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The dynamics of amorphous magnets with strong random anisotropy is considered in the 
ferromagnetic-correlation region T = ( T  - T,)/T1)rc, where TI = (c/3) $ J ( r ) d  3r and 
T, z (x3/2c)' [x-I is the J ( r )  interaction radius and c is the density of the magnetic ions]. It 
is assumed that C X - ~ )  1. It is shown by the dynamic-functional method that in the principal 
approximation the dynamic susceptibility takes the form G -'(k,w) a [ (iw/ro) + r -i- k 2 / ~ 2 ] ,  
which is typical of purely dissipative dynamics. The corrections to G(k,w) necessitated by 
application of an external magnetic field are calculated. There is no ferromagnetic resonance. 

1. INTRODUCTION 

From among the many problems related to spin glass, 
interest attaches to the study of amorphous magnetic alloys. 
The configurational disorder in these systems leads to the 
appearance of single-ion anisotropy with random orienta- 
tion of the axes. The Hamiltonian usually employed in such 
cases was proposed by Harris, Pliske, and Zuckermann,' 
and is of the form 

Here Si is the Heisenberg spin in the site i; ti is a random 
unit vecFr that specifies the anisotropy direction, and 
h = g p , Z  is the reduced magnetic field. An arbitrarily 
weak anisotropy (D<  J) is known2 to destroy the ferromag- 
netic state of such a system (at h = 0).  The opposite case 
(D)J)  was investigated experimentally in Refs. 3-7 and 
theoretically in Ref. 8. We have suggested in Ref. 8 that the 
radius over which the J ( r )  interaction falls off is large com- 
pared with the distance a between neighboring spins. It was 
shown that the spin-correlation radius in the paramagnetic 
phase increases with decrease of temperature in the region 
T ~ T , z ( x ~ / c ) ' ,  where T = ( T - T l ) / T l ,  T 1 = ( c /  
3)JJ(r)d 3r, and c is the density of the magnetic ions; as a 
rule, ~ ~ 0 . 5 .  IfD) Jeach spin is directed along its easy mag- 
netization axis and the microscopic variables become the Is- 
ing variables. On a macroscopic scale, however, the system 
acquires a soft mode constituting a molecular field that acts 
on the spin in a given site. This mode, which has vector prop- 
erties, determines the large-scale static spin correlations. In 
the region T 2 rc these correlations are of the same form as 
for a pure Heisenberg ferromagnet.' [Note that the maxi- 
mum ferromagnetic-correlation radius LC a x- ' (x3/c) - ' is 
substantially larger than the interaction radius.] As the tem- 
perature is reduced further, the growth of the correlation 
radius saturates and the Ising spin-glass regime sets in.' 

We consider here the dynamics of amorphous magnets 
with strong random anisotropy, D)  J ,  in the ferromagnetic- 
correlation region. Over long times and large scales this be- 
havior is determined also by the above-mentioned soft mode. 
Using the dynamic-functional method proposed in Ref. 9, 
we obtain expressions for the susceptibility x(k,w), which 
has in the principal approximation the form 
x(k,w) cc (iw + T + k ' ) - I  typical of purely dissipative dy- 
namics. The dynamic behavior of amorphous magnets in the 

feromagnetic-correlation region r 2 r, is thus substantially 
different from that of Heisenberg ferromagnets. 

We consider also the change of the form of x ( k , w )  in 
the presence of an external magnetic field and show that the 
paramagnetic resonance typical of ferromagnets is absent in 
this case. The reason is the strong anisotropy which prevents 
spin precession in the magnetic field. 

2. DERIVATION OF DYNAMIC FUNCTIONAL 

At D ) J  it can be assumed that each spin is directed 
along its easy-magnetization axis: S = US,. , where ai = 5 1 .  
We then obtain from ( 1.1 ) the Hamiltonian of the Ising vari- 
ables a, : 

The vectors & are assumed here to be uncorrelated: 

(the superior bar denotes configurational averaging). The 
interaction radius x- '  is defined as 

1 
x-' = -J r2J (r) d3r, I@= J I ( r )  d3r. 

6Jo 
(2.3) 

We put J,, = 1 hereafter and assume that C X - ~ $  1. 
We start from the dissipative dynamics of the Ising vari- 

ables a, with the Hamiltonian (2.1 ). This dynamics is de- 
scribed by the Glauber equations for the dynamics of Ising 
spins ui : 

(2.4) 
where P{ai) is the probability of the spin configuration 
{a, 1, and r0 is the spin-flip frequency. To derive the dynam- 
ic functional it is more convenient, however, to regard the 
variable a as continuous ( - co < a  < + co ) with Hamilto- 
nian 
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The transition to Ising variables occurs as u  - w . We shall be 
interested hereafter in times much longer than r, '. 

