( x )  if it is desired to remain within the framework 
of the linear approximation. Indeed, from the continuity 
equation written in the form 

. . 
l e l  n (x) = - div (no V,cp) 
maZ 

it can be seen that n (x)  contains a contribution -n;p ', and 
the condition n (x)/no (x )  - n;p '/nag 1 that permits linear- 
ization calls for satisfaction of the relation p ' (x)  -xl +", 
a h 0  as x - + 0, since n; (x)/no(x) -x-I as x- + 0. For a 
step-function distribution no(x) = 8(x) ,  the condition 
p '(x) -0 as x-  + 0 is equivalent (by virtue of the propor- 

tionality u, -p : ) to vanishing of the normal current on the 
plasma boundary, i.e., to absence of a displacement of the 
boundary or to the fact that no singular charges of type 
QS(x) are produced on it. 

If the boundary has a finite rigidity and its equilibrium 
position is determined by the electrostatic-equilibrium equa- 
tion, the fluxes to the boundary can in principle shift the 
position of the latter. If, however, it is assumed that the oscil- 
lation amplitude in the edge plasmon is such that the corre- 
sponding displacement of the boundaries of the 2d system is 
small compared with the width no(x) of the transition den- 
sity region, the increments that appear when account is tak- 
en of the displacements of the boundary turn out to be of 
second order in the oscillation amplitude, and should be dis- 
regarded in the linear theory. 

Substituting (8)  and (9)  in (6)  and introducing the 
dimensionless coordinate x/D, which will henceforth be de- 
signated by the same letter x, we obtain the following equa- 
tion for p (x ) :  - 

where f12 = w2mD/(2rn0( co )e2) is the dimensionless fre- 
quency, 

fo(~)=no(~)/no(-),  fo(x)-x'" as x-++O, 

fo(x)-+l as x++- H fo(x)=O at x<O, 

L,(x)=n-'{K,(qDlxl)-Ko[qD(l+x2)'"]). (11) 

The primes in the expression (fop ') ' denote differentiation 
with respect to x'. 

The kernel L, (x)  is given by 

We note in addition that 
+m 

1 
L,(x)dx =- [I-eap(-qD)]=t+o(qD). (13) 

- m 9D 

It is impossible to obtain an exact solution of the integral 
equation ( 10). We solve it approximately by recognizing 
that the sought function can be taken outside the integral 
sign if the characteristic interval of its substantial variation 
exceeds the distance over which the kernel falls off. The cal- 
culation results will confirm that the function p ( x )  varies 
little over distances - (qD) -', so that the following chain of 
equations is valid (recall that fo(x) becomes equal to unity 
at x- 1): 

=q (x) JdxfLq (x-XI ) f o  (XI) =q (x) { jLq (x-xf ) dx' 
A m -m 

+ m 
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It follows from (12) that 

and h ( x )  decreases exponentially at x 2 (qD) ' 
h(x)=(8xqDx3)-'"exp(-qDx), x>(qD)-I. (14b) 

As to that part of the integral in (10) which contains 
(fop I ) ' ,  it is convenient to represent it in the form 

m 

where G(x)  is some indeterminate function, which is in fact 
defined by (15). As to G(x) ,  it can be stated that G(x)  z 1 in 
the region of those x in which (fop ' ) '  varies slowly over 
distances of the order of unity (since the kernel L, (x  - x ' )  
behaves at 1 5 x  5 (qD)-' like (x  - x ' )  -', i.e., it is concen- 
trated mainly in the region Ix - x' 1 - 1 ) . Next, it follows 
from the fact that as x - 0 the left-hand side of ( 15 ) tends to a 
certain constant, while p ' (x )  -xl + " a > O a s x -  + O  (see 
the arguments that follow Eq. ( 9 ) ) ,  it follows that G(x)  
varies like x '" + "*) as x - 0. 

