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A formalism for studying solitons in randomly varying media is proposed. This formalism is 
based on the introduction of a soliton distribution function in the form of a path integral. The 
probabilities approach proposed here is followed to obtain a physical picture of the formation 
of solitons of the nonlinear Schrodinger equation in disordered media. The results are applied 
to Langmuir solitons in an inhomogeneous plasma. 

INTRODUCTION 

As we know, solitons-spatially localized, static or 
moving solutions of nonlinear equations-can arise in many 
systems. When solitons form in real systems there are usual- 
ly inhomogeneities which influence wave processes. In an 
inhomogeneous plasma, for example, localization of Lang- 
muir waves (plasma waves) may occur.' Just how the ran- 
dom potential set up by the inhomogeneity influences the 
appearance and stability of solitons has not yet been studied, 
however. 

In the present paper we study spatially fixed solitons 
which arise in an inhomogeneous medium. The new probabi- 
listic approach which we have developed can be taken to 
determine both the stability and the probability for the ap- 
pearance of a soliton. This approach is based on introducing 
in the theory a function F(H) ,  the probability for the forma- 
tion of a soliton with a given value of the Hamiltonian H, and 
a magnitude R, the eigenvalue of the stationary equation 
which determines the soliton solution. 

We know that a soliton in a homogeneous system corre- 
sponds to a completely definite value of the Hamiltonian H, 
which is either positive (H > 0)  or negative (H < 0).  Ac- 
cording to Derrick,' stable solitons form i fH  < 0, and unsta- 
ble solitons if H >  0. According to Ref. 3, however, the in- 
equality H < 0 is by itself a necessary and sufficient condition 
for the existence of a stable soliton, while the inequality 
H > 0 is only a sufficient condition for an instability of the 
soliton, provided that soliton solutions exist. 

I f H  > 0, it is always necessary to test whether the neces- 
sary condition R < 0 for the existence of a soliton is satis- 
fied.3 In an inhomogeneous system, in contrast, there is a 
large finite probability that both positive and negative values 
of H will correspond to a soliton; i.e., the whole continuous 
spectrum of H. Here the criteria for the stability and exis- 
tence of a soliton become more complicated. The functional 
dependence H = H(f l ) ,  which is a linear function in a ho- 
mogeneous system by virtue of the virial theorem, becomes 
nonlinear in this case. Analyzing the behavior of the func- 
tions F(H) and H = H ( R )  with the help of the theory of 
singularities (elementary catastrophe theory) ,4 we can draw 
a picture of the "metamorphoses" of the stability of a soliton 
as its parameters R and H change. 

To solve the problem it is convenient to appeal to the 
analogy between self-localization in crystals and nonlinear 
wave proce~ses.~.~ Pursuing this analogy, we first determine 
the stationary points of the Hamiltonian H which corre- 
spond to solitons. After finding these points, we associate the 

Hamiltonian of the nonlinear equation with a surface. Abso- 
lute minima of this surface correspond to stable solitons, 
while other extrema correspond to unstable or metastable 
solitons. The slopes of this surface correspond to arbitrary 
wave packets. Since the slopes of a surface of this sort are not 
defined exactly, we have a continuous set of surfaces, all of 
which have the same stationary points. A wave packet with a 
Hamiltonian value H and a radius r corresponds to some 
point on one of these surfaces. If H is less than H,,-that 
value of the Hamiltonian which corresponds to an absolute- 
ly unstable soliton-then the wave packet will spread out or 
collapse, depending on the particular slope of the surface on 
which this point lies. If the radius of the packet is greater 
than the radius corresponding to an unstable soliton, the 
packet will spread out; in the opposite case, it will collapse. 
The critical value of the radius determining the evolution of 
a packet is in this case the radius corresponding to a station- 
ary saddle point which separates slopes of the surface. If 
H>H,, the direction of the evolution of the wave packet 
cannot be determined in this approach. A detailed time evo- 
lution of the behavior of wave packets can of course be deter- 
mined by directly solving the dynamic equations. This role 
(the role of a nucleating center for collapse) of absolutely 
unstable solitons was discovered in the dynamics of wave 
packets in Refs. 5 and 3. 

If, as a result of the collapse (or spreading), the wave 
packet reaches the opposite slope, the direction of its evolu- 
tion changes, and it begins to spread out (or to collapse). In 
this manner, the behavior of wave packets may become an 
oscillatory behavior of spreading out and collapsing. Know- 
ing the stationary points corresponding to different solitons, 
one can thus determine the direction of the evolution of wave 
packets in a qualitative way in several cases. 