The temporal evolution of the variable a is described by 
the equation 

6,+dR/d0i=bi(t), (%i(t)bj(t') )=2T6ij6 (t-t'). (2.6) 

We introduce now a dynamic functional Z{li) defined as 

z (1.) = ( exp ( j dt 02;li) ) 
aR 

= DcDs6 [ di + - ti (t) ] 

Representing the delta-function in (2.7) by an integral with 
respect to a pure imaginary variable p ( t )  and integrating 
over the noise c, we obtain 

As in all problems with large interaction radius, it is conven- 
ient to introduce here continuous fields f ( r )  and g(r) :  

In the last equation of (2.9) we have put hi = hgi + figi, 
li = - 6 ,  gi + li . The field f (r, ) r f i  has the meaning of 
the molecular field acting on the spin oi in site i. Our prob- 
lem now is to integrate (2.9) with respect to the variables a 
andp, i.e., to find the functional 

Z{I.) = DO Dp exp { 1 dt x [pi(di+dVo/aoi-hi) 
i 

+Tp?+o,L] }. (2.10) 

Note that Z{I, ) is the dynamic functional for the evolution 
of the problem of the variable of the evolution of the variable 
a, in a potential Vo(a, ) and in an external field hi. We have 
therefore 

wherem, ( t )  = (ai (t)),Dii ( t  - t ' )  = ( (a i  (t)u, (tf))),etc.  
For our purposes it suffices to use only the term written out 
in (2.1 1 1. (The double angle brackets denote an irreducible 
correlator. ) Recall now that we are interested in a situation 
in which thea, are Isingvariables, i.e., u s  1 [see (2.5) 1. The 
dynamics of the spins a is then described by the Glauber 
equations, which take in our case the very simple form 

P (01) =To[ -exp ( -ph i )  P ( u ~ )  +exp (@hiOi)P (-oi) I ,  
p=1/T. (2.12) 

We put P(1)  = P+ ,  P( - 1) = P-. Then mi =m{hi ( t ) )  
= P+ - P- and we obtain from (2.12), recognizing that 

P+ + P- = 1, 

mf 2Fom ch ph=2r0 sh ph. (2.13) 

We shall see presently that in the temperature range of inter- 
est to us (near the transition point) the characteristic time of 
variation of the field f ( r )  , meaning also hi,  is long compared 
with r; '. The solution of (2.13) can therefore be written in 
the form 

We have neglected the higher derivatives of h with respect to 
t and the corrections to r, of second order inph (they will be 
shown to be insignificant). 

The quantity Dii calculation with the aid of (2.13) is 
found to be 

Substituting (2.15) and (2.14) in (2.11) and (2.9) and re- 
calling the definitions of hi and Ii [see (2.9) ] we obtain an 
expression for Z{li ) in the form 

Z (If) = Df ~g exp { dt x[ -& E ~ ~ E ' P ~ ~ ~ ~ P  

We expand the exponent in (2.16) in powers off up to terms 
f3 and V2f. (Neglect of the higher derivatives is justified by 
the condition e x p 3  s 1. ) Equation (2.16) is reduced with the 
aid of (2.3) to the form 

1 
~ ( 1 , )  = J Df Dg exp{ J dt d3r [ -- gr  (r) 

3ro 
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Here T = 1 - c/3T, VaP (r) = 8,c:f fS(r - r i )  - cSaP/3. 
We shall be interested hereafter in large-scale fluctuations of 
the field f (r) ,  and have therefore neglected the fluctuations 
of the coefficient off "(f12 in (2.17). VaD (r ) is a random 
Gaussian field having the following properties: 

We consider hereafter the system for I T )  4 1 ( T z  (c/3)J0). 

3. REGION OF FERROMAGNETIC CORRELATIONS 

Consider the exponential S(f,g) in (2.17) in the qua- 
dratic approximation: 

The susceptibility Go(k,w) and the correlation function 
Ko(k,o) of the field f ( r ) ,  which pertain to Eq. (3.  I ) ,  are of 
the form 

KoaB(k ,  O)  =(fa ( k ,  @)fa(-k, - o )  > o  

Expression (3.2) for the susceptibility Go corresponds to 
purely dissipative dynamics of the field f. It is seen from 
(2.17) that the bare functions (3.2) require two types of 
correction: for the nonlinear vertex and for the random field 
VaD (r) . The diagrams that describe the lowest-order correc- 
tions to the susceptibility are shown in Fig. 1. The line with 
the arrow denotes Go (the arrow is directed from f to g) , and 
the line without the arrow denotes KO; the dashed line de- 
notes the correlator (2.18). The susceptibility calculated 
with allowance for these diagrams is 

