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A theory is developed of the drift of Bloch lines in a ferromagnet subjected to an external 
magnetic field which oscillates in time, but is uniform in space. The dependences of the drift 
velocity on the frequency, amplitude, and direction of the field are determined. 

Dedukh, Gornakov, and Nikitenko'.' discovered a di- 
rectional drift of Bloch lines in a cubic ferromagnet subject- 
ed to a magnetic field which oscillates in time and is homo- 
geneous in space. A similar effect was predicted earlier by 
Schlomann for Bloch walls. An important feature of the 
Schlomann theory3 is that the Landau-Lifshitz equations 
have an exact solution for Bloch walls. An exact solution for 
a Bloch line has not yet been found. Nevertheless, we shall 
show below that only very general representations of the 
structure of a Bloch line are sufficient to account for and 
describe qualitatively the drift effect mentioned above. 

1. The Landau-Lifshitz equations in spherical coordi- 
nates are 

-@ sin 0-?to. sinV=€JB/6cp, ip sin 0-x0=6~/ ' /80 ,  ( 1 ) 

where x g  1 is the damping constant and the energy is 
equal to the sum of the energy of a ferromagnet in an external 
magnetic field $M*HdV and the intrinsic energy E, which is 
given by 
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here, p is the effective uniaxial anisotropy4 due to the mag- 
netostriction. The state 8 = 0 corresponds to the magnetiza- 
tion directed along the [ 11 11 easy axis (x axis); the last term 
is the demagnetization energy. They axis in the Cartesian 
coordinate system (x,y,z) is directed along [ 1101. In Refs. 1 
and 2 it is assumed that domain walls lie in the (z,x) plane 
and the Bloch lines are oriented along the z axis. We shall 
assume that the equilibrium structure of a line is described 
by the functions 

{00(r),(Po(r) 1; 
M,=(MC, MoY, MOz) = (COS €I0, sin 0,  sin cp, ,  sin Oo cos q o ) .  

For the line orientation assumed in Refs. 1 and 2, the func- 
tions COO, pO) depend only on (x,y) (we shall ignore the 
edge effects). We can easily see that functions of the type 

VII: (6,( .r .  -y). - (Po( . . ,  -y)); 

VIII: { n + O o ( x , ~ ) , c p o ( x , ~ ) )  
correspond to the same energies (2)  and, therefore, repre- 
sent different solutions of the equilibrium equations SE / 
Sp = 0, SE /SO = 0. The magnetization fields corresponding 
to these solutions are shown schematically in Fig. 1. The 
black and white parts of these Bloch walls correspond to the 
positive and negative values of the z component of the mag- 
netization. 

2. We shall assume now that 8 = 0, + O,, p = p, + p, ,  
where 8, and p, are arbitrary small functions of (x,y); then, 
in the approximation which is linear in respect of 8, and p, ,  
we have 

where the matrix integrodifferential operator L  ̂ defined by 
the components of the second variational derivative of the 
energy E with respect to 8 and p is clearly self-adjoint. Since 
the solution {8,, p,) corresponds t t a  minimum of the ener- 
gy E, the spectrum of the operator L has no negative eigen- 
values. We shall assume that the position of a line on a wall is 
not pinned by any defects or external conditions so that in 
addition to the solution {O,, pol ,  we have a continuous series 
of degenerate solutions {8,(x + X,y ), p,(x + X,y)), where 
Xis  an arbitrary constant. Hence, it obviously follows that 
the operator L has an eigenvector 

with zero eigenvalue. It  follows from the experimental data 
of Ref. 5 that the position of a domain wall is pinned either by 
growth defects or by the effects associated with the demag- 
netization so that there is an eigenfrequency of the wall vi- 
brations amounting to about 1.8 MHz (Ref. 6).  For the sake 
of simplicity, we shall add a term A '$Mfy2dv, to the energy 
and this term represents the "attraction" of a domain wall to 

VI: { ~ o ( - x ,  -y), c ~ o ( - x ,  - y ) ) ;  FIG. 1 .  
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they^= 0 plane. Then, the continuous spectrum of the opera- 
tor L begins with a gap proportional to A .  A discrete spec- 
trum of local modes is not excluded; however, the important 
point in the subsequent analysis is that there are no other 
reasons for the existence of small eigenvalues. 

