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A theory is derived for the spin relaxation of conduction electrons at variations in the 
composition in semiconducting compounds. A mechanism for spin relaxation in a magnetic 
field due to fluctuations of the g-factor is also studied. A balance equation is derived for the 
spin density vector S,, for various relations anlong the length scale of the composition 
fluctuations, I,, the de Broglie wavelength A,, and the mean free path I,. Distinctive features 
of this relaxation mechanism are its tensor nature (for the spatially nonuniform case or in a 
magnetic field), the importance of drift, and the renormalization of the spin precession 
frequency because fluctuations of the bottom of the band and of the g-factor become entangled. 
For A, < I ,  <I,, the spin relaxation is determined by the precession of the fluctuating part of 
the distribution function in the quasielectric field and by damping (analogous to Landau 
damping) which does not depend on the specific scattering mechanism. A comparison is made 
with experimental data for Al, Ga, - , As. 

1. INTRODUCTION 

The spin relaxation of a conduction electron is being 
studied in connection with experiments on ESR,' on the use 
of circularly polarized light to orient spins,2 and on distin- 
guishing the contribution of quantum corrections to the ki- 
netic coefficients of disordered semiconductors.~he mech- 
anism for the flipping of the electron spin due to an effective 
spin-orbit interaction is determined by the length scale of the 
potential, which varies smooth over distances on the order of 
the lattice constant a. If this scale is shorter than the de 
Broglie wavelength A,, then the spin flipping will occur in 
individual scattering events (the Elliot-Yafet mechanism). 
This situation has been studied in detaiL4 If, on the other 
hand, the potential varies over distances greater than the 
momentum relaxation length I,, then the D'yakonov-Perel' 
mechanism5 will operate. This mechanism results from a si- 
multaneous precession of the spin due to a spin-orbit interac- 
tion with the electric field and a scattering of momentum 
(see Ref. 6 for some calculations for this case). A distinctive 
feature of this mechanism in an external electric field (in 
contrast with the precession which results from the lifting of 
the spin degeneracy of the conduction band of semiconduc- 
tors which lack a center of inversion5) is that the field creates 
a preferred direction. As a result, a tensor relaxation time 
arises in the balance equation for the spin density, and the 
spin flux is determined by drift in the electric field as well as 
by diffusion. Another possible case is that in which the 
length scale I, of the potential fluctuations has an intermedi- 
ate value: A, < I ,  < I ,  . Under these inequalities, the flipping 
of the spin results from its precession in the electric field and 
from a damping (analogous to Landau damping) which 
does not depend on the particular scattering mechanism. 

In this paper we analyze these aspects of the spin relaxa- 
tion for the case in which an electron is scattered by composi- 
tion irregularities in as substitutional semiconducting com- 
pound. Such irregularities give rise to fluctuations of the 
bottom of the conduction band. The quasielectric fields 
which arise are strong, and the spin relaxation is quite effec- 
tive. This model is more general than spin relaxation due to a 

spin-orbit interaction with the electric field of the irregulari- 
ties, since in this case it is necessary to consider the change in 
the effective mass and theg-factor as functions of the compo- 
sition in addition to the fluctuating quasielectric field. This 
gives rise to an additional mechanism for spin relaxation in a 
strong magnetic field. 

The dynamics of a conduction electron in an A, A, - , B 
compound (111-V semiconducting compounds are also be- 
ing studied widely7) is determined by the Hamiltonian of the 
effective-mass approximation": 

a='/,, (n2m,-'+mr-'n2)+~r+(fi14m,)o[ Vx,, n]+'/,g,p,oH, 

(1)  
where m, , E,  , and g, are the effective mass, the energy of the 
bottom of the conduction band, and theg-factor at the point 
r, all of which vary linearly with the composition; the opera- 
tor a represents the kinematic momentum; p, is the Bohr 
magneton; uis the Pauli matrix; and the parameter m, deter- 
mines the intensity of the spin-orbit interaction with the 
composition gradient in the alloy. The composition fluctu- 
ations S, = x ,  - Z in a homogeneous and isotropic com- 
pound are determined by the correlation function 
W( J r  - r'/ ) = (S,6,. ), which we will assume to be Gaus- 
sian in our calculations (with a correlation length I, and a 
mean square composition fluctuation ( r 2 ) .  We will also use 
the linear relations E, = Z + Wo6, and g, = g + AS,, for 
which parameters are given for several materials in Refs. 7 
and 10. The mass m, which determines the efficiency of the 
spin flipping, can be estimated in order of magnitude from 
the results of the model calculation of Ref. 8. For 
Al, Ga, -. As, these estimates agree with experimental re- 
sults on the spin splitting of the spectrum of asymmetric 
heterostructures (see the discussion in Ref. 11 ) . 