Using the approximations ( 14) and ( 15 ) , we rewrite 
Eq. ( l o )  for p ( x ) :  

At large x %  1, the tendency of G(x)  to unity and the slow 
variation of ( fop ' ) ', used to assess the properties of the func- 
tion G(x) ,  actually take place. By the same token it follows 
from (16) that G(x)  -- 1 we have (fop ')'=:Cl + C,h(x), 
i.e., the assumption G(x)  =: 1 at x %  1 is justified, since it is 
obtained in this case that (fop ' ) '  changes to the extent that 
h ( x )  of ( l4a) and (14b) changes, i.e., quite slowly. 

Equation ( 16) recalls the problem of determining the 
energy level E in a shallow well,' where the role of E is played 
by R 2  - (qD)2, the potential energy takes the form 
- (qD)'h(x), while shallowness of the well is ensured by 

the inequality (qD)' < 1. In exact analogy with the quan- 
tum-mechanical problem, we shall assume that the sought 
energy level R2 - (qD)2 is the quantity o [ (qD)'] , so that in 
the region x 5 (qD) -' we can neglect the term R2 - (qD)2 
compared with (qD) 'h ( x )  . 

As a result, we have in this region the equation 

In the region x k (qD) - ', where h ( x )  decreases exponen- 
tially and f,(x) = G(x)  = 1, we obtain 

The problem now is to match in the intermediate region the 
logarithmic derivatives of the solution ( 17) which satisfies 
the condition p ' (0)  = 0, and of that solution of Eq. (18) 
which decreases exponentially as x -  + C Z J .  From (7 )  we 
have 

5 

Assuming that in the integral of ( 19) we can replace q,(xf) 
by p ( 0 )  in the entire integration region (estimates that dem- 

onstrate the validity of this approximation will be given be- 
low), we obtain at 1 5 x 5  (qD)- '  

cp' (x)-  -( qll)Lcp (0) (AL (2n)-'  In x ) .  (20) 

where the constant A -  1 results from integration over the 
region x -  1, and the logarithmic contribution comes from 
the region x 2 1, where G(x)  = 1 and h ( x )  =: ( 2 r x )  I .  

Having now Eq. (20),  we can now justify replacement 
of q,(xl) in ( 19) by ~ ( 0 ) .  Indeed, substituting in place of 
q, (0 )  the more accurate value 

X 

q (x) =q (0) + I cpr (s) ds -q  (0) - ( q ~ )  'Cp (0) [Ax "'"" 2rt I 
0 

we obtain for q, ' ( x )  a correction of order of 

i.e., at x -  (qD)-',  where it is necessary to carry out the 
matching (which, incidentally, is not very critical to the lo- 
cation of the point at which it is effected, since p ' ( x )  has a 
logarithmic dependence on x ) ,  the addition is of order of 
smallness (qD) 4 1 compared with the zeroth approxima- 
tion (20). Moreover, it follows from the very same Eq. (20) 
that the value of q, ( x )  at x - (qD) ' differs from p ( 0 )  by 
- (qD)ln(qD)-'q,(0) <p(O) ,  i.e., the function p ( x )  in- 
deed varies slowly over a distance not only - 1, but also over 
a distance - (qD)-',  which makes it sensible to retain in 
( 14) the term proportional to h ( x )  . 

Finally, equating the value q, ' ( x ) / p ( x )  obtained from 
(20) at the point x -  (qD) -' [it is possible, as follows from 
the foregoing to replace p ( x )  by p ( 0 ) ]  to the logarithmic 
derivative of the solution of Eq. ( 18), which vanishes at in- 
finity, we obtain 

whence 

i.e., at q so small that ( l n ( q D ) - ' ) / 2 ~  exceeds the indeter- 
minate constant A ,  we have (after changing to dimensional 
quantities) the following dispersion equation for an edge 
plasmon as q - 0: 

where c, = [4rnO( CZJ )e2d /m]  ' I 2  is the velocity of the 'long- 
wave plasmon in an unbounded two-dimensional plasma. It 
follows from (23) that, in accordance with the assumption 
made above, the difference R 2  - ( q ~ ) '  turns out to be a 
quantity of higher order of smallness in qD than (qD12. In 
the quantum-mechanical problem concerning the energy 
level in a shallow well, this corresponds to the statement that 
the sought level is of second order of smallness in the well 
depth. 

