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The discrete cascade model of turbulence, obtained by reducing the Navier-Stokes equations, is 
used to obtain the dependence of the constant in the Kolmogorov-Obukhov "2/3 law" on the 
scale refinement coefficient. The range in which the constant is approximately universal is 
identified. 

1. INTRODUCTION Kraichnan,12 who obtained an estimate C, = 1.4 by using 
The energy properties of the local structure of fully de- the "almost-Markovian-Galilean-invariant" model of tur- 

veloped turbulent flow, based on the cascade mechanism of bulence and introducing in the theory an additional param- 
energy conversion, were statistically described by A. N. Kol- eter. It is apparently also possible to use a diagram tech- 
m o g o r o ~ ' ~ ~  in terms of a structure function nique. Kuz'min and PatashinskiTt3 obtained a solution for 

- the turbulence spectrum and for the numerical quantities 
Baa (r) =uaZ (r) =C$'rZi', involved, but only in the dissipative region of the wave 
va (r) =ua (x+r, t) -ua (x, t) , q<r< Lor ( 1) numbers. 

where u, is the component of the velocity vector u in the 
2. REDUCTION OF THE HYDRODYNAMICS EQUATIONS TO direction of the vector r, Lo is the transverse scale of the flow, CASCADE SYSTEMS 

11 = v3I4z- 'I4 is the internal turbulence scale, determined by 
the kinetic viscosity and by the average energy dissipation .F We begin with the Fourier expansion of the velocity 

per unit mass (the superior bar denotes statistical averag- field of an incompressible liquid (in a cube of side L and with 

ing). Confirming results were obtained by Obukhov3" by a periodic 

spectral approach. Equation ( 1 ) corresponds to a "5/3 law" 2n 
for the spectral density of the turbulence kinetic energy ~ ( ' 9  t )=  xeikxv ( ~ 9  t),  =- L (m, n, P ) ,  kv(k) =0, (4) 

E (k )  (k  is the wave number) (see Refs. 5 and 6): 

E (k) =Clef%-"3, L,-'<k<<q-'. (2) 
(; + vk' )vi(k) i f Aiji (k) Eu j (k , )v ,  (k-kl)=O, 

kt 

C and C, in Eqs. ( 1 ) and (2) are universal constants, with 

According to Kolmogorov, the constant C cannot be 
obtained solely from scaling consideration, and has been 
therefore determined, starting with Ref. 2, from experiment. 
The experimental values of C obtained in a large number of 
studies were summarized in a review article by Yaglom,' the 
gist being that almost all the measurements lead to results 
that do not differ greatly from Kolmogorov's very first esti- 
mate ( C z  1.5). According to present data, C z 2  with an 
error that is apparently less than 10-15%.6 

Since it follows from the well-known critical remark by 
Landau8 that the statistical properties of the energy-dissipa- 
tion field ~ ( x , t )  do not affect the probability distributions of 
the small-scale components of the turbulence, these distribu- 
tions should change somehow when the turbulent-flow char- 
acteristics are altered, i.e., they cannot be absolutely univer- 
sal (see Refs. 5 and 6). 

An attempt is made in the present paper to obtain the 
"2/3 law" together with the constant C it contains on the 
basis of a definite reduction of the Navier-Stokes equations 
to the discrete cascade system proposed by Obukhov for the 
description of cascade processes in advanced turbulence." ' 
Dealing with this subject, among others, is a paper by 

where m, n, andp are positive and negative integers, includ- 
ing zero. We single out in (5)  the region where the sum over 
the vectors k, satisfies the condition ( k  - k, 1 (k, k, 4 k. The 
contribution to the sum of (5) from this region is equal to 

The velocity vector v, depends little on k if k is large (in 
the inertial range), since the main contributions to (6) are 
those of the Fourier components v(k,) with small (contain- 
ing the bulk of the energy) wave numbers. With this taken 
into account, the substitution 

t 

transforms (5) into 

(: + vkz ) vi(k) + $ A,, (k) v,(k1) V ,  (k-kt) =o, (8)  
'=, 

where the primed summation sign means that the contribu- 
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tion of the specified summation region is excluded. The sub- 
stitution (7) means a change to a new coordinate frame, in 
which perturbations of a given scale are transported without 
substantial distortion at a velocity higher than the large- 
scale motions. We note that, as shown in Refs. 16 and 17, it is 
just such a transport that causes the divergences in the dia- 
grams of the formal perturbation theory for spectrum (2).  