In this paper we will analyze in detail stationary points 
corresponding to solitons of the nonlinear Schrodinger 
equation in a random "white-noise" potential. In particular, 
we find that in three-dimensional space solitons with H >  0 
and with H < 0 arise with roughly equal probabilities. Stable 
and unstable solitons with H < 0 exist simultaneously. Ac- 
cordingly, the dynamics of wave packets is in this case more 
varied than in a homogeneous  stern,^,^.^ in which there is a 
unique, absolutely unstable soliton with H > 0. A soliton of 
this sort in a homogeneous plasma is a nucleating region5 for 
plasma co l lap~e .~  

In Section § 1 we present the general formalism for de- 
scribing solitons in an inhomogeneous system. This method 
is applicable exclusively to Hamiltonian systems. 
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In Section 42 we consider as an example solitons of the 
nonlinear Schrodinger equation in an inhomogeneous white- 
noise structure. We examine the one-dimensional and three- 
dimensional cases. 

We conclude with a summary of the results and a dis- 
cussion of the applicability of the examples covered in this 
paper to three-dimensional Langmuir solitons in an inhomo- 
geneous p l a ~ m a . ~  

1. GENERAL FORMALISM 

We assume that we have Hamilton's equations in the 
form1' 

where the Hamiltonian H i s  a function of U ( x )  and V ( x ) ,  
where U ( x )  is a complex wave field, while V ( x )  is a random 
potential which can have an arbitrary correlation 

Alternatively, and equivalently, the probability for the for- 
mation of the potential V ( x )  is 

where the normalization factor No is determined from the 
condition 

This is a path integral. The functions g ( x )  and f ( x )  are 
related by 

g ( x - r ' )  j(r'-xu) d"xf=b (r -x")  . ( 5 )  

We introduce the soliton distribution function (the dis- 
tribution of soliton states) in a random potential. By defini- 
tion, this distribution function is 

F ( H ) = =  ~ D T ~ ( X ) G ( I I - I ~ [ V ( X ) ] ) J V [ ~ ~ ( X ) ] .  ( 6 )  

where H  = H [  V ( x ) ,  U ( x ) ,  U  * (x)  ] is the Hamiltonian of 
Eq. ( 1 ). The function F ( H )  represents the probability for 
the formation of a soliton with a given value of the Hamilto- 
nian2' H.  The function U ( x )  in ( 6 )  is a soliton solution of 
Eq. ( 1)  in the given realization of the random potential 
V ( x ) .  Precisely the same function F ( H )  has been intro- 
duced previously7 in order to study the self-localization of 
excitons and current carriers in disordered systems. In the 
case of self-localization, however, one studies only absolute- 
ly unstable stationary points, which correspond to a self- 
localization barrier. The function F ( H )  represents the prob- 
ability for the appearance of a barrier of a given height H. 

To calculate the function F ( H )  we first need to find 
soliton solutions U ( x )  for all realizations of the random po- 
tential V ( x ) .  Such solutions are determined from an equa- 
tion3 of the type 

where R is an eigenvalue, and N is that integral of Eq. ( 1 ) 
which expresses the conservation of the number of particles: 

We then need to evaluate the path integral ( 6 )  of V ( x ) .  
This is evidently an impossible task in general, so we will 
evaluate the integral of V ( x )  by the method of steepest des- 
cent. The parameter of the steepest descent should be identi- 
fied separately for each specific case. 

We write the Hamiltonian H a s  

where for simplicity we choose H I  in the form 

H ,  = J I U ( X )  1 2 v ( x ) d d x .  ( 9 )  

Using the definition of the Dirac 6-function S ( x ) ,  we write 
( 6 )  as 

i i a ,  

The equations for the optimal t = t ,  and V  = V, are then 
found from variation of the argument of the exponential 
function in ( 10) with respect to t and V ( x )  These equations 
are 

Ve ( X I  =-&I 1 U ( X )  12j (x-xf)d ixf ,  ( 1  1 )  

Substituting ( 1 1 ) into ( 7 ) ,  we find a soliton solution U ( x )  
as a function oft, . Using ( 12) ,  we then express t ,  in terms of 
the value of the Hamiltonian H :  t, = t ,  ( H )  . Finally, we find 
with exponential accuracy that the distribution function of 
the solitons can be expressed as a function of the value of the 
Hamiltonian H as follows: 

Let us use this approach to examine some very simple exam- 
ples. 

