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The absorption of longitudinal sound in the vicinity of a point where the Fermi-surface 
topology of a metal is changed is considered for the case of finite temperature and impurity 
density. It is shown that in the dirty case ( T r g  1, where r is the characteristic relaxation time) 
the jump of the sound absorption coefficient becomes smeared out near the topological 
transition both for the long wave ( k l g  1, where 1 is the mean free path) and for short-wave 
sound. The laws governing the variation of the coefficient of longitudinal-sound absorption on 
the right and on the left of the transition point are obtained. The results explain the available 
experimental material. 

1. Electronic topological transitions (ETT) are exten- 
sively investigated at present both theoretically and experi- 
mentally. It was noted already in I. M. Lifshitz's seminal 
paper' that changes of the topology of the Fermi surface 
should give rise to various types of singularities in the ther- 
modynamic and kinetic characteristics of a metal. In the 
"classical" case of zero temperature and in the absence of 
electron scattering, when the Lifshitz topological transition 
is in its strict sense an electronic phase transition of order 24, 
these singularities are manifested as kinks (density of state, 
conductivity) or discontinuities (thermoelectric power). 

Singularities of this kind were actually repeatedly ob- 
served later in a number of compounds (Li, ,Mg, 
Bi, -, Sb,, Bi whiskers, and others) in investigations of gal- 
vanomagnetic phenomena,' electric cond~ctivity,~." super- 
conducting-transition temperature,' and thermoelectric 
power.h-10 Under real conditions, however (at  nonzero tem- 
peratures and in the presence of electron scattering), the 
kinks become smoothened and the discontinuities joined, 
but many characteristic features of phase transitions of or- 
der 2; are nonetheless preserved (e.g., the asymmetry of the 
peak of the thermoelectric power). The elimination of the 
thermoelectric-power and conductivity singularities was ex- 
plained in Refs. 11-13 within the framework of a simple 
model that permits calculation of the kinetic and thermody- 
namic characteristics of a metal near the ETT at finite tem- 
peratures and in the presence of electron scattering. 

The behavior of the sound-absorption coefficient l- in 
ETT is particularly unusual, in two important respects. 
Thus, it was first pointed out in Ref. 14 that near the ETT a 
metal is fundamentally a new nonlinear acoustic medium 
with elastic properties that are not analytic in the strain. The 
point is that the pressure change accompanying a sufficient- 
ly intense sound wave in a metal near the ETT can itself 
cause a local transition, and this should undoubtedly influ- 
ence the sound absorption. The corresponding nonlinear dis- 
tortions of the sound field in the course of the sound-wave 
propagation were investigated in Ref. 14. 

The particulars of the phase transition of order 2; mani- 
fest themselves in the sound absorption not only by nonlin- 
ear effects. The point is that r is highly sensitive also to a 

local change of the structure of the Fermi surface. Kaganov 
et al. ''." investigated in detail the absorption of short-wave 
sound ( k l 9 1 )  as a function of its propagation direction and 
of the type of ETT. They have shown that near the ETT the 
sound absorption coefficeint should undergo at T = 0 a 
jump of the same order as that observed in T. In the case of a 
transition of the "neck breaking" type, strong anisotropy 
should be observed in the dependence of the sound wave 
vector k on the direction: in some cases the coefficeint I- has 
a jump, just as when a new cavity is formed, and in others it 
has a logarithmic singularity. Moreover, the analysis of the 
angular dependence of the absorption coefficient of short- 
wave sound was generalized in Ref. 16 to include the change 
when the local geometry of the Fermi surface changes with- 
out a change in its connectivity. 

In absorption of long-wave sound, the picture is signifi- 
cantly different. The interaction of the electrons with the 
sound becomes ineffective" because of the large velocity dif- 
ference, and the electrons participating in the interaction 
come not from an individual "band" only, but from the en- 
tire Fermi surface. The question of absorption of long-wave 
sound near a phase transition of order 2; at T = 0 was con- 
sidered in Ref. 18 for a model in which the dependence of the 
strain potential and of the electron mean freepath on the 
proximity to the transition point was neglected. Under these 
assumptions it was found that in the case of long-wave sound 
the absorption coefficeint has an anomaly near the transition 
point, and when a new cavity of the Fermi surface is formed 
the change A r  of the absorption coefficient turns out to be of 
the order of I7 itself. In the case of a "neck-breaking" transi- 
tion, however, r increases logarithmically. 

