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The behavior of a nonlinear oscillator in a resonant external field, and coupled to a heat bath, 
is studied. The coupling to the heat bath is assumed to be weak, and therefore the oscillator 
motion is diffusive in quasienergy space. It is shown that in such a system it is possible for the 
state with the larger oscillation amplitude to have an excess population. The time required to 
establish a stationary distribution is estimated. An expression for the average response of the 
oscillator to an auxiliary weak field at a near-resonance frequency is found. 

INTRODUCTION 

The question of the relaxation of a nonlinear oscillator 
located in an external resonance field is one of the examples 
of a large class of problems concerning the behavior of non- 
equilibrium systems having several stable states interacting 
with a heat bath. A change in the properties of the medium 
under the action of radiation can manifest itself in different 
nonlinear effects. ' A nonlinear oscillator located in an exter- 
nal resonance field can serve as model for the interaction of a 
molecular gas with laser radiation: a small number of impu- 
rity-gas molecules are in resonance with an external field, 
and the buffer gas plays the role of a heat reservoir. 

It is convenient to characterize the state of the nonlin- 
ear oscillator with the aid of "slow" variables u and u.'.' If 
the amplitude of the external force is less than some critical 
value, then the phase diagram of the nonlinear oscillator in 
the space of the slow variables has, in the absence of dissipa- 
tion, the form shown in Fig. 1. To each phase trajectory in 
the (u ,  U )  space corresponds a definite value of H, the "qua- 
sienergy," and T(H) ,  the period of the motion along the 
phase trajectory. 

If we ignore the rapidly oscillating terms in the initial 
Hamiltonian of the oscillator, then the quasienergy H is an 
integral of the The stable vibrational states 1 
(with the smaller oscillation amplitude) and 2 (with the 
larger amplitude) are separated by an unstable state s, 
through which the separatrix  passe^.^ 

FIG. 1 .  Phase diagram of the nonlinear oscillator in the plane of the slow 
variables in the presence of two stable states. 

As shown in Ref. 4, in the presence of interaction with 
the heat bath, the fluctuation-induced transitions between 
the various stable states can cause an excess population to 
appear in the state with the greater oscillation amplitude. 

The purpose of the present paper is, first, to obtain the 
stationary oscillator-state distribution function in the pres- 
ence of a weak interaction with the heat bath, and, second, to 
describe the relaxation to the stationary distribution and es- 
timate the time required to establish this distribution. In Sec. 
3 we consider the response of the oscillator to an auxiliary 
weak field at a near-resonance frequency in the case when 
the heat bath has a nonzero temperature. 

$1. DERIVATION OF THE ONE-DIMENSIONAL KINETIC 
EQUATION 

Let us consider the classical nonlinear oscillator with 
the Hamiltonian 

= z+ 7 ~ '  H o - - O O x  P +-- 
2 4 

fox  cos o t .  

It is convenient to introduce the slow variables u and v :  

X=U cos o t + v  sin ot=pe-'"'+geim'. ( 2  

In terms of the slow variables we have for the oscillator the 
slow-time equations 

. aH 
U E - - =  Ev-7 (u2+vZ) v ,  

av 
. aH 
y = = -  gu+y (u"v" u-f, 

au 

where 

The equations (3)  describe the motion of a particle with the 
Hamiltonian 

which has the meaning of quasienergy, and is an integral of 
the motion described by the equations ( 3 ) .  

Now let the oscillator interact with the heat bath. This 
leads to the appearance of dissipation and some "random 
force" acting on the oscillator. If T(H) 9 I/$, where T(H) 
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is the period of the motion along the phase trajectory and 9 is 
the damping constant due to the interaction with the medi- 
um, then information about the oscillator state will be car- 
ried by the quasienergy H. Naturally, in this case the behav- 
ior of the oscillator can be regarded as some random walk in 
"quasienergy" space, and its state will be characterized by a 
one-dimensional distribution function F(H, t ) .  

Within the framework of the present model, the oscilla- 
tor motion is a Markovian process; therefore, F(H,  t )  satis- 
fies the equation7 

1 
Kn (H, t) = lim -[H(t+At) -H(t) 1". 

At-o At 

Let us compute K, . We shall assume that the medium is 
made up of harmonic oscillators (with frequencies w, ), 
which are linearly coupled to the oscillator in question8: 

where Z, is the coupling constant. 
Let us set 

We consider the system of slow-time equations 

d H  
i = i  - + i ckpk exp {i (ak-o) t), 

h 

pk=-ickp exp {-i(m-ok) t), 

qk=i~kg exp {i (@-oh) t}, (9)  

where c, = 2, /a2. By substituting (8)  into (9), we can find 
Ag and Ap, the changes caused in g andp by the interacting 
with the heat bath during the period of time At. Let us, as- 
suming Ap and Ag to be small, consider 

Since the state of the system is determined (in our ap- 
proximation) by the quantity H, we must, in computing 
(AH)/At, average over the distribution of the "random 
quantitiesw-the initial coordinates and momenta of the 0s- 
cillators of the heat bath-and over a period T(H). The os- 
cillators of the heat bath are in equilibrium; therefore, 
(g, (0 ) )  = Oand (p ,  (0) )  = 0: 

=-2nicm2 $ (p dg-g dp) =-i6 $ (p dgYg dp) . (11) 
C ( H )  

Let us proceed to the computation of ( (AH)  ') : 

(12) 
It is not difficult to verify that 

< (Ag)9T=2n~dg2 (At) ', 

lim ( (A~)')T + o. (13) 
At-o At 

Similarly, 

lim < (AP) ')T 
+ 0. 