2. SOLITONS OF THE NONLINEAR SCHRODINGER 
EQUATION 

We assume that we have a nonlinear Schrodinger equa- 
tion describing a nonlinear process in a medium with abso- 
lutely random fluctuations of the potential V ( x ) :  

where B is the constant of the white noise. The Hamiltonian 
in Eq. ( 1 ) is 

where m-I and c are the dispersion and nonlinearity con- 
stants. This equation has many applications in plasma phys- 
ics, solid state physics, and biophysics. 

To calculate the function F ( H )  in ( 6 )  by the method of 
steepest descent, we need to distinguish a parameter. We 
introduce the transformation U ( x )  - + N ' ' 2 ~ ( ~ ) ,  which by 
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convention reduces the function U(x) to the wave function 
of a quantum-mechanical particle, since we have 
.f I Y I'dd x = 1 (see Refs. 5 and 3 for details). We then intro- 
duce some scale transformations which put the Hamiltonian 
in dimensionless form: 

Y (x) -+ r ; d ' 2 ~  (x/rW), V (x) + (WoIN) V (x), 

where r, = ( ~ c N ) - " ' ~ - ~ '  and Wo = N/m?, are the 
length scale and energy of a soliton in a homogeneous medi- 

Expression ( 15) then becomes 

If we apply the same transformations and also transforma- 
tions of the type H,-+ Woho and t- w , r & t / ~ ,  to the argu- 
ment of the exponential function in integral ( l o ) ,  the pa- 
rameter P, 

is singled out in the exponential function. For P> 1, we can 
use the method of steepest descent to evaluate integral ( 10). 
Evaluating ( 10) by this method, we find 

where 

L L 

and the wave function q ( x )  is determined from the solution 
of an equation like (7)  : 

Here E = 1 + t, , and R is an eigenvalue. The parameter t ,  is 
found from an equation like ( 12) : 

where Y(x) is the solution of (20). 
Equations ( 17)-(2 1 ) thus determine the function 

F(H). Using these equations we can calculate F (H) .  We 
introduce the notation 

Multiplying Eqs. (20) by \y*, and integrating over the entire 
space, we find 

Q=T-eY. (23) 
In terms of this notation, (21 ) becomes 

~=T-(E- ' /~)  Y. (24) 
For any solutions of Eq. (20), virial relations hold among 
the quantities h, T, Y, and R: 

The method for deriving these relations is described in detail 
in Refs. 5 and 3. Virial relations of this sort were originally 
introduced for nonlinear equations by Pekar in the theory of 
polar it on^.^ Using these relations, we find the following ex- 
pressions for lnlF(H)/F(O) I : 

Let us consider the case in which the dimensionality of 
the space is d = 1. The eigenvalue of Eq. (20) is well known 
in this case (Refs. 5 and 7, for example) : 

Writing E = 1 + t, , we find 

R=P(&-1) '~16. (2% 

The length scale of the soliton is r, a E- '. The parameter E in 
(27), (28) varies from 0 to + C C .  Only in this case do Eq. 
(20) and thus Eq. ( 1 ) have soliton solutions. 

Let us consider some limiting cases. The limit c-0 or, 
equivalently, W,-0 means that the nonlinearity vanishes 
from the Hamiltonian. The function F(H) with N = 1 then 
exactly characterizes the tail of the state density of a quan- 
tum-mechanical particle (an electron or exciton) in a ran- 
dom potential: 

F ( H ) m  tb1p (- (-311) J - ? r n / f ? ) ,  

where m is the mass of the electron and H is the binding 
energy. This expression was originally derived by Li f~hi tz .~  
It also follows from this analogy5s3 that in the case c#O the 
function F(H) can characterize not only a soliton but also 
the state density of a self-localized quantum-mechanical 
particle (an electron or exciton) in a random potential. In 
this case H corresponds to the adiabatic energy of the elec- 
tron (or exciton) in the field of phonons (cf. Ref. 10). In the 
limit B-0 the function R tends toward + cc . An exception- 
al case is represented by a small neighborhood of 
H = - W,, which corresponds to the value of the Hamilto- 
nian of a soliton in a homogeneous medium. In this case we 
evidently have F(H) a S ( H  + W,) . 

