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The wave functi+ons of the hydrogen atom and the spectral-line shapes L a  and Lg in an electric 
field ED ( t )  = 8 + E cos(Rt + q )  are calculated for fl% CE(C = 3/2ean/fi is the Stark-effect 
constant, n the principal q u a n t 9  number, and a the Bohr radius). At I C g  - RI % CE Isin 9 / 
( 9  is the angle between E and g) the lines sontain principal Stark components due to splitting 
of the upper energy level by the static field g, and also weaker satellites whose frequencies 
differ from those of the principal components by integer multipLes of R. As C g - R  the 
principal components come closer to the satellite groups. If 1 C 8  - R /  5 CE \sin9 1, however, 
and 9 #O, the approaching components repel one another and do not cross. The satellite 
intensities are then resonantly enhanced and become of the same order as those of the principal 
components. The results are of interest in atomic physics, plasma physics, and atomic 
spectroscopy. 

1. INTRODUCTION m 

The electric fields of a plasma, of laser emission, and =3 Re (rofare') (%e) j dt  e i w f < ~ a p a  ( t )  u ; , ~  ( t )  > 
others are easily determined' by measuring the Stark broad- aa'BB' 0 

ening of hydrogen spectral lines. We calculate here the hy- 
drogen line shape in the presence of an electric field '{nz )-: (3) 

ag 

which is the sum of a static field and an alternating harmonic 
one, with an angle 9 between their directions (Fig. 1) .  It is 
assumed that the field ED(t )  produces no transitions 
between levels with different principal quantum numbers n, 
and that the frequency of the harmonic component of ( 1 ) is 
high, 

3 ean 
QWCEz--  

2 h E, 

where Cis the Stark-effect constant and a is the Bohr radius. 
The harmonic component of ( 1 ) may be produced, for 

example, by Langmuir oscillations of a plasma' o;by laser 
emission (see, e.g., Ref. 2).  The static component 25' can be, 
in particular, the Holtsmark field of the ions or the electric 
field of low-frequency plasma oscillations that act on the 
atom quasistatically. ' 

The profile of the hydrogen (n-n') emission line is 
given by the familiar expression' 

FIG. 1. Geometry of electric field 

where w is the radiation frequency measured from the line 
center, e is the polarization unit vector, ra,, are the matrix 
elements of the coordinate operator, U,., ( t )  are the matrix 
elements of the atom evolution operator in the interaction 
representation, and a,af andP,P ' are the states of the upper 
and lower levels. The quantities Ua., ( t )  are determined by a 
Schrodinger equation with initial conditions 

ihOa,a ( t )  = r Z E D  ( t )  ra..- , ~ , , * ~ ( t ) ,  Ua.a( t )  ~ 6 a - a .  (4) 
a" 

Equations (4)  are standard and describe the evolution of 
pure quantum states of one emitter in the field ( 1 ) with fixed 
phase q, (there is no need here to derive equations for 
Ua., ( t )  in the presence of effects that randomize strongly 
the states of one emitter). The angle brackets (...) in (3)  
denote averaging over an ensemble (assumed statistically 
stationary of fields ED ( t )  (or of emitters). The averaging 
for the field ( 1 ) is over the random pkase Qnd also with the 
distribution function of the vectors %', if %' is a quasistatic 
electric-field components). Note that the line profile (3) is 
normalized to 

The problem posed was considered in a number of pa- 
p e r ~ , ~ - ~  but none is complete (see $5 for details). In $2 of the 
present paper we reduce Eqs. (4)  to a more manageable 
form. These equations are solved in 93 by perturbation the- 
ory in terms of the interaction of an atom with a harmonic 
field, an approach valid if (C%' - I , CE / sin9 1. Equations 
(4) are solved in 94 in the resonance approximation7 for 
IC25' - R14R. The solutions are used in $5 to calculate the 
shapes of the lines La and Lo ; the results are compared with 
those of Refs. 2-6. 
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$2. FUNDAMENTAL EQUATIONS 

In Eqs. (4)  the states a on a level with principal quan- 
tum number n are defined by the parabolic quantum 
numbers q and m (q=n, - n,,n = 1 + n, An, + lml) in a 
coordinaie frame whose z axis is parallel to $ and the x axis 
is in the 8? .E  plane (Fig. 1 ) . The number q is an integer in 
the interval JqJ  (n - 1. At fixed q, the range of the magnetic 
quantum number is 
m = 1 + JqJ - n,3 + JqJ - n ,..., n - 1 - Jql. Thematrix ele- 
ments r,,, are readily calculated with the aid of the generat- 
ing functions for Laguerre polynomials: 

The expression for ' is valid only if 
Jq - q'J = Jm - m'J = 1; in all other cases x,,. = 0. Note 
that expressions for x,,, and for their quadratic combina- 
tions were first given in Refs. 8 and 9. 