We consider in the present paper the absorption of lon- 
gitudinal sound in a wide frequency range, all the way to 
w - T I ,  where r is the electron relaxation time in a metal 
that undergoes an ETT, with account taken of strong impu- 
rity scattering and at finite temperatures. We do not confine 
ourselves to model-dependent premises concerning the de- 
formation potential and the relaxation time, which are inde- 
pendent of the proximity to the ETT, but carry out a consis- 
tent microscopic calculation of the sound absorption 
coefficient using a temperature diagramatic technique. All 
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FIG. 1 .  Topological transition of neck-breaking type. At z = 0 the open 
Fermi surface (a)  goes over into a closed one (b);  p,,-limiting value of 
longitudinal momentum. 

the information on the ETT is centered in a one-electron 
Green's function via the electron spectrum E(P,Z) even prior 
to averaging over the impurity positions. 

We describe the transition using the previously pro- 
posed"-13 model of an ETT of the "neck breaking" type, in 
which the Fermi surface is chosen in the form of a hyperbo- 
loid of revolution (Fig. I ) ,  so that 

Depending on the sign of the parameter z, which character- 
izes the proximity of the system to the transition, the hyper- 
boloid has two cavities (z < 0)  or one ( z  > O), meaning a 
closer or an open Fermi surface. This model is convenient in 
that it yields similar descriptions on the two sides of the 
ETT. 

To calculate the longitudinal-sound absroption coeffi- 
cient we use the Tsuneto's methodI9 which is valid for an 
anisotropic Fermi surface and can be easily converted to the 
formalism of the temperature diagrammatic technique. This 
approach is quite close to the calculation of the absorption 
coefficient of sound from the general dynamic equations of 
elasticity theory in metalsZ0 within the framework of a strain 
potential (whose role is assumed here to be the linear re- 
sponse of the system to the lattice velocity field ar ). 

In view of the detailed investigation of the angular de- 
pendence of r for short-wave ~ o u n d , ' ~ . ' ~  we confine our- 
selves to a study of the sound absorption coefficeint directed 
along the hyperboloid axis. Particular attention will be paid, 
however, to the question of absorption of long-wave sound 
( k l 4  1 1. As will be shown below, the T(z) dependence ex- 
hibits here, too, a "step" smeared out by electron scattering, 
although the relative size of the step, unlike in Ref. 18, is 
smaller than in the case of short-wave sound absorption. It is 
interesting that whereas the main contribution to r is pro- 
portional to w2 only so long as kl < 1, for the r increment due 
to the ETT this frequency dependence extends all the way to 
kl Smin{(e,~)"~, (~ , / (z l )  'I2), where E, is an energy of the. 
order of E~ (it is understood that the present analysis is cor- 
rect only under the assumption min{(~,r) 'I2, (E,/ 

I z I  ) 'I2)) 1, which makes it valid to average over the impuri- 
ties in the ladder approximation and indicates also that the 
system is close to an ETT). 

2. We proceed to calculate the longitudinal-sound ab- 
sorption coefficient in a metal near an ETT. The sound ab- 

sorption coefficient r is defined as the ratio of the power Q 
dissipated per unit volume to the energy flux indent on a unit 
surface: 

wherep,, is the density of the metal, v, the speed of sound in 
it, and u is the amplitude of the velocity in the sound wave; 
we define this amplitude by specifying a velocity field 

u (x, t )  =u esp{i(kx--ot) )=-ioGR(x, t ) ,  ( 2 )  
with wave vector k and frequency w. 