We can classify these solutions, i.e., we can distinguish 
in (28) states corresponding to stable solitons and states 
corresponding to absolutely unstable solitons. The role 
played by the latter in the dynamics of a system was dis- 
cussed in Refs. 5 and 3. 

Let us examine the functional dependence h = h ( ~ )  
(Fig. 1). As E is increased from 0, the function h ( ~ )  in- 
creases monotonically and reaches a maximum positive val- 
ue of 1/3. After this point, h ( E )  decreases monotonically. 
From (27) we find E = E ( R )  and substitute it into (28a). 

FIG. 1. Hamiltonian versus the parameter E,  which characterizes the scale 
of the system consisting of the soliton and the inhomogeneity. 
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We find an analog of the virial theorem, h = h(f l) ,  for a 
soliton which arises in a random structure. Since R de- 
creases monotonically with increasing E, while h takes on 
both positive and negative values, both stable and unstable 
solitons can form in a random structure, according to Der- 
rick's criterion.' Stable solitons correspond to h < 0, and un- 
stable solitons to h > 0. At small values of E, the random 
potential characterizing E is a potential "hill" for a soliton 
localized at it. This hill destroys the soliton. At E = 1, the 
potential hill is replaced by a potential well. It is easy to see 
that in this case R and h correspond to a soliton in a homo- 
geneous medium. At large values ofs  and, correspondingly, 
large values of I R I and h, the function h is h = fl. This rela- 
tion indicates that in this limit the soliton becomes greatly 
deformed and differs little from ordinary waves localized in 
a random potential. 

We turn now to the behavior of the logarithm of the 
probability function, R, for the formation of a soliton with a 
given value of the Hamiltonian h:  R = R ( E ) .  This behavior 
is shown in Fig. 2. As E increases from 0, the function R ( E )  

increases monotonically to its maximum value R,,, = 2P/  
81, which it reaches at the point E = 1/3. The function 
h = h ( E )  reaches its maximum value at the same point. The 
function R then falls off monotonically, so that the soliton 
formation probability increases. At the point E = 1 the func- 
tion R satisfies R -0, and the probability attains a maxi- 
mum. The function R (E) then again increases monotonical- 
ly asE- co. 

To see which types of solitons form as R ( E )  behaves in 
this complicated way we need to examine the functional de- 
pendence R ( H )  which is shown in Fig. 3. We see a "beak"- 
Whitney's cusp singularity-with vertex at E = 1/3. As E is 
increased, a bifurcation occurs in the behavior of a soliton at 
H >  0 when this point is passed, according to catastrophe 
t h e ~ r y . ~  For E > 1/3, the soliton is an unstable saddle point. 
At 1/3 < E < 2/3, the soliton is metastable. In this case, that 
minimum in the function space which corresponds to the 
soliton is not absolute and is separated from a homogeneous 
state by a barrier. The parameter E serves as a typical value of 
the reciprocal of the size of a soliton which is localized in a 
random potential well. This size is actually the size scale of 
the inhomogeneity. For 0 < E < 1 the typical sizes of the inho- 
mogeneities at which solitons localize are greater than the 
size of a soliton in a homogeneous medium. For E > 0 we find 
the opposite situation: The sizes of the fluctuation wells are 
smaller than the size of a soliton in a homogeneous medium. 
In this case we have H < 0, and for E > 2/3 the solitons are 
stable. This result actually means that the solitons localize 
only in narrow potential wells. Derrick's theorem is not cor- 
rect for h > 0, since several types of stationary states arise in 
this case. 

FIG. 2. Logarithm of the soliton formation probability, R,  versus the size 
scale of the soliton, E. 

FIG. 3. R versus the Hamiltonian H 

Let us summarize the results for solution (28) found 
from this analysis: 

1 ) For 0 <E<  1/3, the solution corresponds to absolute- 
ly unstable solitons. 

2)  For 1/3 < E  < 2/3, it corresponds to metastable soli- 
tons. 

3) For 2/3 ( E  < + 00, it corresponds to absolutely sta- 
ble solitons. 