Before investigating the dynamic problem, we shall first 
derive an identity which will be useful later. We shall expand 
the equilibrium equations for functions of the type 
{Oo(x + X + { ,y) ,  p,,(x + X + { , y ) )  for a small constant { 
accurate to within quadratic terms. Bearing in mind that 

dqo 1 , 6'qo 
' p o  (x+X+S, y) = c p o  (x+X, y)  + % -- + L- 7 0 .l 

we obtain 

6E 

60 2 

f i  E 
(4)  

bE=$(I,2%.+Lqs*) -{-G}, = 0 .  
69 - ax2 dx- 

-- a'0 s in 90 

Hence, introducing time-independent functions qe and q'+' 
such that 8, = cqe, p1 = cqP, we find that 

- sin 90 

-- ago sin 90 

The second approximation yields 

Hence, following the procedure used to go from the system 
(4)  to the identity (5) ,  we obtain the usual equation of mo- 
tion for a free Bloch line 

Here, we have separated the terms which are linear in the 
quadratic corrections to the function COO, p,} and terms of mt+at=O. (10) 
the type { 1, which are quadratic in the linear correction to Therefore, the low-frequency spectrum reduces to two 
the functions COO, pol .  We multiply the first equation in the modes R ,  = 0 and R, = ir-I, where r = a / m  and 
system (4) by SB0/Sx and the second by Spo/Sx, add the 
resultant equations, and integrate over the volume. In view m= ~ ~ i n 0 ~ ( ~ ' - - - ~ ~ - )  00 d% d z d y ;  
of the self-adjoint nature of the operator L and also the fact a x  dx  
that the vector of Eq. ( 3 )  is an eigenvector with zero eigen- ae, 
value, we obtain the required identity: a=. I[(?)' sinzeo+(-)'I i )  .T d x d ~ .  (11) - - - 

j j d x d y  (${El2 +*{%-I:) ax  6 q  = 0. ( 5 )  The other eigenfrequencies of the system begin with a gap 

3. An investigation of the motion of a Bloch line in an 
external field H = h sin wt  will be carried out by expanding 
the solution of the system ( 1 ) in the small amplitude of the 
field and the low (compared with the eigenfrequency of the 
wall vibrations) frequency w. 

We first determine the low-frequency spectrum of a 
Bloch line. We seek a solution of equations linear in respect 
of the amplitude of motion and we assume that this solution 

proportional to A .  
Generally speaking, an external alternating field excites 

all the modes. However, if the field frequency is low com- 
pared with the gap, the amplitude of motion of the magneti- 
zation is mainly due to two modes, R ,  and a,. The contribu- 
tion of the remaining modes is obtained in the adiabatic 
approximation. We separate in the system ( 1 ) the terms 
with an external field 

can be described by a series in terms of the frequency and -6 ,in e-r.if ,inZ @+,in 0 cos cp~ , - s in  0 sin c p ~ , = 6 ~ / 6 q ,  
damping constant: 

9 ( x ,  y, t )  =Oo(x, y )  + c ( t )  (de0/dx)  +0L+83+ . . . , Q sin 8-xfj- sin OH,+ cos 8 sin cpH,+cos 0 cos qHZ=6E/60. 
( 6 )  

q ( x ,  y, t)=cpo(x, y)+c(t)  (aqolax)+(~I+q2+. . . (12) 

In the first approximation, we obtain In the linear approximation, we have 

h s i n  00 - xtj, - sin OoHx + cos 00 sin cpoH, + cos Bo cos cpoHz 

( - 8osin 80 - xp,sinz 00 + sin 00 cos qoff?,  - sin sin vo& ) = L  (::) 
Separating in the terms with the magnetic field the part orthogonal to the vector ( 3 ) ,  we find that instead of Eq. (7)  we now 
have 