In the laboratory frame {x') the electrons interact with 
the sound wave via an electromagnetic field induced by the 
wave and having potentials A and p ,  and also via collisions 
with impurities that move together with the lattice. In this 
frame, however, in view of the motion of the impurities when 
the sound wave propagates, the electron scattering from the 
impurities is inelastic and cannot be treated by the standard 
technique of averaging over the impurity  position^.^' There- 
fore, following Ref. 19, we transform to a reference frame 
(CRF) {x) comoving with the lattice, in which the impuri- 
ties are immobile: 

x=xf-GR(x, t ) .  

Here, just as in (2 ) ,  uR(x,t) is a slowly varying function of x 
and of the time t, and determines the displacement of the 
lattice ions from their equilibrium positions by the propagat- 
ing sound wave. 

In this reference frame we can already average over the 
impurity positions by the standard averaging te~hnique,~ '  
but in view of the inertial character of the CRF we must take 
into consideration here the additional intertial force f acting 
in this frame on the electrons (it corresponds in the lab to 
electron drag by the moving impurities). 

The total electric current flowing in the metal when a 
sound wave moves in it consists thus in the CRF of two 
different contributions. The first, j(k,w) = a(E(k,w), is the 
usual one and is determined by the linear response of the 
system to the sound-wave electric field E = - gradp. The 
second contribution j, (k,w) = or (k,w)f (k,w)/e is due to 
the response to the inertial force f = - m, u/r acting on the 
electron in this frame. Since the electromagnetic field of the 
sound wave, being defined in a self-consistent manner, is 
proportional to u, the linear responses p(k,w, ) and 
p, (k,w,) to the field E and to the fictitious force f, which 
determine the corresponding conductivities u(k,w) and 
or (k,w), can be calculated independently of each other. In 
Ref. 19 the longitudinal-sound absorption coefficient r was 
expressed in terms of u and ur : 

where 

al=llo o, o"=Im ci, a,"=Tln 01, 

and u, is the usual static conductivity of the metal 
a, = N:r/m, for a metal with a spherical Fermi surface; in 
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the case of a metal undergoing an ETT it was already calcu- 
lated earlier. l 2  

To find LT and a, we present the linear responses 
p(k,wv ) andp, (k,w, ) by the temperature of diagrammatic 
technique. They are expressed in usual fashion via single- 
electron Green's functions: 

(4 )  
where w, = 2rTv  is the external boson frequency, 
E, = 2 r T ( n  + 1/2) is the fermion frequency, and 

is the vertex corresponding to the action of the inertia force f 
on the electron (this expression can be easily obtained by a 
trivial generalization of the results of Ref. 19). The angle 
brackets denote averaging of the corresponding expression 
over the position of the impurities, which is now carried out 
in standard fashion and reduces to averaging of the Green's 
functions themselves and to renormalization of the corre- 
sponding scalar vertex f (k,w, ) satisfying the usual ladder 
equation 

where 

Here ni is the impurity density, and U the amplitude of elec- 
tron scattering by the impurities (for simplicity, the scatter- 
ing is assumed isotropic). 

The linear responsesp(k,w ) andp, (k,w) are connected 
with u(k,w ) and a, (k,w ) by the relations 

By calculatingp andp, in accordance with (4)-(7),  we can 
thus find in principle the longitudinal-sound absorption co- 
efficient in a metal with an arbitrary electron spectrum. 
Thus, for a meal with a spherical Fermi surface the proce- 
dure described leads to the well-known Pippard result" 

mN [ 1 (k1)'arctgkl r=-- - - I ] .  
p,,,u,a 3 kl - arctg kl 

3. To calculate r near an ETT it is therefore necessary 
to find the linear responsesp (k,w ) and p, (k,w ) with a one- 
electron Green's function corresponding to the spectrum 
( 1) and averaged over the impurity positions. I t  was ob- 
tained earlier in Ref. 12, and in the case of a sufficiently dirty 
metal ( TT < 1 ) , which is of interest to us, it takes the form 

G-I(&, ,  p)=ie,-pL2/2ml+p,2/2mLf z+(i/2?) sign en, (10) 

FIG. 2. Dependence [Eq. ( 12) ] of A on the parameter z. 

In expression ( 1 1 ) we have neglected the dependence of? on 
the frequency E,  , shown in Ref. 12 to be immaterial for the 
calculation of the conductivity near an ETT. Figure 2 shows 
a plot fo A vs the parameter z/E,. 