We now consider a space of dimensionality d = 3. In 
this case the eigenvalue of the ground state of Eq. (20) is5 

Writing S = E-' in this case, we find, in contrast with the 
d = 1 case, 

where R ,  = 88.8P. The same equations, with N = 1, have 
been found in a calculation of the tails of the state density of 
excitons (or electrons) with allowance for their interactions 
with phonons.'O It was found in that study that the interac- 
tion with phonons may cause the state-density tail to be cut 
off sharply. The tail of the state density of a free exciton (or 
electron) is also described by (30), but after we take the 
limit c-0 and set N = 1 (cf. Ref. 9 ) .  

Let us classify the solitons which are embodied in (30). 
The size scale of the system consisting of the soliton and the 
inhomogeneity, r, , is r, a 6- ' .  Soliton solutions correspond 
to a variation in& from 0 to + co . Let us exmine the behavior 
h = h(S) (Fig. 4 ) .  As S increases from 0 to 1/3, h (6)  de- 
creases monotonically, to its minimum value w,,, = 

- 44.4/27. It then increases monotonically to + W .  We 
find S = S ( n )  from (30a) and substitute it into (30b). We 
find an analog of the virial theorem for the most probable 
soliton which arises in a random structure. For h > 0, unsta- 
ble solitons arise, according to Ref. 2. For h < 0, both stable 
and unstable solitons can arise (Fig. 5). Extremum 1 in Fig. 
5 corresponds to the former, and extremum 2 to the later. At 

FIG. 4. The soliton Hamiltonian h in the three-dimensional case versus 
the size sale of the system consisting of the soliton and the inhomogeneity, 
6. 
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FIG. 5. The Harniltonian H versus the reciprocal ofthe localization radius 
of a wave packet r ,  ' 

small values of 6, i.e., when the system consisting of the soli- 
ton and the inhomogeneity is large, the minimum 1 corre- 
sponds to a stationary solution. Since the soliton corre- 
sponding to the extremum 2 is unstable, Derrick's criterion 
for solitons in inhomogeneous media does not hold. There 
exists a critical value of S at which these two extrema ( 1 and 
2) merge. This value corresponds to an unstable soliton. The 
instability of this soliton can lead to collapse. 

This picture can be seen more clearly by analyzing the 
function R = R (S) ,  which is shown in Fig. 2. The regions in 
which this function increases and decreases correspond to 
solitons of different types. We write R as a function of h: 
R = R (h) .  The nature of this function is shown in Fig. 3. A 
characteristic feature is a "beak," Whitney's cusp singular- 
ity. The vertex of the beak correspond to the point S = 1/3. 
For O<6< 1/3 we have h < 0, as can be seen from Figs. 2-4. 
For 1/3 <6 < 1/2 we have h <0, but this part of the h(S) 
curve corresponds to part I1 of the function R (H)  (Fig. 3). 
According to the theory of singularities in functions (ele- 
mentary catastrophe t h e ~ r y ) , ~  as we pass the vertex of the 
peak, going from branch I to branch I1 (Fig. 3), the extre- 
mum corresponding to the minimum becomes an extremum 
corresponding to a maximum. The maximum corresponds 
to a stationary saddle point, which determines a soliton. 
Branches I1 and 111 correspond to the same stationary point, 
regardless of whether we have h > 0 or h < 0. This stationary 
point corresponds to an unstable soliton and illustrates a 
violation of Derrick's stability criterion2 even in the case 
h <O, i.e., in a case in which it holds in homogeneous sys- 
tems. 

As a result we find the following in solution (30) : stable 
solitons for 0 < 6 < 1/3 and absolutely unstable solitons for 
1/3<6< + 00. 

CONCLUSION 

A distribution function of solitons (of soliton states) 
with a given value of the Hamiltonian H has been introduced 
here. As an example, we have calculated this function for a 
nonlinear Schrodinger equation in a medium with a com- 
pletely random potential (a white noise). In an inhomogen- 
eous medium we are of course talking about only the pre- 
dominant type of solitons corresponding to the given value 
of H. 

In a homogeneous medium, a soliton of the nonlinear 
Schrodinger equation is stable in the one-dimensional case. 
In an inhomogeneous medium, the stable solitons which cor- 
respond to H < 0 are accompanied by unstable solitons (sad- 
dle points) and metastable solitons of the nonlinear Schro- 
dinger equation, which correspond to a value H >  0. The 
distinction between stable and metastable solitons here is 
drawn by analogy with homogeneous systems. Large sizes 
correspond to unstable solitons here. 