With (5)  taken into account, Eqs. (4 )  for the matrix 
elements 

can be rewritten in the form 

i 0 , ~ ~ ~  ( t )  =Cql [ 8 S E l l  cos ( Q t f  9 )  ] U:", ( t )  

-CE, cos (Qt+rp) ~ ; ~ " u , ? ~ , , ~ ,  ( t )  , 
~ " m "  

where E ,, and EL are the components of E alongz and x (Fig. 
1). 

To solve (6) it is convenient to use the substitution 

v::,~ ( t )  =A;, ( t ) e x p ( - i C q f 8 t ) ,  ( 7 )  

which reduces Eq. (6)  and the initial conditions [see (4)  ]  to 
the form 

. qm 
iA,.,, ( 1 )  =Cq1EI, cos (Qt+cp) A,~,,,, ( t )  

-CE, cos (Qt+p)  +rp) e x p [ i c 8  ( q r - q r f )  t ] ~ : : ~ ~ ' f ~ q q ~ m - ~  ( t ) ,  
q"m" 

(8 
qm 

-/iu*m (0) = 6 , , , S m , , .  

If E = 0, Eqs. (8)  have the obvious solution 

A,?;, ( t )  = 6 , , . 6 , , . ,  u:", ( t )  =6,,,6,,, e x p ( - - i C q ' W ,  

which describes the linear Stark effect in a static field. Ac- 
cording to ( 9 ) ,  the level splits into 2n - 1 sublevels with 
frequency spacing Cqg . 

Equations (8)  describe the action of the harmonic field 
on the atom, in a representation in which the action of the 
static field F? is taken into account exactly. Firstly, the har- 
monic field modulates the states (9)  by a periodic perturba- 
tion of frequency f l  and, secondly, mixes these states (if 
9 # O )  . Strictly speaking, there are no stationary energy lev- 
els of the atom in the field ( 1 ), but one can introduce the 
concept of quasi level^'^ resulting from virtual absorption 
and emission of harmonic-field quanta by the atom. 

$3. DETERMINATION OF THE EVOLUTION OPERATOR BY 
PERTURBATION THEORY 

Equations (8)  can easily be solved if the interaction of 
the atom with the harmonic field can be treated by perturba- 
tion theory. The zeroth approximation should be the solu- 
tion (9)  with E = 0. According to (8),  the components 
Uzz",.t) can be represented as sums of terms that vary har- 
monically with time at different frequencies. In first-order 
perturbation theory, the frequency spectrum contains the 
frequencies CiYq that correspond to the principal Stark sub- 
levels [see (9)  ] ,  and also the frequencies C g q  f fi corre- 
sponding to quasilevels separated from the principal sublev- 
els by a frequency f R. In second-order perturbation 
theory, the components U ir",. ( t )  acquire additional quasile- 
vels with frequencies C8?q + 2fl. More and more new quasi- 
level appear in the succeeding orders of perturbation theory. 
The number of quasilevels is formally infinite, and their 
spectrum is given by 

when perturbation theory is valid (see below), however, the 
amplitudes of the corresponding terms in U9,r",. ( t )  decrease 
as ( j( increases. Note that the quasilevels (q, j) are in fact of 
the same type as the well known Blokhintsev satellites" ob- 
tained from Eqs. (4)  in the absence of a static field. The 
spectrum of the Blokhintsev satellites agrees with (10) if 
$? = 0. We present the components A ,9;. ( t )  with account 
taken of lower-order terms that correspond to j = 0 and + 1 
and do not contain the factors exp ( + 2ip). Under condition 
(2) ,  these terms suffice for investigating the most significant 
features of the line shape (3 ) .  In this approximation, the 
nonzero values of A :r",, ( t )  are: 

rim 2 e * ' C B t  
A q + z , m r  ( t )  = - ( C O S  C 8 t  - cos Q t )  