Thus, in the situation considered, the edge plasmon, 
whose dispersion law is determined in the q-0 limit by Eq. 
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(24), lies lower than the corresponding plasmon of an un- 
bounded plasma, and its damping length, determined by the 
quantity p /p ', turns out to be anomalously large: in dimen- 
sional units it is equal not to q- ', as might be assumed, but to 

B. Particularly noteworthy is the case of screening by 
two planes. We confine ourselves to the simplest and there- 
fore usually considered variant, in which the metallic elec- 
trodes are at equal distances d from the electron sheet. In this 
case we have in place of (5a) for the Fourier transform of the 
function K(x,y) 

2 2n; 
K (k,, k,) = -- 

1 S e  lkl th IkId, 

while f12 and L, (x) take in Eq. ( 10) the form 

where x denotes the dimensionless coordinate 2 = x/d. 
To analyze the long-wave approximation it suffices to 

replace L, (x)  by 
1 nx 

L,(x) =--1nth-. 
I n x 2 1  3t 4 

L, (x) =2x-' exp (-nx/2), 

i.e., the kernel falls off exponentially at x 2 1. The function 
h(x)  defined by (14) therefore decreases already exponen- 
tially at x 2 1 for such a kernel. The logarithmic derivatives 
should now be matched at x k 1, i.e., Eq. ( 17), in which D 
must be replaced by d, should be integrated from 0 to a cer- 
tain value x- 1. The main contribution to the derivative 
builds up here in that region ofx where the function G(x) is 
not known with any degree of accuracy (i.e., (fop ') ' varies 
noticeably over distances - 1 in the region considered). It 
can therefore only be stated that at x k 1 

d~ /dx=-B(qd ) '~  ( O ) ,  (31) 

where B - 1 is a certain constant. At x 9 1 we are left with Eq. 
(18) (with D replaced by d ) ,  so that the matching yields 
finally for the edge-plasmon spectrum 

w (q )  =cq(l-B2(qd)'/2), (32) 

where c = 2-lt2c0 is the velocity of the long-wave plasmons 
in an unbounded 2d plasma screened by two planes. In this 
screening variant, the plasmon damping length is found to be 

i.e., in the limit as q -0 it is larger than in the case of screen- 
ing by one plane. 

Note that in Ref. 6 (pp. 3718-3719) it is stated that 
there is no edge plasmon at H = 0 in the limit qd-0, if the 
screening is by two electrodes at equal distances from a two- 
dimensional plasma layer. This conclusion was drawn after 
the kernel L, (x)  (designated K(x  - x')  in Ref. 6) of Eq. 
( 10) was replaced by S (x) .  As a result, the integral equation 
is reduced to a differential one, from which it is seen that in 
the presence of a magnetic field, H # 0, the plasmon damping 

length is A - H  -', i.6, A becomes infinite at H = 0. From 
the arguments advanced above it follows that the approxi- 
mation of L, (x)  by a S-function is too crude: an edge plas- 
mon exists also at H = 0, but the length of its damping into 
the plasma interior turns out to be anomalously large. It 
makes sense also to formulate an answer to the qualitative 
question of the role of the fo(x) profile in the formation of 
the spectrum of edge plasmons. The detailed behavior of the 
function fa (which describes the equilibrium electron den- 
sity) in the region 0 < x  5 1, where it increases from zero to 
unity, affects the values of the constants A and B in (23) and 
(32). This means that if the screening is effected by one 
plane, the asymptotic dispersion law for the plasmon as 
9-0, given by Eq. (24) (which does not contain A ) ,  is the 
same for any function& that reaches unity rapidly enough, 
including f,(x) = B(x) used in the preceding papers.1,2,4-6 
At the same time, in the case of screening by two plane the 
explicit form of the function fo(x) affects the numerical co- 
efficient B in the asymptotic form of the dispersion law (32). 
The qualitative character of the spectrum on variation of 
f,(x), however, remains unchanged in this case. 