In Section 2 below we write kinetic equations for the 
scattering of a spin by composition fluctuations or the 
precession of a spin in the case of a smooth variation of the 
composition. We derive (in the approximation of a weak 
spin-orbit interaction) balance equations for the spin den- 
sity s,, We then take an average of s,, over fluctuations of 
intermediate scale (Section 3 )  and write a hydrodynamic- 
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approximation equation for S,, in the case of smooth fluctu- 
ations (Section 4). This analysis is carried out for nondegen- 
erate electrons (because of the Pauli principle, the average 
energy of the degenerate electrons also undergoes a relaxa- 
tion over long spin times1'). The hydrodynamic fluctuations 
are also assumed to be small when the averaging is carried 
out in Section 4 (this is the effective-medium approxima- 
tionI3). In the Conclusion we discuss the experimental re- 
sults of Refs. 14 and 15 and the possibilities of a more de- 
tailed study of these relaxation mechanisms. 

2. KINETIC EQUATIONS AND SPIN DENSITY BALANCE 

For small, short-wave (a <Ic <A, ) fluctuations of the 
composition it is convenient to single out in Hamiltonian ( 1 ) 
the increment proportional to S,, i.e., w,, and to write a 
quantum kinetic equation for the statistical operator aver- 
aged over the fluctuations, b, : 

0 

86, i 1 
- + - [h,;,] = J d d  [eihTrn[zu., ~l]e-"", w.]), (2)  

d t  h. h - - 

The contribution from fluctuations of the kinetic energy due 
to the dependence of the effective mass on 6, has been omit- 
ted since it is small in comparison with Wd,; here (...) 
means an average over fluctuations. For long-wave fluctu- 
ations (A, <Ic ) we need to consider a Wigner distribution 
function (which will be a 2 X 2 matrix), which satisfies the 
kinetic equation 

In addition to the usual terms, F,, is the Lorentz force, I, is a 
collision integral which ignores spin flip, V,, = a&,, /dp, 
and E ~ ,  = P 2 / 2 m , .  An addition force arises here,16 from 
the interaction with the composition gradient, 
- V (E,, + W$, ) . The commutator on the left side of (3)  
(c.f. Ref. 17, for example) determines spin precession with a 
frequency 

Equations (2)  and ( 3 ) rapidly impose an equilibrium 
distribution in the kinetic degrees of freedom, so that the 
relaxation which results from spin flip can be described by 
examining the spin density vector 

(tr  is a trace over the spin variable, and V is the normaliza- 
tion volume). For the limiting case of short-wave fluctu- 
ations described by (2) ,  a spatially uniform distribution 
j',, = Ip) appears in (5).  We find a balance equation 
for the spin density by convolving (2)  and (3)  in accordance 
with definition (5) .  Calculations are carried out below for 
the case of weak magnetic fields, w, 7 < 1 (a, is the cyclotron 
frequency, and 7 is the momentum relaxation time) and 
exp( - fiRB /T) =: 1 (in this case the energy relaxation is 

inconsequential, and in equilibrium we have Sf,, = 0). 
From (2 )  we find an equation for S, : 

x < (p 1 [eih"y w,, o] e-"'"" , w.1 I P )  ). ( 6 )  

The right side of this equation is evaluated by substituting a 
distribution which is equilibrium in terms of momentum: 

where T is the lattice temperature, and n the electron den- 
sity. Carrying out the summation over the spin variable on 
the right side of ( 6 ) ,  we find 

h 8 z W ( I ~ - p 1 (  e-'prT a=i --- Wo -)---- 
rr PP, 

ti no EP-EP, 

Ip-p I e-=prT 
(8) 

B = 8nnx v2 w (+ )--;;- 8 (E,-E..), 
PP, 

where a determines the renormalization of the spin preces- 
sion frequency which results from the interference of fluctu- 
ations of the band bottom, W,S,, and of the g-factor; the 
frequency v,, describes the spin flip due to the spin-orbit 
interaction; and/? determines the anisotropic relaxation due 
to fluctuations of the g-factor. Using the inequality A, - f i /  
(2mT)11'> I, for the longitudinal component of the spin 
vector the component parallel to R, , S ?, and for the trans- 
verse component, S:, to calculate the coefficients in (8 ), we 
find 

The fluctuations of the g-factor may contribute significantly 
to the relaxation of S: (despite the condition fiR, /T< 1 ) if 
m/m, < 1. 