We begin with calculation of the Fourier component 
p(k,O), whose appearance in (8  is due to change of the 
order of the summation and integration in (4) .  Calculating 
in standard fashion the sum over the frequencies in Eq. (4)  
(Ref. 21 ) and then integrating with respect to the transverse 
component of the momentum, we get 

whence 

LlJl 

( 1- ( ~ T l a , )  'h exp (-z/T), z>T. 

(14) 

To find the renormalized vertexp(k,wv ) in (7 )  we first 
integrate over the transverse component of the momentum, 
after which the expression for I takes the form 

Next, separating the real and imaginary parts of the loga- 
rithm and neglecting Ikt /T compared with ~ , t  in its argu- 
ment, we get 

7 arctglk 
I - ,  [ T - ~ ] .  

where 
f 

1 
J=- 

ax 
arc tg  

1 
/ l + ( k l ) b z  2 c o ~ ~ 2 r ' f 2 h '  

(16) 

This integral can already be directly calculated for different 
values of kl: where 
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A ( z )  kl arctg kl -- 
2  2eor 

, kl < mi.{ (eOr) lh,  (5) 'I' } , 
1 1 

2kl arctg - 2rz ' k ~ > r n i n { ( e ~ r ) ' ~ ~ ,  ( $ ) ' h } ,  

(17) 
and, in accordance with the cut in the region where the loga- 
rithm is defined, the arctan x branch is chosen such that 
arctan XE [O,~T]. 

In the calculation of p(k,w, ) we encounter the same 
integral I as in the determination of the vertex c(k,w, ). In- 
asmuch as in the dirty limit the final result ( 15 )-( 17) for I 
depends on E, only via the theta function O(E, (w, - E, ), 
that determines the locations of the poles in the complex 
plane, the summation over E, in (4),  which remains after 
integrating over the momenta, is elementary and reduces to 
multiplication by w,/2.nT. Thus, for p (k,w, ) we get 

The usual analytic continuation of this expression with re- 
spect to frequency (iw, +w) yields 

As shown by Tsuneto,19 to calculate or (k,w ) there is no 
need to calculate explicitly the response p, (k,O)-only the 
terms proportional to - mu/er contribute to the conductiv- 
ity uI (k,w 1. Calculating pI (k,w ) from (4) in analogy with 
the calculation of p (k,w ) above but with vertex (5) ,  and 
recognizing that expression (3)  for r contains only the 
imaginary part uI ", we get 

Defining oo = p(k,0)p&;i/3pm: as in Ref. 12, we ulti- 
mately obtain for the sound absorption coefficient 

4. We analyze first the case of long-wave sound 
( k l 5  1 ). So long as k l 5  min{(cOr) 'I2, (c0/lzI ) lI2), the ratio 
I /( 1 - I) in (20) can be represented in the form 

Expanding arctan Ik in powers of Ik up to fifth order, we 
obtain after simple transformations 

where 

We see that T(z)  varies smoothly near the ETT by virtue of 
the change of Az (see Fig. 2. Thus, in the case of strong 
impurity scattering, the absorption anomaly is preserved 
even for absorption of sound of sufficiently large wave- 

length. In contrast to Ref. 18, however, the relative size of 
the jump turns out here to be small in the parameter 
min{(c07) - 'I2, ( ~ ~ / l z l  ) - ' I2).  This discrepancy is due to 
the assumption made in Ref. 18 that the mean path is con- 
stant near the ETT. Let us examine this assumption in 
greater detail. 

In the case of a solitary Fermi sphere, this assumption 
obviously corresponds to the presence of s-scattering of the 
electrons by the impurities. When the cavity produced in the 
ETT is modeled in this fashion, the relaxation time T = I/ 
v- w with decrease of the cavity size, and it is this which 
leads to the appearance of the finite jump AT - r, in Ref. 18 
(for a transition of the neck-breaking type this assumption 
leads to a logarithmic singularity in AT). It must be noted, 
however, that this model can be realized only, say, for degen- 
erate semiconductor + dielectric transitions, since a cavity is 
formed in ETT only in the presence of other-extended- 
sections of the Fermi surface. Scatterings of the electrons of 
the produced cavity and their departure to a large neighbor- 
ing section of the Fermi surface is therefore possible, and it is 
this which leads to a perfectly finite relaxation time. 

