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We consider parametric transformation of intense electromagnetic radiation that causes 
quantum transitions of the electrons of a semiconductor between the edge of the valence band 
and the edge of the conduction band. The Bogolyubov-Bogolyubov (Jr.) method of excluding 
boson variables and the asymptotic Krylov-Bogolyubov-Mitropol'skii asymptotic averaging 
method are used to derive the kinetic equations for the distribution functions of the excitations 
produced by the external radiation in the electron-hole and photon subsystems. These 
equations are used to investigate the dependence of the semiconductor recombination- 
radiation power density on the frequency of the emitted photons and on the temperature. It is 
shown that the frequency dependence can be resonant; the number of resonance singularities 
and their positions are determined by the polarization of the exciting electromagnetic field. 
The results are the consequence of a radical restructuring of the carrier energy spectrum in the 
external intense electromagnetic-radiation field. 

1. INTRODUCTION 

The physical properties of quantum systems acted upon 
by intense laser radiation have attracted much attention in 
the last few years. Among the main peculiarities of laser ac- 
tion are the deformation and restructuring the carrier energy 
spectrum by virtual absorption and emission of laser pho- 
tons. The most considerable spectrum distortions occur in 
various resonance situations, e.g., in cyclotron resonance,"* 
when semiconductors are subjected to electromagnetic radi- 
ation of frequency close to the band gap3-' or to the energy 
gap between two conduction bands."nder resonance con- 
ditions, even a relatively weak interaction is capable of radi- 
cally altering the carrier energy spectrum and of exerting a 
substantial influence on the properties of the system as a 
whole. 

In some cases the character of the energy-spectrum res- 
tructuring depends on the type of laser-field polarization, 
this being due to a manifestation of the spin properties of the 
electron sub~ystem.'.~ This circumstance permits control of 
the physical characteristics of quantum systems by varying 
the type of the laser-radiation polarization. Such a variation 
is relatively easily effected in a real experiment. The study of 
the polarization dependences of physical phenomena that 
occur in the presence of resonant laser radiation of high in- 
tensity is therefore of considerable interest. 

In the present paper we investigate theoretically the re- 
combination radiation spectrum of a semiconductor in an 
external field produced by strong laser radiation of arbitrary 
polarization, described classically with the aid of the poten- 
tial 

A,,( (r, t )  =a[cos(coot-k,r), G sin ( o , t - k , r ) ,  01, (1)  

where a = const > 0 is the amplitude of the potential, w,, and 
k, = (o,o,~,,E'/'/c) are the frequency and the wave vector of 
the laser wave (E is the dielectric constant of the medium and 
c is the speed of light in vacuum). The parameter G deter- 

mines the type of external-field polarization: the field is ellip- 
tically dextropolarized at 0 < G < 1 and elliptically levopo- 
larized at - 1 < G < 0; the values G = 0 and G = + 1 
pertain to linear and circular polarization. We consider the 
case of parametric resonance, when the external-field fre- 
quency is connected with the semiconductor band gap E, by 
the equation" 

Laser radiation is taken to be strong if the condition3 

is met, where fl is the frequency of the electron transitions 
between the edges of the valence and conduction bands un- 
der the influence of the external field; w, is the frequency of 
the carrier collisions with one another, as well as with phon- 
ons and impurity atoms; rR is the electron and hole radia- 
tive-recombination time. In our problem we have (in the 
customary units) 

where e,, and m are the absolute value of the charge and the 
effective mass of the electron (hole), and En is the amplitude 
of the electric component of the laser field. For typical semi- 
conductor parameters (E, = 1, m =O.lme) and for 
/E,I - lo5 W/cm, p reaches values of the order of lo-'. 

To calculate the rate of photon generation per unit 
semiconductor volume it is convenient to use the Bogolyu- 
bov-Bogolyubov (Jr) (B-B) method of excluding the boson 
 amplitude^.^'^ The use of the Furry representation9*" makes 
it possible to take into account the interaction of electrons or 
holes with the classical external field (1) even during the 
initial stage of the calculations. 