From the kinetic equation ( 3 )  we find a balance equa- 
tion for the spin density: 

This equation has contributions from the divergence of the 
spin flux tensor Q,,%nd from the spin precession, which are 
given by the relations (6, = V6, ) 
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dence (at A, -1, there is a transition between the limiting 
cases we have considered here). 

4. HYDRODYNAMIC EQUATIONS FOR THE SPIN DENSITY 
(12) 

To calculate ( 11 ) and ( 12) in the long-wave limit," we 
replace the sum of expressions (7 )  and ( 14) by an equilibri- 

The relationship between these expressions and S,,, i.e., a um barometric distribution (n,, is the electron density) and 
closed balance equation for the spin density, is found below a Small fluctuating increment Ahk : 
with the help of approximate solutions of Eq. (3)  for the 
cases of fast and slow (on the scale 1, ) changes in x ,  . n r t a s r  - e ~ + p , ,  zr = - 1 P ( 17) f p r ,  = - 

n. V 
3. AVERAGE OVER FLUCTUATIONS OF INTERMEDIATE 

P 

SCALE The relaxation of the fluctuations is now controlled by the 

In the caseA, < I, <I, a solution o f ~ q .  (3)  is given by collision integral 1, in (32 (we assume that the external 

the distribution (7) plus a small fluctuating increment, are weak)$ and for Af~rt we find the 

whose spatial Fourier transform 6jbk, is determined by the {'lzi[&pr, IOrt]+vprVIOr1) e-epP'/r 
following equation [haoj  = f l p k  - f l ,  is found from (4)  1 : =I, (Af  lprt), IV,,=(nrt+Srla)/12,. (18) 

a e d WO aSt {- + ikv + - [ v H ]  -} bfpkt  + - ( t r v )  e-'p" - Following this equation, and evaluating ( 11 ) and ( 12), we 
d t 8~ T no find a closed balance equation for the spin density. The part 

i of A f which is asymmetric in terms of the momentum con- + -[ 06Qp., s] e-epiT=Ic (at 1 pkt) . 
2 no 

( 13) tributes to ( 11 ) and ( 12), so that a momentum relaxation 
time T,, appears in the expressions for Q,," and ( a  S,, /at), , 

We are interested in a solution of this equation for k-I, -', and the spin precession frequency in (4)  drops out of ( ) 
so that the time is the same for 'fPkt and 9 and and ( 12). After summing over the spin variable, we find 
we can ignore gyration in the magnetic field (the condition - - - - 
w, < ki7 reduces to w, T < I, /Ic, and the magnetic field can 

t j  - - 1 vp:Tp,e-epf~ m. 
be strong here). The same estimate allows us to replace the Qtt - [ [B=vptls~tI~ 

V "  
relaxation contribution from I, by an infinitely small incre- 
ment i6, which determines the rule for circumventing the 
pole in the denominator of the solution: 

i e - e p / T  w o i {, (I..) (0%) + [06RPk, O s l ]  }. m, 
= no (kv-ib) ( )  = 2m.V W - ' ~ ' T { -  2m,ii, itr( I [Er..] Srt ]vPr)  

(14) 

Substituting this expression into ( 11 ) and ( 12), we can -vp.  ( l lrv,l St,] & )  I +  [ v,E? (vp .V)  -bvP? (vPrV ) I %} 
write Eq. (8) for the spatially uniform spin density S, ; the n, 

coefficients in this equation, ai , pi, and vi , are now given by It remains to take an average over the momenta. A diffusion 

e - E p / ~  
coefficient D, and a drift velocity V, , defined by 

a i= l  - -- wo x ~ ( k ) - -  
g v2 k p  no T 1 D.=? 1 c- up:rpr e - L p , / T  , v,=-D,&V (%-I),  (20) 

311, 
e -ep /T  ~,=$z ~ ( k )  - b ( k v ) .  ( 15) appear in ( 19). We can relate D,,  V , ,  and the quasielectric 

k P no field by means of Einstein's equation (we assume that the 
e - e p / T  spatial variation of m; ' is smooth). The contributions to 

v, , ,~= (E) ' 3 ~ ( k )  - k2v26 ( k v )  . ( 19) which ae proportional to m,/m, are conveniently col- m. 
k P no lected in the spin flux density  ten-^,,^, s o - M 3 q ? ?  

