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Spatial diffusion of low-density impurities in semiquantum liquids is considered. The 
interaction between the impurities is disregarded in view of their low density. The diffusion 
coefficient is calculated for two limiting cases, for a delocalization time of the impurity 
particles shorter than the delocalization time of the solvent particles, and for the opposite 
limiting case. 

It was shown by Andreev and Ko~evich'-~ that liquids 
in the temperature range fi/r < T <  @ (where r is the liquid- 
particle delocalization time due to their tunneling and @ is 
the Debye temperature) have universal properties due to the 
presence of tunneling elementary excitations. These elemen- 
tary excitations can be described in the two-level system 
(TLS) representation, with detachment energies in the wide 
range from E,,, Z O  to E,,, =: U (where U is the characteris- 
tic liquid-molecule interaction energy). If one introduces 
the probability P ( E ) ~ E  of finding a TLS with energy in the 
interval (E,E + d ~ ) ,  the main premise of the theory is that 
the probability density is assumed constant: P(E) 
= P = const. Liquids in the indicated temperature range 

are referred to as semiquantum liquids (SL). Note that the 
temperature f i / ~  is in fact the degeneracy temperature. 

The heat capacity, viscosity, thermal conductivity, and 
nuclear spin-lattice relaxation time were determined in Refs. 
1-5, where ultrasound absorption in LS was also investigat- 
ed. The theoretical results are in good agreement with the 
experimental ones, so that the SL model proposed in Refs. 1- 
3, on which the notion of tunneling elementary excitations is 
based, should be regarded as adequate. The aim of the pres- 
ent paper is a theoretical study of the diffusion of low-density 
impurity particles in an SL. 

We assume the impurity density to be low enough to 
neglect the interaction between the impurity particles. 

Two cases must be distinguished in investigations of 
impurity-particle diffusion. The first is that of "fast" impuri- 
ties, i.e., cases when the solvent particle-delocalization time 
T exceeds the impurity-particle delocalization time T ,  (i.e., 
r0 < 7 ) .  The second case is that of "slow" impurities with the 
inverse inequality T ,  > T .  

Obviously, either case can be realized, depending on the 
species of impurity particles and solvent atoms. The diffu- 
sion for these limiting cases must be considered separately. 

We consider initially the first case, that of "fast" impur- 
ities. In view of the "slowness" of the solvent particles, their 
motion cannot adjust itself to the fast motion of the impurity 
particles, so that the latter motion can be regarded as a per- 
turbation that causes transitions between the states of the 
TLS of the solvent particles. 

We calculate the impurity-particle diffusion coefficient 
by a method similar to that used in Refs. 3 and 4 to calculate 
the kinetic coefficients, i.e., the method of reaction of the 
system to "thermal" perturbations. 

Consider the formal problem of the energy dissipated 
when the system is acted upon by a periodic perturbation of 
the type V = - fg, where q is the impurity-particle-flux op- 
erator and f is a generalized force that varies harmonically 
with time at a frequency w .  The meaning of the generalized 
force ("thermal" perturbation) can be established by com- 
paring, on the one hand, the thermodynamic equation for 
energy dissipation Q = qAp in the presence of a particle flux 
between subsystems whose chemical potentials differ by Ap, 
and on the other with the general formula for the energy 
dissipation Q = qf due to a perturbation of the type consid- 
ered. The comparison yields an expression for the general- 
ized-force amplitude: 

Here c is the mass density of the impurity particles, w is the 
perturbation frequency, a is a spatial vector joining two 
neighboring positions of the impurity particles, and Vc is the 
gradient of the impurity density. 

According to the assumption made above, the motion 
of the impurity particles causes transitions between states of 
TLS of solvent particles. The interaction Hamiltonian 
G = - qf(t) can therefore be written, in a representation in 
which an effective spin $ = 3 is introduced for the TLS de- 
scription, in the form 

B YE- 8P 
2hio (S++S-) - (Vca) exp(-lot) + H.c., ( 1 ) 

d c  

where B is the coupling constant of the impurities and the 
TLS. These perturbations lead to an energy dissipation that 
can be calculated in standard manner6: 

where E is the TLS-splitting energy, W+ - is the probability 
of transitions between TLS states and is governed by the 
operator Vof Eq. ( 1 ), and no is the equilibrium difference of 
the TLS populations: 

Assuming that ha 4 T and averaging over the TLS states via 
the probability P ~ E ,  we obtain for the energy absorbed per 
unit time and per unit volume of the liquid 
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where m, is the mass of the impurity particles and p is the 
density of the liquid. 