0+0- 
qm q + l  Tn" q * l , m r s ~ q r 2 , m .  ( 1  m-m' I =0,2), (1  la )  

cos not-  1 z ::;, Eah ' ( l l b )  q m f 2 ,  
= +  002 <, "1 

A qm qm ( t )  = e - ~ ~ w  t - iq%[sin(Qt+rp) - sin r p ] +  - q 2 e 2  2 (eos R t - I )  

Equations ( 1 lb)  and ( 1 ld)  were derived by using Eq. 
(5 )  for 6 $:'. Included among the quantities of second order 
in A ;",t) is the term - iAw,t. It can be treated5 as the 
linear term in the expansion of an exponential expression 
and yields 1 - ihw, t = exp ( - ihw, t )  . when combined 
with the zeroth-order term in (1 lc).  The quantity Aw, de- 
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scribes the changes induced by the harmonic field in the po- 
sition of the principal Stark level = 0 in ( 10) l .  In the 
region where perturbation theory is valid, the sublevel shifts 
Am, are much smaller than the distances C g  between neigh- 
boring sublevels. 

According to ( 11 ), the criterion for the validity of per- 
turbation theory 

I A::, ( t )  -fiq,,.6m"2v I c1, 

is satisfied if 

At 9 = 0, when the h2rmonic field does not mix the Stark 
states (9) in the field $, the condition ( 13) is equivalent to 
(2) .  If, however, I9 #O, we have formally / A  :I",. I -+ co as 
Z? + R/C. From the physical point of view the cause of this 
singularity of the solution is that, according to ( l o ) ,  at 
%' = R/C the principal Stark sublevels numbered (q j = 0 )  
cross (quasicross) the quasilevels (q', j ' )  corresponding to 
all possible q' #q andj' = q - q'. The frequency of the exter- 
nal field then becomes equal to (resonant with) the frequen- 
cy of the transition between neighboring Stark sublevels in 
the field g. Equations (4)  near resonance are solved in $4. 

$4. EVOLUTION OPERATOR NEAR RESONANCE 

Near resonance (at (Cg - R 1 4 R )  we use the reso- 
nance approximation (see, e.g., Ref. 7, problem at the end of 
$40) which is widely used for two-level systems. Using this 
approximation, we represent cos(Rt + q) as a sum of ex- 
ponential~ and retain the terms that vary slowly with time. 
We get 

. 'l"' 
i.4qqmr ( t )  =- - cEL E f a e r n -  q"rn" ~ ~ l , ~ , .  qm ( t )  

2 , , , . r q # r  

where E = E -  = C g  - R, with ( E  1 4 0. The substitution 

A:,",, ( t )  = G q q ~ ~  ( t )  exp [ieq't-icp ( q l - q )  ] (15) 

reduces Eqs. ( 14) and the initial conditions [see (8) ] to the 
form 

. qm gm 
iGqv,f ( t )  =&q'G,.,. ( t ) -  7 

We can seek the solution of the system ( 16) in the form 

where A, are the eigenvalues and H ir:" the eigenvectors of 
the system of homogeneous linear equations 

The indices x and p number respectively the values A, and 
the eigenvectors corresponding to the same A, in the pres- 
ence of degeneracy. The coefficients B r;': of the expansion 

(17) should be obtained from the initial conditions [see 
(1611. 

Equating the determinant of the system ( 18) to zero, by 
direct calculation we find that at n = 2, 3, and 4 the A, are 
given by 

and are (n - 1 - 1x1)-fold degenerate. In this case x (as 
well as q )  is an integer in the interval 1x1 ( n  - 1. It is natural 
to expect the simple expression ( 19) to be valid for all n. It is 
convenient to assume that, given the index x, the index ,u 
runs through the same values as the quantum number m at 
q = x(§2).  

Since the A, are degenerate, the eigenvectors H 2) 
cannot be uniquely determined. The Appendix contains a 
method of finding H $) for any value of n, if the following 
symmetry and orthonormalization conditions are imposed: 

pn, 

In this case B,, qm = H jlEF) according to ( 16). We have then 
by virtue of (15) and (7)  

U q , f  (I) = exp (irp (q -q ' )  ) zit H::! H::' enp ( - iw, . . t } ,  
(21) 

where the frequencies 

determine the energy spectrum of the quasilevels near reso- 
nance. 