At-o At 

Let us consider 

t + A t  1 A  t + i t  

>< ( t exp (i (a - y) tq ata) = \ da (pG (0) gE))T  
-A i 

x cGa exp {- iG (t" - t')] dt' dtn = em2 (po (0) go 

6=o-ok. (14) 

To compute K,, we must again average over T(H)  : 
- 

K,=D = lim 
< (AH) '> 

At-o At 
aH aH 

=Q$-- dt, Q=6kT/02. 
T(H) ap ag 

( 1 5 )  

The higher moments are computed in similar fashion. Only 
the terms containing 

do not vanish when averaged over the states of the heat bath, 
but they are small, since the interaction with the heat bath is 
weak, and ci 4 1. 

Thus, the nonstationary distribution function satisfies 
the diffusion equation 

The steady-state solution can be determined from the condi- 
tion 

Because of the absence of sources, it is natural to assume that 
S = O .  

H 
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where i = I in the region I, i = I1 in the region 11, and i = S 
in the region 111. But equation (16), like the expression 
found with exponential accuracy for F(H) ,  is valid in each of 
the regions of phase space, except the neighborhood of the 
separatrix, a region with a width of order -9. The probabil- 
ity of finding the oscillator in the state 2 is F(H2) = A  ,, , 
while the probability of finding it in the state 1 is 
P(H,) = A l .  

We require F(H)  to be continuous on the separatrix, 
whence we obtain the following relation between A , and A ,, : 

i.e., the ratio of the probabilities of finding the oscillator in 
the states 1 and 2 coincides with the result obtained in Ref. 4 
through integration along the trajectories. The oscillator can 
be found with overwhelming probability in either the state 
with the smaller oscillation amplitude, or the state with the 
greater amplitude. In each region of phase spaceP(H) attain 
its maximum value at H = H , ,,, . 

Using the results obtained in Ref. 4, we shall assume 
that 

b) for P > P o  1 7 1  ( H I )  CFII ( H z ) ,  @=@n : FI (Hi) =FII ( H z ) .  

Then we can expand ln Fin a series, and retain only the terms 
linear in AH in the vicinity of H, in the case a )  and in the 
vicinity ofH2 in the case b).  This will be useful in the compu- 
tation of the mean susceptibility of the oscillator. Since in the 
regions I and I1 different values of H correspond to different 
phase trajectories, F(H(p,g) ) can, up to the preexponential 
function, be regarded as the probability for finding the oscil- 
lator in the state with the given H, i.e., as a function of one 
variable H that uniquely defines the trajectory in phase 
space, with dF/dH > 0 when H = H,;  dF/dH < 0 when 
H = H2. 

52. ESTIMATE OF THE TIME REQUIRED TO ESTABLISH THE 
STATIONARY DISTRIBUTION 

The one-dimensional Fokker-Planck equation ( 16) ob- 
tained above can be transformed into the Schrodinger equa- 
tion with the aid of the substitution 

The equation for \y has the following form: 

where 

since Q4 1, V(H) ZK '9 2/40. 
An arbitrary state \y can be represented in the form 

where the Ai are the eigenvalues of Eq. (2 1 ) . To the zeroth 
eigenvalue 11, = 0 corresponds the stationary distribution. 
the characteristic time for the establishment of the station- 
ary distribution is T- 1/11,, whereil, is the smallest nonzero 
eigenvalue. 

For H corresponding to the region I1 ofphase space, Eq. 
(21 describes a particle with positive mass in the potential 
VII (H);  in the region I, a particle with negative mass in the 
potential VI (H) , or else a particle with a positive mass in the 
potential V, (H) witha replaced by --a. 

The expression for V(H) is not valid in the vicinity of 
H, , which has a width - 9.; therefore, we can replace V(H) 
approximately by a continuous function, since V(H) in the 
vicinity ofH, is determined by the matching conditions (see 
Fig. 2). In the case when allowance is made for the fluctu- 
ation-induced transitions, we can compute 11, with exponen- 
tial accuracy by considering the tunneling between the two 
minima in the semiclassical-in Q-approximation (see 
Ref. 9): 

The time required for the establishment of the station- 
ary distribution in all phase space is exponentially long: it is 
determined by the time characterizing the fluctuation-in- 
duced transitions between the various regions of phase 
space. 