On the other hand, in accordance with the definition of 
the diffusion coefficient, the same dissipation can be written 
in the form 

Comparing (4)  and (5 )  and taking into account the general 
expressionVor the chemical potential of impurity particles 
in a weak solution: 

we obtain for the diffusion coefficient 

The following is noteworthy: the relation between the re- 
sponse of the system (the quantity q )  and the "external 
force" f acting on the system ( f  = -f- [ foexp( - io t )  
+ H.c.] ) can be used to derive an expression for the general- 

ized susceptibility. Using next the diffusion equation and the 
fluctuation-dissipation theorem, it is easy to obtain for the 
diffusion coefficient an expression identical with that given 
by the known Kubo formula.' 

It is of interest to compare the obtained diffusion coeffi- 
cient with experiment. In Ref. 8 was measured the diffusion 
coefficient of He3 atoms dissolved in He4 at temperatures 
T> T, (He4 should exhibit semiquantum-liquid properties 
in this temperature range), and it was shown that at these 
temperatures the diffusion coefficient D is practically inde- 
pendent of temperature. This result agrees fully with that of 
Eq. ( 6 ) .  

Consider now a second limiting case, that of "slow" 
impurities. In this situation the solvent particles manage to 
"adjust" themselves to each position of the impurity parti- 
cle, so that the solvent particles simply form a spectrum of 
the states between which the impurity-particle transitions 
will occur. 

Admitting possible tunneling of impurity particles, one 
can readily see the analogy between the case considered 
above and the known problem, considered by M ~ t t , ~  of car- 
rier mobility in noncrystalline substances. The diffusion co- 
efficient can be calculated by using this analogy in the fol- 
lowing manner. The impurity particle can be formally 
ascribed an electric charge e and it can be assumed that it is 
acted upon by an alternating electric field of frequency and 
amplitude F. This is followed by calculation of the "conduc- 
tivity" of the system at the frequency w, due to the motion of 
the charged impurity, and by the use of the known Einstein 
relation between the mobility and the diffusion coefficient. 
This will yield also the diffusion coefficient at the frequency 
w. The actually measured quantity is the diffusion coeffi- 
cient D(0)  at zero frequency, which can be obtained from 
D(w) by going to the limit w - W .  It will be shown below 

that at frequencies +b < T the diffusion coefficient is inde- 
pendent of frequency. 

Let the charged impurity be acted upon by an alternat- 
ing electric field Fcoswt (we emphasize once more that as- 
cribing a charge to the impurity is only a formal device that 
facilitates the calculations, and the charge itself drops out of 
the final equations). 

The Hamiltonian of the interaction of the impurity par- 
ticle with the applied field is 

W=eFx cos ot. ( 7  

Let $, (r)  be the wave function describing the state of an 
impurity particle of energy E (the wave function is assumed 
normalized to the volume V )  . 

Regarding ( 7 )  as a perturbation, we easily calculate the 
energy dissipated per unit time and unit volume of the liquid. 
The result is 

here v ( E ) d E  is the density of the number of states of the 
impurity particle in the energy interval E,  D + dE, w(E) is 
the statistical probability of occupying a level of energy E, 
and JE+ ,,, is a quantity defined by the equation 

xE + ,,, is a matrix element of the operatorx, taken between 
the states $, + fiu and $, . 

Assuming that +b < T and taking into account the for- 
mula that relates the conductivity with the dissipated energy 

and also using the Einstein relation 

we ultimately obtain for the diffusion coefficient 

In the limit w -0, we obtain from ( 12) 

We see thus that in this case (that of "slow" impurities) the 
diffusion coefficient is likewise independent of temperature; 
this agrees with the experimental results of Ref. 10. 

We emphasize in conclusion that we have assumed 
throughout tunneling of the impurity particles. When this is 
impossible, above-barrier transitions of the impurity parti- 
cles still remains. The diffusion coefficient for this case will 
obviously have a temperature dependence D-exp( - U,,/ 
T ) ,  where Uo is the activation energy. 

The authors are deeply grateful to A. F. Andreev for a 
detailed discussion of the work and for valuable advice, and 
to G. E. Gurgenishvili and I. N. Piradashvili for discussions. 
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