3. EDGE PLASMON IN THE CASE OF CIRCULAR GEOMETRY 

Since real experiments are always performed in finite 
geometry, with the electron sheet occupying a circle or a 
rectangle, a discussion of edge plasmons in bounded geome- 
try is in order. 

Let the electron be located in a circle of radius R and let 
the screening be effected by two planes at a distance d<R 
from the electrons. The plasma oscillations are then de- 
scribed by the equation 

~ ( r , t ) = - l e l  K (r-rr) n (rr ,  t )  d'r', (34) 
i r ' ! < R  

where K is given by Eqs. (4)  and (26), and n is connected 
with p by the continuity equation [first equality in (9) 1. We 
use a cylindrical coordinate system (p,O) with origin at the 
center of the circle occupied by the electrons, and with 
p(r , t )  in the form p( p)exp(inO - iwt). Far from the pe- 
rimeter, Eq. (34), assuming slow variation of p(r , t )  in 
space, reduces to a differential equation for p ( r ) ,  where 
r = p/d: 

The solution of this equation is 

where J, is a Bessel function of order n. 
In the vicinity of the boundary of the circle, p(r , t )  is a 

certain wave that travels along the perimeter and has a wave 
vector q = n/R. This can be used to obtain data boundary 
condition for (35), which follows from (3  1 ) 

(~'/cp)r=,,d=B(qd)'=B(r~dlR)2. (37) 

Introducing the variable v = w/(cq) = wR /(nc) ,  we re- 
write (37) in the form 

vJ,'(nv)lJ,,(nv) =Bna, a=d/R<I. (38 

Note that a dispersion equation for 2d plasmons is given in 
Ref. 3 for the case of circular geometry, with account taken 
of the magnetic field H. At H = 0 it reduces to an equation 
such as (38), but its solutions in the absence of a magnetic 
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field were not investigated specifically in Ref. 3. It is expedi- 
ent therefore to consider this particular case in detail. 

For each n,  Eq. ( 3 8 )  has an infinite number of solutions 
v,,, , where k is the radical index. The edge plasmon corre- 
sponds to values v < 1, for in this case we obtain a wave trav- 
eling along the circle and having a frequency lower than that 
of a 2d plasmon with a wave vector q  = n / R  in an unbound- 
ed plasma (this is precisely the property possessed by the 
edge plasmons considered in Sec. A. If a is small enough, the 
right-hand side of ( 3 8 )  can be set equal to zero for small n. 
This means that at these n the solution of ( 3 8 )  is the quantity 
nu, which differs very little from the root of the equation 
J :, ( x )  = 0  that describes ordinary 2d plasmons under circu- 
lar-geometry conditions, subject to the additional require- 
ment that there be no normal component of the current on 
the circle boundary. It is known (Ref. 8, Sec. 9 .5 .2)  that the 
smallest root of this equation x,, > n, i.e., v > 1. Values of u 
smaller than unity appear therefore among the solutions of 
( 3 8 )  only for sufficiently large numbers n > N. The critical 
value of N can be obtained from ( 3 8 )  by putting in it v = 1 .  
Using the known (Ref. 8, Secs. 9.3.5 and 9.3.31)  asymptotic 
expressions for J :  ( v )  and J,, ( v )  at large v, we easily obtain 

N x  (Ba)-"', ( 3 9 )  

i.e., only oscillations having a sufficiently large azimuthal 
index n  > N can be regarded as edge plasmons under condi- 
tion of circular geometry. 