53. RESPONSE OF THE OSCILLATOR TO A WEAK 
AUXlLLlARY FIELD 

Let us consider the response of the oscillator to a weak 
auxiliary field at a frequency w' near resonance: 

where w' - w 40. Let 

FIG. 2. Qualitative form of the 
potential V ( H ) :  V ,  (H, )  and 
V , ,  ( H z )  are the minima of the 
potential. The dashed curve de- 
picts the potential V ,  ( H )  for a 
particle with negative D ( H ) ,  
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where p,(H,t ) and g,(H,t ) are the unperturbed solutions to 
the abridged equations. 

It is convenient to go over to the dimensionless vari- 
ables 

z=(ylE)'"u, y=(y/E)'"v, 8=Hy/E2 ,  .c=Et, co=e0/f .  

(25) 
Then 

6 = s / E ,  Q = 6 ( K T y / e 2 a 2 ) ,  gl=tl/E. 
The slow-time equations assume the form 

or else 

where 

p"=z+iy, H=z-iy, 

Linearizing the equations in the vicinity ofj,(H, t ) ,  &(H, 
t ) ,  and averaging them over T(H), we obtain 

F' = B ( f f )  g' + C (a) p' + i ~ e i t ~ ,  
(27) 

i' = B* ( f f )  jj' + C* (a) g' - iije-i5'T. 

The expressions for B(B) and c(H) are given in the Appen- 
dix. 

The approximate equations describing the response of 
the system to a near-resonant external field that is a low- 
frequency field in the slow variables are valid up to terms - T(H) 4 ' < 1. Indeed, 

(28) 
Let us seek the solution in the form 

The response to the external field is given by the matrix 

whereA = I C I - IB I '. The coefficient of absorption of the 
weak auxiliary field has the following form: 

For H = {HI, Hz), the expression (3  1 ) coincides with the 
result obtained in Ref. 4. 

To find the r%spgnse of the system to the auxiliary field, 
we must average G(H),  which is given by the formula (30), 
the oscillator distribution function F(@: 

n I NIT 5 d f f ~ ( f f )  exP[- -$$ (-$)1:~] in the region I1 

We obtain explicit expressions for (G ) i fP=  yf '/g < 1. In 
that case 

On account of the exponential decrease of F(H), to deter- 
mine (G) ,  we only need to know c(H) and B(H) in the 
neighborhoods of k = El and Z=  H2. 

We can assume that ~ ( k )  is nonzero only in the region 
I if fl <Po, and only in the region I1 if P > Po. 

I f a <  1, then 

In the case of small deviations from the stable vibrational 
state in the region I1 we have for c(B) and B(&) the follow- 
ing expressions: 

C (a) =-6- i ( l+p '") ,  

B ( H )  = i [  ( l+pl")  - 4 ( R - B 2 ) p - " ' ] .  ( 3 6 )  

For P <PO 

EZd A1 exp (- - [ I  2ykT - ( 1  + 4~)"*]]in the region1 
F (8) = &"= 

AII sxp - - ( R  - f f , ) ]  in the region 11 
ykT (33) 
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where 6 = ykT/{  'a2. The susceptibility of the oscillator in 
this case has the same structure as the susceptibility of the 
harmonic oscillator, but because of the nonlinearity it is tem- 
perature-dependent. 

When P4 1, but P >Po, the oscillator is found with an 
overwhelming probability in the region 11. The response to 
the auxiliary field is given by the expression (30), where 

B=i[ (l+p'") -40g-"1, C=-6-i(l+p") , 

up to terms quadratic in 8. The mean absorption coefficient 
can be computed in exactly the same way. 

If 
Im C(H)-(IB12-62)'h<~'<Im C(R)+(lB12-92)", 

where 

a= B{+ (ykT/g2) [-1+2 (~i2-t~:) 1, i=l, 2 

depending on the value of 8 ,  then ( x )  <O, i.e., the weak 
auxiliary field can be enhanced because of the presence of the 
stronger field. 

The author expresses her deep gratitude to L. V. Kel- 
dysh for the formulation of the problem and for valuable 
comments in the course of the work, as well as to P. V. Elyu- 
tin for a useful discussion. 

APPENDIX 

The coefficients B(B) and c(R)  have the following 
form: 

d t = -  '(f p0a (8, T) d r ,  
0 T ( R )  

wherep,(2, T) and go(& T) are the solutions to the equa- 
tions with a given a. 

Then 

(A21 
Taking account of the fact that ~ ( 2 )  decreases exponential- 
ly as (H - %, I increases in the region I and (a - &( in- 
creases in the region 11, we can derive for (G ) up to terms 
quadratic in the temperature in the case when P<Bo the 
expression 

Similarly, forB>&, E ( a )  = 2 [a, + 6( - 1 + 22: 11. 
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