According to the results, the recombination-radiation 
spectrum has resonant singularities and depends substan- 
tially on the type of exciting-field polarization. The emis- 

369 Sov. Phys. JETP 64 (2), August 1986 0038-5646/86/080369-07$04.00 @ 1987 American Institute of Physics 369 



sion-spectrum singularities are attributed to the complicated 
structure of the quasienergy spectrum of the electron-hole 
excitations induced in the semiconductor by the strong field 
(1  ). 

2. KINETIC EQUATION 

Consider a semiconductor electron-hole subsystem S 
interacting with quantized photon and phonon fields C,  and 
C2, respectively, and also with the time-dependent classical 
external field ( 1 ) . The Hamiltonians of the free electron- 
hole, photon, and phonon fields are of the form (a = 1,2; 
w,,: are the eigenfrequencies of the phonon field) 

'b 

H ( S )  = e p  (apo+ap.f bp.+bp0),  e p  = %( 1 + 
PO 

2 
1 5 )  

Here a,, (a,+, ) and b,, ( b  ,+, ) are the operators of annihila- 
tion (creation) of an electron and a hole in a state with quan- 
tum numbers (p,a);  they satisfy anticommutation relations 
of the type 

+ c,,,, (c,,,~ ) is a photon (at  a = 1 ) or phonon (a t  a = 2)  anni- 
hilation (creation) operator satisfying the commutation re- 
lations 

The summation with respect to p and k is over the usual 
quasidiscrete spectrum. The parameter A ,  = 1,2 determines 
the polarization of the photons of field C , ,  while the param- 
eterll, indicates the number of the phonon mode; a = + 1 is 
the spin index. The symbols S ,  C,,  and C, stand here and 
elsewhere for operators acting on the wave functions of the 
system as functions of the aggregate of occupation numbers 
of the corresponding fields. 

Denoting by He,, (t,S) the operator of electron and hole 
interaction with the external field ( 1 ), we express the Ham- 
iltonian of the system (S,Zl,Z2) in the Schrodinger repre- 
sentation of the dynamic quantities in the form 

H = H  ( t ,  S ,  XI, X z )  = H  (S )  + ( t ,  S )  

where J,,,, (S) are certain operator expressions bilinear in 
the electron and hole creation and annihilation operators. 
We assume henceforth that in the infinitely remote past 
there was not external field (He,, (t,S) --0 and t- - co ) 
and the system as a whole was in thermodynamic equilibri- 
um with the heat bath. 

We introduce the statistical operator D, of the system 
(S,Z ,,Z,), which satisfies the Liouville equation 

with the initial condition (to- - a ;  P =  l / k B  T, k ,  is the 
Boltzmann constant and Tis  the absolute temperature of the 
heat bath) 

We represent the formal solution of the Liouville equation in 
the form 

Dt=U( t ,  to) Dt,,U-' ( t ,  to),  ( 9 )  

where U(t,t,,) = U(t,t,,S,Z ,,Z2) is a unitary operator de- 
fined by the equation 

The mean value of an arbitrary dynamic quantity de- 
fined in the Schrodinger representation by the operator 
u (t,S,Z,,Z2) is 

Substituting ( 9 )  in ( 10) we get 

Equations (9)-(12) effect a transition to the Heisenberg 
representation, which coincides at t = to with the Schro- 
dinger representation. 

Whereas a dynamic quantity in the Schrodinger repre- 
sentation is defined by an operator u (S,Z, ,Z,) that does not 
depend explicitly on the time, the operator of this quantity in 
the Heisenberg representation obeys the equation of motion 

Choosing as the operator of the dynamic quantity 
u (S,Z , ,Z,) the photon-number operator N,,, = c&, c,, of 
a quantized electromagnetic field in a state with quantum 
numbers (k ,  A ,  ), we get 

We use the B-B method7.' to exclude the photon amplitudes 
from the right-hand side of (13).  To this end we write the 
Heisenberg equations of motion in the integral form 