Since the field is incompressible, we represent the Four- 
ier components V(k) as expansions in terms of two vectors 
e, (k)  and e,(k) that are perpendicular to each other and to 
the wave vector k: 

ea ( -k )  =-% (k) , a, (4) =-am ( k ) ,  a=l, 2- 

The kinetic energy per unit volume and the equations of mo- 
tion take then the form 

k-k,  
(%+vkz )a , (k )+  i z ' { T % ( k + k l )  ) 

kt 

x{e, ( k )  e ,  ( -k t )  ) a,(k+kt) a, (--kt) =O. (11) 

The primed sum in ( 11 ) means that summation over 
the region Ik + k,l (k is omitted. We divide the entire re- 
maining region of summation over k, into two regions with 
k, < k and k, > k. We expand in these regions in terms of k,/ 
k and k/k,, respectively. For the first factor in the sum of 
( 11) we have approximately at k, < k 

k-k, 
2 e , (k+ki)  

k ,  
% - -  

kl, d e ,  ( k )  + -- --- kl, 
2 2 ah., 

{lie, ( k )  } - - e,, ( k )  = -k,e, ( k )  , 
2 

where the orthogonality condition (9) is used. For k, > k, 
similarly, 

k-k, 
2 e, (k+k, )  %key ( k , )  . (13) 

From ( 1 1 )-( 13) we obtain approximate equations 
(which can be regarded as the zeroth terms of the corre- 
sponding perturbation-theory series) 

We subdivide the regions where the vectors k are local- 
ized and the summation regions k,  < k and k, > k into layers 
bounded by concentric spheres of radius pi =p,qi, where 

the ith layer contains the vectors for whichp, <k <pi + , . By 
virtue of the conservation of the integral E given by Eq. ( 10) 
by the system (14) (for v = O), the same layers correspond 
to partition of the total energy into a sum of the energies 
contained in the layers. We note that if the "5/3 law" (2)  is 
valid, the "2/3 law" holds for the energy E, of the ith layer: 

We next narrow down the regions where the vectors k 
are defined and the summation regions for each ith layer in 
( 14) to vectors located on concentric spheres of radius p i ,  
and leave on each sphere only six vectors k representing the 
directions of the coordinate axes in three-dimensional space. 
This narrowing relates the equations in question to the 
"shell" models which have been widely used recently, for 
example, to investigate the properties of MHD turbulence. '* 

We introduce the unit vectors S,=(1,0,0),  
S, = (0,1,0), S, = (0,0,1) . The chosen vectors on the 
sphere of radius pi are then 

The unit vectors el ( k i  ) and e,(ki ), m = 1, ..., 6, in Eqs. 
(9) and (14) can be defined in accordance with the follow- 
ing table: 

Using ( 16) and ( 17) to calculate the interaction coeffi- 
cients in ( 14), and also the conditions (9), we obtain equa- 
tionsfora, (%),a = 1,2,m = 1,2,3 (seeRefs. 14and 15). 
We write down the equations for the variation of a ,  (k', ) and 
a,(k{ ): 

DI 

-a; (k'-') ) + i p i  (a ,  (I;:*' ) a,. (k:" ) + C.C. ) = 0, 

-a,* (ki -r)  ) + i p i  z (a,  (k ,  i + r )  az' (k2i*r ) + C.C. ) = 0. 
,'= 1 

The index r takes into account here the contributions made 
to (18) by the sequence of spherical summation regions, 
k, =pi - , and k, =pi  + , , respectively. The equations for 
the functions with the remaining vectors k',, m = 2,3, are 
similar. 

We confine ourselves in ( 18) to the interactions of re- 
gions adjacent to the ith one, and consider the particular case 
of the system ( 18 ) when 

a, (k,') =aa (k,') =aa (kai )  = i q ,  a=l, 2. (19) 
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We obtain the following discrete nonlinear system for vi : 

For the specified number of vectors in the ith layer, the ener- 
gy in this layer is obviously 

The system (20) is equal, apart from a constant, to the 
Obukhov chain that is one of the branches of a multilevel 
nonlinear system that simulates the cascade mechanism of 
energy conversion in a turbulent stream: 

At fo = 0 andAi = 0 the system (22) possesses the fun- 
damental properties of the hydrodynamics equations: it is 
quadratically nonlinear, conserves the phase volume 
(dvi, j/dvi, = 0), and has a quadratic integral of motion 
E = Z V ; ~ / ~  (Ref. 19). Note that discrete (mesh) models 
have been extensively developed in connection with the 
study of nonlinear systems. We mention as examples the 
"Langmuir chain" 20 or the one-dimensional anharmonicity 
model ( Toda chain ) . 

In the reduction performed, we chose, in each of the 
spherical layers of summation over the wave numbers, the 
minimum possible number (for 3D space) of vectors. It  is of 
interest to consider how the equations obtained and the re- 
sults derived from them are changed if another distribution 
of the vectors in the layer is chosen, and in particular if the 
vectors are continuously distributed over the spheres 
IkI =Pi. 