To determine the behavior of v < 1 in the region n  > N 
we can use the asymptotes of Bessel functions at large v (Ref. 
8, Secs. 9.3.7 and 9.3.1 1 ) :  

J , ' ( Y  ch-' y j  - (sh 2 ~ / 4 n v ) ' ~ >  exp [v ( th  7 - 7 )  1, 
Jv(r  ch-' y)  - (2nv th 7)-'" exp [ v ( t h  y - y ) ] ,  

from which follows the approximate equality 

J , ' ( v u ) l J , ( v u ) ~  (1-uZ)%Iu. ( 4 0 )  
Substitution of ( 4 0 )  in ( 3 7 )  leads to the equation 
( 1 - v 2 )  = nBa from which we obtain for w the expres- 
sion 

which coincides with ( 3 2 )  if the substitution n / R  = q  is 
made. Thus, the dispersion law (41  ) does indeed describe an 
edge plasmon that propagates along the boundary of an elec- 
tron disk. 

It must be noted that (41  ) is valid only in a very narrow 
range: the edge plasmon described by this equation has a 
lower bound on n  ( n  > N )  and an upper one ( q d ( 1 )  
- ( n  < R / d ) .  These two conditions can be met simulta- 
neously only if the inequality (d  / R  ) 'I4 < 1 holds. 
Noteworthy among the experimental studies of the spec- 
trum of 2d plasmons in bounded systems, which have a bear- 
ing on the questions touched upon here, is Ref. 3, where the 
long-wave part of the 2d-plasmon spectrum was investigated 
in detail for circular geometry in the absence and presence of 
a magnetic field. It was found there that the observed natural 
frequencies w,,, of an electron plasma with small indices 
( n , k < 4 )  are well described by a relation in the form ( 3 8 )  
with a constant a 5 l o - ' .  Thus, the nonvanishing of the pa- 
rameter a in ( 3 8 ) ,  which is the necessary condition for the 
existence of edge plasmons, is confirmed by experiment. To 

go into the region n > N, where the edge plasmon would be 
sufficiently distinctly defined at H = 0 ,  calls only for cre- 
ation of conditions under which modes with sufficiently 
large n can be excited. 

The authors thank V. A. Volkov and S .  A. MikhaTlov 
for a discussion of the results of the work and for helpful 
remarks. 

APPENDIX 

The integral in the left-hand side of ( 15) can be rewrit- 
ten, after a single integration by parts, in the form 

ea 

8 
I=-  J dx l fo  (x')  cpf ( x l )  - L, ( z - r l ) .  

o dx' 
( A . 1 )  

The contribution from the boundaries of the integration in- 
terval yields zero, since ( f o ~  ') - 0 as x + 0, + co . 

In the region x 5 (qD)  -' we have 

Assuming e, ' ( x )  to change slowly over distances - 1 ,  we can 
expand g, ' ( x ' )  in ( A .  1 ) in a Taylor series in (x' - x )  and 
confine ourselves to the first two terms of this series: 

rp'(xf) =cp' (x)+cpW (2) ( 2 ' - 2 ) .  

We then obtain 

I=g'(x)v"(~)+gZ(~)cp'(~), 

where 
m 

Recognizing that f o ( x )  tends to unity if x k 1, we find that in 
the region 1 5 x  5 ( q D )  - ' 

g i C x ) = l + o ( l / x ) ,  

i.e., for large x  the integral in the right-hand side of ( 15) can 
beapproximately replacedbyp " ( x )  + g , ( x ) q ,  ' ( x ) .  This re- 
placement, obviously, reduces ( 10) to a differential equation 
that hasat 1 5 x 5  ( q D ) - '  thesame form as ( 1 6 ) .  

" ~ n  alternative for the transformation of the integral in ( 15) by expand- 
ing the function p(x ' )  in a Taylor series p ' ( x l )  z p  ' ( x )  
+ p " ( x )  (x' - x )  + ... is discussed in the Appendix. The final conclu- 

sions are similar to those of the main text: in thelimit qD< 1 Eq. ( 10) can 
be reduced to a differential one in the form ( 16). 
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