Expressions ( lo),  (1  1) and (21 ), (22) obtained re- 
spectively for 

h 

permit an evolution operator U ( t )  to be specified for any 
value of $. In the common range of the parameters 

CEI< IC8 -BJ  <Q 

these expressions are in agreement. As an example, Figs. 2 
and 3 show the spectra of the quasilevels (with number 
s = a,b,c, ....) as functions of %' at CE/R = for the cases 
n = 2 and 3. The indices (q, j) and (q,x) in ( 10) and (22), 
corresponding to the quasilevels on Fig. 3 ahead of the reso- 
nance ( R  - C C E  , in the resonance region 
( l C g  - RIdR),andpasttheresonance ( C g  - R$CE,),  
are listed in Table I. According to Figs. 2 and 3, the principal 
Stark sublevels approach the groups of quasilevels as 
g -. R/C. If .9- #O, however, the approaching quasilevels do 
not cross, but are mutually repelled. The closest approach 
distance of neighboring quasilevels is reached at Z9 = R/C 
and equals CE, /2. 

At / C g  - R J  5 CE, all the terms in (2  1 ) which de- 
scribe the approaching quasilevles have, generally speaking, 
amplitudes of the same order, whereas at J C g  - 01 >> CE, 
the amplitudes of the terms in ( 1 1 ) and (2  1 ), corresponding 
to the quasilevels (q, j )  in ( lo),  decrease drastically with 
Ijl. 
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$5. PROFILES OF THE LINES La AND L, 

Using (3) and the results of §§3 and 4 we calculate the 
profiles of the lines L, and L, of the hydrogen atom in the 
electric field ( 1 ). The ground level of the atom is not per- 
turbed by the field (1)  in this approximation. Hence 
Uptp ( t )  - 1 in (3) .  To be definite, we average ( 3 )  over the 
directions and polarizations of the radiation. Then 

T 

= ( r )  r J t e t a  (23) 
a  aa'  0 

where r, = r,, . 
Accordingto (71, (11) and(21), thevaluesofU,., ( t )  

averaged over the phase e, of the harmonic field are of the 
form 

wheres = a, 6, c, ... number the quasilevels of the upper level 
(Figs. 2 and 3);  ~,41",, ( s )  are real coefficients. Substituting 
(24) in (23), we find that the spectral line splits into a series 
of components s in accordance with the energy spectrum of 
the upper level: 

I 

Here 
FIG. 2. Quasilevel spectrum vs the strength of the stationary fleld tY at 
C E / R  = 4,n = 2 and 9 = 90' (see Fig. 1 ). The dots denotes the positions 
of the quasilevels in those regions where they are extremely weak (52). 
When 8 is varied the positions of the quasilevles change only near the 

1, = (n 1 rqm l 2  ) - i ~ e  u:yrnl (s) rqrnr;mt (26) 
9m qt3,q.m 

quasicrossings. In the upper left corner this change is shown for three 
values of 19: 90" (solid lines), 30" (dashed) and 0" (dash-dot). is the intensity of the component s, and in accordance with 

the assumed normalization of I (w)  (see $1) we have 

FIG. 3. The same as Fig. 2, for n = 3 and 8 = 90". 
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XI, = 1. Tables I1 and I11 list for the lines L, and Lo the 
S 

explicit forms ofI, calculated from Eqs. (7),  ( 1 1 ), and (26) 
off resonance and, from (21 ) and (26), near resonance. 
Plots of I, vs ?3 at CE, /fl = a are shown in Figs. 4 to 7. 

On Figs. 2-7 we can trace in detail the behavior of the 
components of lines La and Lo as functions of 25'. Not too 
close to resonance, when I C?3 - 0 I $ CE, , the most intense 
are the principal Stark components (e.g., d (d ,  ), d ' (d  ; ) and 
e of the L, line) that correspond to j = 0 in ( 10). Compo- 
nents separated from them in frequency by + R (for exam- 
plea, a', c, c' of La ) are much less intense, and those separat- 
ed by + 2fl (e.g., f and f '  of Lo)  are negligibly weak. 
Therefore only the principal Stark components and their less 
intense first satellites actually appear in the line. 

If 25' - a/C, the intensities of the group of weak compo- 
nents that approach the principal Stark components in- 
crease resonantly and at (C@? - f l (  5 CE, become of the 
same order as the intensities of the principal Stark compo- 
nents. It is important that in this case there appear compo- 
nents (e.g., f of the& line) that areextremely weak far from 
resonance. The component intensities near resonance can 
have a complicated dependence on Z7 (just like, e.g., the 
components h and h, of the Lg line) as a result of quantum 
interference effects that appear when several quasilevels ap- 
proach one another simultaneously. This distinguishes our 
results from the familiar results (see, e.g., Ref. 7 )  for two- 
level systems. 