- sin 0oHX {- cos 00 sin $OH, + cos 00 cos (FoH, - I-lpH - 
a90 sin 80 7 sin 00 cos  OH, - sin €I0 sin cpoH, - I-'pH - 
a x  
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Here, the vectorp is a discontinuity of the magnetic moment 
of a domain wall on transition across a Bloch line: 

380 
(15) 

8% p. = JJ (-sin 0. sin ipO - - cos 8, cos po -) dx dy 
ax ax 

The component p,, vanishes because in domain walls far 
from a line we have 

We write the solution (el, p, ) of Eq. ( 14) in the following 
form: 

where the functions 7 and q are independent of time and 
frequency. The last term in Eq. (16) clearly corresponds to 
the contribution of high-frequency modes. Then, instead of 
the system (9), we have 

q7 
i sin go ( - + sin 8 0 8  

- sina 00 

Hence [compare the transition from Eq. (9) to Eq. ( 10) I ,  
we obtain the equation of motion of a Bloch line in an exter- 
nal field: 

we have introduced here a vector 

Equation (18) is the condition of solubility of the system 
( 17). Starting from Eq. ( 17) [in agreement with Eq. ( 18) 1 
and eliminating a term proportional to pH, we obtain 

sin Ooqe - I-lm - 
- sin 00q" - I-Im - 

sin eoqe - 1% - 
(19) 

- sin 80q' - 1 3  - 

which shows that the correction (8,, q,,) is of the form 
[compare with Eq. ( 16) 1 

where the functions v,, fl, and q, are defined only by the 
characteristics of the equilibrium problem. From Eq. ( 18), 
we find H = h sin wt that 

vh + - cos o t .  
o m  

4. We seek a solution in the approximation which is 
quadratic in the field amplitude: 

where V is the expected drift velocity (proportional to h 2); 
8, and p, are the corrections which are linear in the ampli- 
tude, as found above; 0 ' and q, ' are the corrections which are 
quadratic in the field. We shall now average the solution 
(22) in a time interval which is long compared with the 
period of the field oscillations, but short compared with the 
characteristic drift time of a Bloch line which travels a dis- 
tance of the order of its "thickness." For example, (8 ) is 
described by 

Clearly, after such averaging the time dependence of the so- 
lution reduces simply to a drift at a velocity V, so that to 
within terms proportional to h 4, we have 

We now apply this time-averaging to the system ( 1 ) . Retain- 
ing terms proportional to h, we obtain with the aid of Eq. 
(23) 

(aElae) - cp sin 8 \ ) = L  (::::). (24) 
(aEjarp) + B sin 8 / a  

Here, in the angular brackets with the index 2, i.e., in 
( (  ),) we have arbitrarily separated the terms which are 
quadratic in the correction (8,, q,, ) and the terms with the 
magnetic field. Repeating the procedure used to go over 
from Eq. (4) to Eq. ( 5 ) ,  we obtain the following expression 
for the velocity 

V=a-'F, (25) 

where the effective force F consists of three parts: 

1107 Sov. Phys. JETP 64 (5), November 1986 S. V. lordanskiland V. I. Marchenko 1107 



all the terms in F, in an equally simple manner. 
In the integrand of Eq. (26) for F, we have to include 

aeo also the following corrections in (Om, p, ) of Eq. ( 16) : 
F2 = - jj (4.0.) cos 0.  --dx d y ,  

ax 
(26) 

00 dx 
P. = jj dx dg {(H.B.) cos 0.  -- a x  

8% ax  
(29) 

+ ( H,, sin 8 .  sin rpo - cp .  
ax The functions qe and r]p of Eq. (8) satisfy equations of the 

d 00 - cos O 0  cos cp0* 0 .  + sin 8. sin qo - 0 .  
dx dx 

+ (H., sin 0.  cos 90 (g 0 .  + -T.  
dx 

If in Eq. (26) for F, in the expressions for (8, ,p, ) we retain 
the leading (in the amplitude) terms (cdp,/dx, cd0,Jdx) ,it 
follows from the identity (5 )  that F, = 0, so that the finite 
contribution to F, is due to inclusion of the next corrections 
given by Eqs. ( 16) and (20). Substitution of the solutions 
(8,, p, ) in Eq. (26) gives very cumbersome expressions. 
However, we may readily show that the result can be repre- 
sented in the following simple form: 