We choose as the starting point in this case Eq. (8), 
which we rewrite, using approximations similar to ( 12) and 
(13), in the form 

($ + vk2) ~ , ( k )  -iAij (n) A,, (k) V, (k) +iAij  (n) k,B,i(k)=O, 

~ , , ( k )  =z V, (k,) Vj(-k,), n=k/k. 

Note that in (23) A,, ( k )  and Bu (k)  depend only on the 
modulus k of the vector k. This enables us to solve (23 ) in 
the form 

V, (k) --Aij (n) n.F,j (k) . (24) 

For F,. (k) we have the equation 

We represent the solution of (25) as a series in powers 
of the products eao of the direction cosines of the vector n: 
&a8 = n, no, 19 1. The last sum in (25) is then the term 
of lowest order. The zeroth approximation of the perturba- 
tion theory series for 

F,j(k) =ix.," (k) +[n,,n,p,j!~~a,(k) +i~;,'' (k) ]+ . . . 
depends then only on the modulus k of the vector k and 
satisfies the equation 

The quantity Sj,, ,, can be calculated for the specified dis- 
tribution of the vectors n. For a continuous distribution on 
the sphere In1 = 1 we have 

Equations (26) have particular solutions 

X,;(k) =6,k(ki,  'si=t2=c5, b=O, (27) 

obtained with allowance for the fact that the tensor Aij (n) is 
solenoidal. Transforming from (26) and (27) to the discrete 
system, we have 

where Ei is the energy of the ith level of the continuous dis- 
tribution of the wave vectors on a sphere of radiusp, . Using 
the variables f i  = (2r/15)Ci we reduce (28) to the form 
(20): 

The energy of the ith layer is 

and differs from (21 ) by the near-unit factor ( 5 / 2 ~ ) .  The 
results that follow from the two systems obtained are further 
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compared in the next section. Note that a reduction, differ- 
ent from ours, of the Navier-Stokes equations to discrete 
chains was carried out also in Ref. 2 1. 

3. EQUILIBRIUM REGIME OF CASCADE SYSTEM AND 
ESTIMATE OF THE CONSTANT IN THE "2/3 L A W  

We consider the system (20), (21 ) in the inertial range, 
for which we neglect the viscous terms, pi - , lqi - I % vpf. 
For the change of the energy Ei of the ith level we have from 
(20) 

where the first term in the right-hand side represents the 
inflow of energy to the ith level, and the second the outflow. 
Under stationary conditions the energy flux over the spec- 
trum is& = 24pi qi  q:+ I = const, so that the ensuing station- 
ary distribution of the amplitudes takes the form9-" 

The energy Ei of the ith level is then, according to (2 1 ) 

Comparing (32) with ( 15) we find that the stationary 
solution (31) of the system (20) corresponds to the Kolo- 
gorov-Obukhov law ( I ) ,  (2)  and the constant C, in (15) is 
expressed in terms of the scale-refinement coefficient q: 

The function C, ( q) (see Fig. 1 ) has at q, = (5/ 
2I3l2z3.95 a minimum equal to Cm = (5/3) ( 5 /  
6)'13 z 1.476. At values of q in a large vicinity of this mini- 
mum (from 2.2 to lo), the function C, ( q) varies very little, 
by less than 15% of Cm . The experimentally obtained Kol- 
mogorov constant C = 2 compares with C, z 1.52, and ac- 
cording to (33) the corresponding values of q are approxi- 
mately q, = 8'12 and = 5.8. The first of these values is 
critical for the stability of solution (31) of the chain (20), in 
which Ai =vp;=O at i<n ,  An = p a - ,  (q1j-,/q:)qn, 
qn + I = 0 (chain with quadratic fri~tion)'~: at q>ql the so- 
lution becomes  table.'^ 

The constant in the Kolmogorov-Obukhov law, ex- 
pressed in terms of the scale-refinement coefficient q, is a 
function that varies little when q is varied in a wide range (in 
this sense it can be regarded as a universal constant), and the 
corresponding values are close to the available experimental 
data. Note that the refinement coefficient q, which is the 
factor by which the characteristic sizes of the perturbations 
of successive levels vary, can take on values from 2-2.2 to - 10 in the interval in which Cis  universal. It can therefore 

FIG. 1. 

be assumed that a cascade processes with a large number of 
levels is realized in flows with very differing perturbation 
sales, such as geophysical flows. 

We note in conclusion that when the model (29), (30) 
is used the value of C, differs from (33) by a factor (5/ 
2~)"~--,0.93, i.e., the results obtained with the aid of the 
two approaches described above are close to one another. 

The author thanks A. M. Obukhov for posing the prob- 
lem, and V. I. Tatarskii, V. M. Ponomarov, F. V. Dolz- 
hanskii, and V. M. Gryanik for a discussion of the results. 
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