I.-- As in the short-wave limit, the renormalization of the spin by the 
precession frequency results from interference of fluctu- 
ations of the bottom of the band and theg-factor. The param- 
eters v,,,, and f i r ,  which determine the relaxation of S, , now j 

. . 
arise from damping-which is independent of the particular m 
scattering mechanim-of the fluctuations of the electron Q,,"-- (D,V,-V:)S~~'+D,_-I. [ ~ , ( E , S . ~ )  -e:s,cl, (21 ) 

m. 
distribution, 6 ' , ,  . The explicit expressions for these coeffi- v/= (mr/2m,) 'D,[ 6ijEr2+EriE?l. 
cients, 

w0 A In this equation, the spin flux density tensor Q,," is ai=l -2oZ--  
T g '  determined by diffusion and drift and also by an increment 

oah from the spin-orbit interaction. Since 6, establishes a pre- 
p. = p--- 

' (eCT)'I2' ( 16 1 ferred direction, the spin relaxation frequency in (21 ) is the 
tensor Y! (an analogous situation arises in the case of two- 

differ from those in (9),  so that the scale of the composition dimensional electrons,I8 in which case the preferred direc- 
fluctuations can be estimated from the temperature &pen- tion is normal to the layer). The smooth coordinate depen- 
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dence has been taken into account exactly, and Eq. (21 ) 
describes the dynamics of the spins in a varigap semiconduc- 
tor (in interpreting an experiment on spin transport in a 
varigap semiconductor, Volkov et al. examined the simpli- 
fied case of a constant diffusion coefficient). 

Taking an average of (21) over small fluctuations 6, 
again gives us Eqs. (9) for the spin density components S? 
and S:; the coefficients in these equations are now given by 

In a weak field (a, < Dl ; 2 ,  we have 

and in a strong field we find from (22) 

( 0 )  , BI=TI,[ l + ( h a ) a - 6 h a 2 ~ ~ ] .  

(24) 
In the case of a spatially nonuniform distribution (S,, ), 

which arises if (for example) there is a nonuniform initial 
spin distribution, we find an equation with a nonlocal relaxa- 
tion contribution, so that we can write the following equa- 
tion for the Fourier transform of the spin density S,, (we are 
again assuming small fluctuations, and we are restricting the 
analysis to the case a, = 0)  : 

( a /a t+rk )Sk , -dkk (kSr t )  =0, 
D rk=V,l -t -z - (') I ( q ~ ) 2 + q 2  ( kq )  1 + (~4 . )  kZl v ( k + d 2  

(25) 

Here I?, describes the damping and diffusion of spins with- 
out a change in their direction, while d K  determines the de- 
polarization of the spatially nonuniform distribution of the 
spin density. In the long-wave limit, kl, < 1, we have 

so that the change in the spin orientation stems from the 
anisotropic nature of the diffusion. 

5. CONCLUSION 

Equations (9),  (21 ), and (25) have been derived for 
the spin density vector of conduction electrons in a semicon- 

ducting compound which are described by Hamiltonian ( 1 ) 
[if m, and g, are constant, Eq. ( 1) corresponds to spin 
precession in an electric field6]. We have considered various 
scales of the composition variation. Distinctive features of 
the coefficients which appear in Eqs. (8) ,  (21), and (25) 
stem from the entanglement of various fluctuating quantities 
and from the collisionless spin relaxation mechanism for 
fluctuations of intermediate scale. Analogous features arise 
in several other problems in which an average is taken over 
several parameters which depend on the composition (e.g., 
in a study of the effect of a random drift on diffusion2'). 
When a magnetic field is imposed, an additional relaxation 
mechanism comes into play for the perpendicular compo- 
nent of the spin density vector. This new mechanism results 
from fluctuations of the g-factor. In addition, there is a re- 
normalization of its precession frequency [see (9) ,  (23), 
and (24) 1. 