G-l (k, m) = (T-0'1 "' TI1* ) 

It can be seen from (3.3) that at temperatures 

the susceptibility and the correlation functions are given in 
the leading approximation by Eqs. (3 .2) .  Equation (3.3) 
describes in this region the corrections to G(k,w) in first 
order in the parameter ~ c ~ / c T " ~ .  An expression of equal ac- 
curacy for K(k,w ) is obtained from (3.3) with the aid of the 
fluctuation-dissipation theorem: 

It is clear from the foregoing reasoning that Eqs. (3.2)-  
(3.5) are valid in the frequency region o/r0(< 1. At ~ / T , % - T  
the equations become somewhat simpler: 

We have put here 

It follows from Eqs. (3 .6)  that at relatively high frequencies 
w/ro 2 (.r/x3)' the susceptibility and the correlation func- 
tion become independent of T.  

We examine now the variation of the susceptibility in 
the presence of an external magnetic fieM h. To this end we 
introduce a term - glh into the exponent of Eq. (2.17) for 
the dynamic functional and represent the field f in  the form 

where (ja ( r ) )  = 0 and m is the moment induced by the ex- 
ternal field h. Since the random term VDa ( r )  fP(r)  is small, 
the equation for m takes the usual form 

.tm+gm3=h, (3.7) 

whereg = c/15T'=:9/5c2. The exponent .Yeg) is then 

(We have written out only the terms of importance for the 
exposition that follows.) As seen from (3 .8) ,  the external 
magnetic field h has led to the appearance of a new triple 
vertex of type d2 and of a random field ha cc m V"' , which 
acts on i ( r ) .  The random field is known to add to the static 
correlation function a contribution proportional to the 
square of the Lorentzian (see Ref. 8 ) .  The correction to the 
susceptibility, necessitated by the new vertex, is illustrated 
by the diagram in Fig. 2. We introduce the longitudinal and 
transverse susceptibilities in accordance with the equation 

Calculation of the diagram of Fig. 2 leads to the following 
expressions for CTG ,I ' and uG , at k = 0: 

FIG. 1 FIG. 2. 

126 Sov. Phys. JETP 65 (1), January 1987 M. V. Tsodyks 126 



where TI ,  = T + 27m2/5c2, 7, = T + 9m2/5c2. Separating 
the term uG - ' ( 0 , 0 )  that renormalizes T,  and taking (3 .3 )  
into account, we get 

The last term in (3.11 ) is always small compared with unity. 
We see thus that application of an external magnetic field 
gives rise only to small contributions to the susceptibility 
and to the correlation function. The paramagnetic resonance 
typical of ferromagnet is absent in this case. The reason is 
that in view of the strong anisotropy there is no spin preces- 
sion in the magnetic field. 

4. CONCLUSION 

We have considered the dynamics of amorphous mag- 
nets with strong random anisotropy in the ferromagnetic- 
correlation region T = ( T  - TI  ) / T I  %?, , where T, = 1/ 
3cJJ(r)d 3r ( c  is the density of the magnetic ions), T, z ( x 3 /  
2 ~ ) ~ ,  X - I  is the radius along which the exchange J ( r )  inter- 
action falls off. It was assumed here that this radius is large 
compared with the interatomic distance: mW3> 1. [At 
czO.5a-', where a  is the interatomic distance, it actually 
suffices to have x-' z ( 1.5 to 2)a ,  which is quite realistic.] 
As shown in Ref. 8, in this temperature region the static 
correlation function G ( p )  takes the form G(p) a 1 / ( r  + pZ/  
x 2 )  typical of a pure Heisenberg ferromagnet. In the present 

paper we have calculated the susceptibility G ( k , o )  and the 
correlation function K(k,w ). It was found that in the leading 
approximation the dynamics is purely dissipative, 

where To is the characteristic spin-flip frequency. 
Thus, the analogy with Heisenberg ferromagnets is lost 

in the dynamics. The reason is that owing to the strong an- 
isotropy the total spin is not conserved in the system. Note 
that the dissipative dynamics was derived directly from a 
microscopic model, and that the dynamic-functional meth- 
od9 was used. The first-order corrections to G ( k , w )  and 
K ( k , w )  with respect to the parameter T/T, were also calcu- 
lated [see Eqs. ( 3 . 3 ) - ( 3 . 6 ) ] .  

An external magnetic field gives rise to additional cor- 
rections to the susceptibility G(k,w ), which we have calcu- 
lated fork = 0  [see (3 .1 )  and (3.1 I ) ] .  Since the strong an- 
isotropy prevents spin precession in the magnetic field, there 
is no paramagnetic resonance in this case 

The author thanks M. V. Feigel'man for guidance. 
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