The dependence of the component intensities on the an- 
gle between the harmonic and constant fields is of interest. 
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TABLE I. Quasilevels with principal quantum number n = 3, shown in Fig. 3. (The signs of q, j, 
and x should be reversed for the quasilevels marked by primed letters). 

I 

e 
el 

TABLE 11. Intensities of the Stark components of line L, . 

8 

Q - C s > C E l  I l Q - c I l < Q  C i r - Q > C E ,  

a, a' 

b ,  b' 

C ,  e' 

d l ,  dl' 

e 
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b l - 1  

d - 1  
-2 

2 

TABLE 111. Intensities of the Stark components of line L ~ .  

I 8 

Q - C b > C E I  I l Q - C 8 l  < Q  I C I - Q > C E I  
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FIG. 6. Intensities I, of a number of components as functions of the line 
FIG. 4. Intensities I, of a number of components of the line La (see Fig. L, (see Fig. 3 )  on at C E / n  = 1/4 and 9 = 90". The upper corner 
2 )  vs I at C E / n  = : for three values of the angle between the harmonic shows a linear plot of the same dependence near the resonance. 
and static fields: 9 = 90" (solid lines), 30" (dashed), and 0" (dash-dot). 

When 19 decreases the resonant changes of the intensities 
take place in an ever narrower interval of @? ( ( C 8  - RI 
5 CE Isin9 1, Figs. 2,4,5), and vanish at 9 = 0 .  In addition, 
the first satellites of the unshifted components n and n' of L, 
and c and c' of LB, which are absent at 9 = 0, appear in the 
lines at 9- #O.  According to Figs. 2  and 3, the positions of 
these satellites do not depend on the value of g. It is possible 
therefore that these satellites will appear even in those cases 
when @? is a quasistatic component of an electric field ( $ 1 ) . 
In these cases the details of the remaining components may 
become strongly washed out by additional averaging of the 
ccontours ( 2 5 )  with the distribution function of the vectors 
2?, 

The contours of hydrogen lines in the electric field ( 1 )  
were investigated earlier both n ~ m e r i c a l l ~ ~ . ~  and analytical- 
ly.2.6 In Ref. 3 the positions of the La -line components were 
calculated as functions of 8 at 9 = 90" and CE / R  = 0.5, 1 ,  

1.5,2,2.5,3.5, and 4.5. For CE / R  = 0.5 the results of Ref. 3 
fit well the analytic formulas ( 10) and ( 2 2 ) .  A comparison 
of the results for the remaining CE /R is improper by virtue 
of ( 2 ) .  The positions and intensities of the components of the 
Ha line were obtained numerically in Ref. 4  for several val- 
ues of 8, E, R,  and 8. Nonetheless, the results of Ref. 3 and 4 
do not permit a detailed investigation of the behavior of the 
line components when the parameters of the field (1)  are 
varied. 

An analytic solution of Eqs. ( 4 )  was obtained in Ref. 6 
by a method similar to that used in $4, under exact resonance 
conditions ( %' = R / C  at 9 = 90"). The separation obtained 
in Ref. 6 between neighboring components (Eq. (8)  of Ref. 
6)  differs from the value CE, /2 obtained from ( 2 2 ) .  The 
discrepancy arises because the authors of Ref. 6 solved a 
system of equations similar to ( 14) by improperly subdivid- 
ing the system into individual blocks (see ( 5 ) - ( 7 )  in Ref. 
6 ) ,  reducing them to the known equations for two-level sys- 

FIG. 5. The same as Fig. 4, for other components of the line L a .  FIG. 7. The same as Fig. 6,  for other components of the line L g .  
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tems. Actually, however, the problem is substantially differ- 
ent from the two-level one (see above). 

A somewhat different approach was used in a subse- 
quent paper,2 where the phase of the harmonic field in ( 1)  
was assumed equal to zero. Equations (4 )  were solved for 
the level n = 2 either far from resonance by perturbation 
theory, or at exact resonance by transforming to a rotating 
reference frame with z axis parallel to ED ( t ) .  The assump- 
tion 8 = 90" was made and the constraint (2 )  was not im- 
posed. The authorsof Ref. 2 calculated the profiles of the La 
line far from resonance and at exact resonance, and also indi- 
cated the resonant positions of the L,, components. Under 
condition (2 ) ,  the resonant positions of the components of 
La and L,, agreed with those calculated from Eq. (22) of the 
present paper, but differed (in the case of L,, ) from those 
obtained in the earlier paper.h This difference, due to the 
inaccuracy of the calculations of Ref. 6 (see above), were 
improperly attributed in Ref. 2 to the different action on the 
atom by the field ( 1 ) with arbitrary phase p # 0 (in Ref. 6 )  
and with fixed phase p = 0 (in Ref. 2) .  I t  is clear, however, 
that one and the same problem was solved in Refs. 2 and 6 
and the results should be identical. 