F=(o '+ l /~~) - ' ( ph )  (Nh), (27) 

where the vector N is governed only by the characteristics of 
the equilibrium problem and there are no reasons to reduce 
to zero any of its components N,, N,, and N,.  The expres- 
sion (27) determines completely the dependence of the ef- 
fective force on the frequency, damping constant, direction, 
and field amplitude. The order of magnitude (on the as- 
sumption that P - K - 4a) of the velocity expressed in the 
usual units is 

where y is the gyromagnetic ratio and S is the domain wall 
thickness. 

We shall now determine the law describing the transfor- 
mation of the expression for the force F on transition from 
the solution {8,, p,) [ I  in Fig. 1 ] to the other solutions given 
above (11-VIII). In the first term of the integrand in the 
equation for F,, we have 

3% <H,0,> cos €lo - - (H,c>  cos 00 
ax 

Here, the quantities p and cos 8, may differ in the sign for 
different Bloch lines. For example, if we go over from the 
solution I COO, p,) to the solution I11 {T + 8,( - x ,  - y), 
po( - X, - y ) ) ,  Eq. (28) changes its sign. We can analyze 

aeo -- a2E 6'E 
sin O0 = - qv + - 

ax 9 6 9  60 q e 7  

and hence it is obvious that transformations that do not alter 
the energy modify q p  in the same way as the function 
sin8,(d6,/dx), whereas 77' is modified as sine, (dpddx)  . In 
this way Eq. (29) transforms as the function 28,(d6,/dx). 

The first term in the integration of Eq. (26) describing 
F,  is 

Let us now consider, for example, the first term in the above 
equation. Expanding up to c in p,, we obtain 

The term proportional to (c2) drops out from the final an- 
swer because of the identity (5).  The next term proportional 
to (c2) transforms as (S3E /Sp 3)dpo/dx, i.e., its sign 
changes as a result of those transformations which include 
the substitutionx-. - x. We shall not consider further what 
is essentially a simple analysis of the other terms, but formu- 
late the final result as follows. The components N, and N, of 
the vector N of Eq. (27) are the same for the solutions I, IV, 
VI, and VII, and their sign changes in the case of the other 
solutions. The component N, is the same for the solutions I, 
11, V, VI and it sign changes in the case of 111, IV, VII, and 
VIII, i.e., it is proportional to the magnetic moment of a line. 
A discontinuity of the magnetic momentp at a wall changes 
sign as a result of the (I, 111, V, VII) -+ (11, IV, VI, VIII) 
transition (see Fig. 1 ) . 

FIG. 2. 
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According to Refs. 1 and 2, all the lines in one wall 
move in one direction, whereas in the next wall they move in 
the opposite direction; the most effective is thex component 
of the external field. We can explain this rule if we perform a 
certain matching, namely the magnetic moments of all the 
Bloch lines should be directed in one way (Fig. 2) .  In fact, if 
an external field has only the x component, then the direc- 
tion of the force of Eq. (27) is governed by the factor 
p, N,h 5 ,  which is easily shown to transform in the necessary 
way. On appearance of they component of the field, there is a 
correction proportional top, h,N, h,, which for a structure 
of this type (Fig. 2) has different signs for the neighboring 
lines and depends on the sign of h,. Therefore, when the field 
deviates slightly from the x axis, Bloch lines drift retaining 
their initial direction but with different velocities. The field 
component Hz has in prnciple the same effect as H,, but in 
Refs. 1 and 2 it cannot be strong because of the demagnetiza- 
tion effects [the sample is in the form of a plate lying in the 
(x,y) plane]. This picture is in qualitative agreement with 
the experimental data of Refs. 1 and 2. 

The drift of Bloch lines increases the density at one edge 
of a Bloch wall and reduces it at the other."he large dis- 
tance between the lines corresponds to a metastable state, 

because new lines are then formed.* The orientation of their 
magnetic moments corresponds to the drift from the edge of 
the plate, because otherwise the lines are expelled from the 
plate. 
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