In three dimensions, a soliton of the nonlinear Schro- 
dinger equation is unstable in a homogeneous medium. In an 
inhomogeneous medium, in contrast, the unstable solitons 
corresponding to H > 0 are accompanied by stable and un- 
stable (saddle-point) solitons of the nonlinear Schrodinger 
equation, which correspond to a negative value of the Hamil- 
tonian H (H < 0) .  Here large-scale inhomogeneities corre- 
spond to stable solitons. With decreasing radius of the in- 
homogeneity, the soliton loses its stability. 

The picture which has been drawn here of the behavior 
of solitons of the nonlinear Schrodinger equation with d = 3 
as the soliton parameters fl and H are varied can be applied 
to an inhomogeneous plasma, of the type usually produced 
in a tokamak. In three dimensions, a three-dimensional 
Langmuir soliton in a homogeneous plasma is ~ns t ab l e .~  An 
inhomogeneous plasma is characterized by cavities, which 
appear in a completely random fashion. The sizes of these 
cavities are also arbitrary. Depending on the particular cav- 
ity at which a soliton localizes, the value of the Hamiltonian 
H, which represents the energy of the soliton in this problem, 
can be either positive or negative. Those solitons which lo- 
calize at cavities whose radius is large in comparison with 
the radius of the soliton in the homogeneous medium have a 
negative energy ( H  < 0 )  and are stable. As the cavity radius 
decreases, the soliton may lose its stability even under the 
condition H <O. The resulting instability may lead to a 
Langmuir collapse.6 Alternatively, this instability may have 
the consequence that as an unstable soliton spreads out it 
"selects" a large cavity and converts into a stable soliton. 

Stationary states (solitons) determine a surface (or a 
family of surfaces) which is known in catastrophe theory as 
a "Whitney cusp." The evolution of a wave packet depends 
on the position with respect to the surface of the point which 
corresponds to the value of the Hamiltonian Wand the pack- 
et radius r, .  If this point is above the surface, however, it is 
not possible to determine the direction in which the wave 
packet will evolve. 

The main conclusion which can be drawn from this 
analysis is thus that stable Langmuir solitons should arise at 
large-radius cavities. In other words, spatially localized, 
long-lived bunches of Langmuir waves (plasma waves) 
should be observed experimentally at large inhomogeneities 
in a plasma. 

The method presented in this paper can be used to ana- 
lyze the behavior of solitons in an inhomogeneous medium 
when the solitons are described by other equations with pow- 
er-law nonlinearities, e.g., the Kadomtsev-Petviashvili 
equation. 

I wish to thank V. E. Zakharov, A. V. Mikhai~ov, and, 
especially, E.I. Rashba for useful discussions. 

'D. F. Escande and B. Souillard, Phys. Rev. Lett. 52, 1296 (1984). 
'G. H. Derrick, J. Math. Phys. 5, 1252 (1964). 
'F. V. Kusmartsev, Phys. Scripta 29, 513 (1984). 
4T. Poston and I. Stewart, Catastrophe Theory and Its Applications, 
Fearon Pitman, San Franciso, 1978 (Russ. transl., Mir, Moscow, 1980). 

5F. V. Kusmartsev and E.I. Rashba, Zh. Eksp. Teor. Fiz. 84,2064 ( 1982) 
[Sov. Phys. JETP 57, 1202 (1983)l .  
6V. E. Zakharov, Zh. Eksp. Teor. Fiz. 62, 1745 (1972) [Sov. Phys. JETP 
35,908 (1972)l. 

'F. V. Kusmartsev, Fiz. Tverd. Tela (Leningrad) 28, 892 (1986) [Sov. 

472 Sov. Phys. JETP 65 (3), March 1987 F. V. Kusmartsev 472 



Phys. Solid State 28,497 ( 1986) 1; "Soliton in random media," Landau 462 (1968)l. 
Institute Preprint-1985-19. 'OF. V. Kusmartsev and E.I. Rashba, Fiz. Tekh. Poluprovodn. 18, 691 

I. Pekar, Issledovaniya po elektronnoi teorii kristallov (Research on ( 1984) [Sov. Phys. Semicond. 18,429 ( 1984) 1. 
the Electron Theory of Crystals), Gostekhizdat, Moscow, 1951. 
YI. M. Lifshitz, Zh. Eksp Teor. Fiz. 53,743 ( 1967) [Sov. Phys. JETP 26, Translated by Dave Parsons 

473 Sov. Phys. JETP 65 (3), March 1987 F. V. Kusmartsev 473 