In addition, the authors of Refs. 2 and 6, having ob- 
served closely-spaced line components under conditions of 
exact resonance. treated them as a special splitting of the 
principal Stark components by the resonant field. According 
to our results, however, the principal components are split 
by a harmonic field at any $. The split components have in 
fact the same properties as the Blokhintsev satellites" at 
t!? = 0. As t!? - a / C  the components only come closer to- 
gether and manifest themselves most distinctly because of 
the resonant interaction. 

In addition, resonance effects can appear not only at  
t!? = a / C ,  but also at other %' for which a tendency to level 
crossing takes place. Using ( l o ) ,  it can be easily shown (see 
also Ref. 6)  that in case (2 )  all possible "resonant" values of 
f? are f!? = Rk /Cs, where k and s are integers, k #O, ~ $ 0 ,  
and Is1 <2n - 2. The resonance considered corresponds to 
k = s  = 1 and is much more strongly pronounced than the 
remaining ones. In the opposite limit CE k R several reson- 
ances can predominate simultaneously, but the resonant val- 
ues of 29' are apparently not describable by such simple equa- 
tions and depend nonlinearly on Z? and R (Refs. 2 and 3).  

It would be of interest to study the effects calculated 
above under laboratory conditions, by recording the line 
shapes of hydrogen atoms placed in the field ( 1 ). By varying 
the parameters of this field and creating resonance condi- 
tions, it is possible to observe lines with a large number of 
components that are indicative of the complex structure of 
the quasilevels produced in the field ( 1 ) . 

APPENDIX 

Eigenvectors of the system (18) 

Using Eqs. (5 ) ,  it can be easily shown that the eigenvec- 
tors H izp) that satisfy Eq. ( 18) and conditions (20) are sub- 
ject to the following symmetry relations: 

In the last relation, m, = n - 141 - 1 is the maximum value 
of m at a given q, while x' and p' are the minimum and 
maximum values of the corresponding indices, given the 
s u m x ' + , u ' = x + p :  

A simple procedure can be proposed to determine the 
components Hi:' for any n. We find first Hi:'' for the 
values K = 1 - n and p = 0. These values are 

Here 8 and 7 are given by Eqs. ( 12) and (19);  h,, = h l q l , l m ,  

are constant coefficients, with 

while the remaining coefficients h,, are easily obtained 
from the recurrence relation 

obtained by substituting (A.7)  in ( 1.8) and equating coeffi- 
cients of like powers of 7 - 8. In particular, 

[ (n-1) (n-2) (n-3) '" 
hn-4.3 = 

6 1 ; (A. 10) 
. . . . . . . . 

m 
ho,,=Cn-i, 

where C :- , is the binomial coefficient. 
Knowing Hi!,- ".O' we can determine 

~ ( 2 - n , - 1 )  ~ ( 3 - n . 2 )  

qm, qm, 
,...,El ( O , l  - " )  

qmq 
with the aid of (A.5).  

All the remaining components 
( 2  - n, - I )  H ( 3  - n, - 2 )  (0,l - n )  

H q m  qm H , are obtained without 
difficulty by successive application of Eqs. ( 18) (as recur- 
rence relations) and A The values of 
H g- ".",H ii- n92',...,H gn-  I )  are then directly obtained 
with the aid of (A.3).  Now, knowing HK-"." ,  we can de- 
termine H $; n.'), H $; n. - ) ,..., H g: - " I ,  etc., with the aid 
of (A.5).  Repeating this procedure, we can calculate all the 
elements H yg,, with x<O, and then use (A.2) to find the 
remaining elements with x > 0. 

We have determined the eigenvectors of the system 
(18) for the cases n = 2, 3, 4, and 5. I t  is convenient to ex- 
press the vector components in the form 
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TABLE IV. Certain components of Tyz' for the level with n = 3 

By way of example, Table IV lists certain 2 Y ~ ~ p )  for n = 3. 
The remaining quantities can be easily obtained with the aid 
of (A.1) and (A.2). 
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