No detailed experimental studies have been made of 
spin relaxation or other kinetic phenomena in which varia- 
tions in composition were monitored simultaneously. The 
contribution of this relaxation mechanism can be distin- 
guished only by making a comparison with other mecha- 
nisms (e.g., on the basis of differences in a temperature de- 
pendence). Let us examine in more detail the experimental 
results of Ref. 14, where the spin relaxation time was mea- 
sured for several Al, Ga, - , As samples (0. l < x < 0.3) at 
T-77 K. This time was found to be (0.5-1.7) . s, and 
it was found to fall off with the temperature as T '*-". This 
temperature dependence led Clark et al.l4 to suggest that the 
relaxation occurs by a D'yakonov-Perel' mechanism. How- 
ever, recent measurements of the constant a, which deter- 
mines the magnitude of the spin splitting of the conduction 
band of a semiconductor lacking a center of in~ersion,~'  yield 
values an order of magnitude smaller than those which 
would be required to explain the experimental results of Ref. 
14 (the relaxation time is two orders of magnitude longer). 
The relaxation mechanisms which we have discussed here 
provide the appropriate temperature dependence fill a T~~~ 
only in the case of long-wave fluctuations [Eq. (23) in the 
case of momentum relaxation at a charged impurity, which 
was dominant under the conditions of Ref. 141. The value of 
fill agrees with the experimental results if we assume a/ 
1, -2 lo3 cm-'; this value would correspond, at an ampli- 
tude of the composition fluctuations on the order of 1%, to a 
length I ,  - 5 cm (and the condition I ,  > I ,  is already 
satisfied). Judging from these estimates and from the scatter 
in the experimental values for the different samples, we 
might assume that relaxation involving long-wave composi- 
tion fluctuations was observed in Ref. 14. A corresponding 
analysis and an order-of-magnitude comparison with the ex- 
perimental results of Ref. 15 can be carried out by writing 
equations like (9) and (21) for degenerate electrons (here 
we are assuming that the quantum corrections to the con- 
ductivity are determined by the same time as the relaxation 
of the average spin). 

A separate determination of cr and I ,  would be possible 
in experiments with a magnetic field, from the renormaliza- 
tion of the precession frequency and the relaxation time vli,'. 
Another qualitative distinctive feature is that according to 
Eq. (25) not only relaxation but also rotation of the spin 
density vector occurs in the spatially nonuniform case, be- 
cause of the anisotropic nature of the diffusion. This situa- 
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tion can be observed by studying the damping of the spin in a 
plate with a given spin density, making an angle of p0 with 
the normal, on one of the surfaces (this spin density would 
be set by an interband excitation of electrons by circularly 
polarized light). Solving Eqs. (25) and (26), we find the 
following profile of the increment in po along the plate 
thickness z: 

z d Aqx-- 
4, 4D 

sin 2q0, l,,= (vl,D) 'la. 

The spin rotates toward the plane of the plate. An estimate 
for Al,,, GQ,, As with z z l , ,  yields Ap - at the maxi- 
mum composition fluctuations which are possible for this 
analysis u-0.1. A corresponding rotation of the spin den- 
sity, due in this case to an anisotropy of the relaxation in 
(21), would be possible in a varigap layer. Estimates for 
such layers on the basis of Al, Ga, - As, however (see Ref. 
19 for the parameter values), yield Ap - lop4. The effect 
increases significantly and can apparently be observed in 
varigap structures of narrow-gap materials (ternary com- 
pounds of In, etc.), in which the spin-orbit interaction is 
more effective. The spin relaxation by composition fluctu- 
ations would also be more effective in such compounds. 

"A  derivation of this Hamiltonian for the model of a virtual crystal is 
given in Ref. 8. In writing (1) we are assuming that the extremum does 
not shift away from the center of the Brillouin zone as the composition 
of the compound changes. Other models have also been studied (in 
connection with the description of varigap semiconductors and hetero- 
junctionsy). In several papers, the first terms in ( 1 ) have been replaced 
by the contribution (wm, -'lr)/2 + B,, with the result that a change in 
the relationship between B, and x, is introduced phenomenologically. 
These distinctions are inconsequential for the analysis below. 

" If fiR, > T, or if the external fields are strong, it is necessary to consider 
the contribution to A f which is symmetric in momentum. In the case of 
quasielastic energy relaxation, a separate study is also required of the 
case in which the scale of the fluctuations is limited by the energy and 
momentum lengths. 

"The experiments of Ref. 2 1 were carried out for GaAs, but it may be 
assumed that the parameter a, like the other band parameters, varies 

slowly with the composition in Al, Gal , A s .  
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