In the Fermi-surface model considered above the elec- 
tron relaxation time turns out to be finite automatically l 2  

because the electrons scattered by impurities can go over 
from the neck region to remote sections of the Fermi surface. 
Thus, in the case of a neck-breaking transition the logarith- 
mic divergence obtained in Ref. 18 for does not take place. 

In the case 1 5 kl 5 min{ (E,T) 'I2, (co/lzl ) 'I2) the ratio 
I/( 1 -I) is determined as before by (21 ), but it can no 
longer be expanded in powers of kl. The strong cancellations 
of the preceding case no longer occur in expression (20). 
The physical reason for this is the different character of the 
electron interaction with the sound-wave field. Thus, where- 
as in the case k l 5  1 all the electrons interact effectively with 
the sound wave, in the collisionless region (kl k 1 ) the only 
electrons that take part in the sound absorption are those 
moving in phase with the sound wave, i.e., those for which 
the condition k v z w  is ~ a t i s f i e d . ~ ~ . ~ ~  For the second absorp- 
tion coefficient near the ETT we have the region 
1 5 k l 5  min{ (E,T) 'I2, (~,/lzl) 'I2) 

where 

coincides, apart from a coefficient that depends on the Fer- 
mi-surface geometry, with the expression that follows from 
Pippard's formula (9)  for the case kl) 1. Note that even 
though the coefficient T, (kl) 1) ceases to depend on I in 
this region and is linear in the frequency w, the correction 
AT necessitated by the proximity of the system to the ETT 
remains in the case kl< 1 proportional to w2l0 as before. The 
relative value of the jump in this wavelength region depends 
thus on the frequency, and this apparently makes it possible 
to observe this region in experiment. 

The case k l 2  min{(~,) 'I2, (c0/lzl) 'I2.) seems to be dif- 
ficult to observe in experiment for real compounds in which 
ETT takes place (since it corresponds to very high frequen- 
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discussions, and Yu. P. Gaidukov and V. V. Rzhevskii for 
helpful advice. 

FIG. 3. Relative absorption coefficient T(z)/T,  of longitudinal sound vs 
the parameter z that characterizes the proximity of the system to a topo- 
logical transition in the case k l 2  min{(~,,.r) 'I2, ( ~ , , / l z  ) ll*}. 

cies). Nontheless, to complete the picture we present an 
expression, which follows from (20), for T (z) near an ETT 
in this case: 

1-1/2n~z, z I/%, 
I' (z) = r, (k l  B I) )/,+2~z/n, 1 z 1 < I / % ,  (24) 

1 / 2 ~ n  1 z 1 , - E , " ~ T - " K z ~ - ~ / T .  

We see that in this case, in accordance with the results of Ref. 
15, the jump of the absorption coefficeint near the ETT turns 
out to be of the order of its value far from the transition. The 
corresponding r ( z )  dependence for this case is shown in 
Fig. 3. Note that in this wavelength region the relative mag- 
nitude of the ETT-induced jump again ceases to depend on 
the sound-wave frequency, since both contributions to (24) 
are already proportional to w in this case. 

We discuss in conclusion the available experimental re- 
sults. The absorption coefficient of longitudinal sound of fre- 
quency f = 30 MHz was measured in Ref. 23 in a BiSb alloy 
near an ETT. The experimental conditions corresponded to 
the case k l 4  1. Near the ETT there was actually observed a 
spread-out jump in the absorption coefficient, about 5% in 
relative value. If, following Ref. 23, the mean free path is 
assumed to be 1 , ~ 0 . 0 1  mm, expression (22) leads to a satis- 
factory agreement with the experimental data for both the 
magnitude of the jump and the width of its spread. 

In conclusion, the authors are deeply grateful to A. A. 
Abrikosov for constant interest in the work and valuable 
remarks, M. I. Kaganov for timely criticism and stimulating 
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