Here 
( 1 )  

ckA, ( t )  =Uo- ' ( t ,  t o )  ck,*,Uo(t, t o )  =ck,, e x p [ - i o * ~ , ( t - t o )  1, 
( I ) +  (15 )  

ckA, ( t )  =,yo-' ( t ,  t o )  c * : , ~ ,  ( t ,  t o )  =c*:, exp[iokL,(t-to) I 
are the photon annihilation and creation operators in the 
interaction representation. The transition of this operator is 
with the aid of the unitary transformation operator 
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BkA, ( t )  = J d~ exp[-imkk,(t-~) I J:, ( ~ ~ 1 ,  
1. 

t 

We denote by N,$:' the Planck distribution functions of the 
equilibrium photons and phonons (a = 1,2): 

Substituting ( 14) in ( 13) ,  we use relations of the type 

and the equations 

( t )  , Irr, (St)  1 -=i[Bkkr ( t )  (St)  1 - 1  

( 1 )  + ( 2 0 )  
[c,,, ( t ) ,  Irk, ( S t )  l - = - - i [ ~ ; ,  ( t ) ,  Jrr ,  (S t )  I-, 

and obtain the following exact equation 
I 

a(Nm,)t 
-= j d* I ? ~ p [ - i ~ k A , ( t ~ * )  ]sp{#,Zf,Zs) { j k A ,  

at 
fo 

Identities of the type ( 19) follow from the spectral rep- 
resentations of the temporal correlation functions. Equa- 
tions ( 2 0 )  are the consequence of commutation of the opera- 
tors c,, ( t )  and J,, ( S ,  ), taken at the same instant of time. 

We calculate the right-hand side of the obtained kinetic 
equation in the Furry representati~n.~. '~ To this end we 
write the operator U(t, to)  in the multiplicative form 

U ( t ,  to)=Uo(t, to) Ui ( t ,  to) Uz(t ,  to), 

U*(to, to)=Uz(to, to) =l. ( 2 2 )  

The unitary operators Ul( t , to)  and U,(t,to) are defined by 
the equations 

idU1 ( t ,  to)/dt=Hext(t, st'" ) Ui ( 4  to), 

au2 (t,  to)  
( 2 3 )  

i 
at 

in which ' 

Hezt ( t ,  S t ( ' ) )  =Uo-' ( t ,  tO)Next ( t ,  S )  U ,  ( t ,  to j ( 2 4 )  

is the Hamiltonian of the semiconductor electron and hole 
interactions with the classical external field ( 1 ) in the inter- 
action representation, and 

(1) 
J ~ ~ ,  ( S ip )  ) zU1-l ( t ,  to) J L A ~  (St ) Ul ( 4  to) 
=ul-' ( t ,  t o )  U0-' ( t ,  to)  l k I a  (S) UO ( t ,  tO) Ul ( t l  ( 25 ) 

is an operator in the Furry representation. The connection 
between the operators of an arbitrary dynamic quanity u in 
different representation is given by the equations 

u ( t ,  St, Zit, 221) = U2-' ( t ,  to) u ( t ,  s,'*), xl(f), x 2 ( r J . )  U2 ( t ,  to) 

=us-' ( t ,  t o )  U1-l (t, to) u ( t ,  s:'), X I ( : )  , ~ z ( : )  ) Ul ( t ,  ' 2  ( t l  9 

( 2 6 )  

~ ( t ,  sI(I), z I : I ' ,  z2I1)) =Uo-l ( t ,  to) u ( t ,  S ,  21,Z2) Uo(t, to). 

For operators acting only on I;-field operators, the Furry 
representation coincides with the interaction representation 
u ( t , x ; f  ,z:f') = u(t ,x~: ' ,Z$: ') .  If the operator of the dy- 
namic quantity u in the Schrodinger representation does not 
depend explicitly on the time, in the Furry representation it 
obeys the equation of motion 

+H,=. ( t .  s:") ) + H (Z) ] - . ( 2 7 )  
a-1,2 

The system statistical operator D IF' in the Furry representa- 
tion is defined by the equations 

Dl=Uo ( 4  to) Ul ( t ,  to)Dt'P'Ul-l ( t ,  t o )  Up-l ( t ,  to)  

=Uo ( t ,  t o )  Dt('iU,-i ( t ,  t o ) ,  
(28) 

Dt'"'=Ul ( t ,  to) Uz ( t ,  to) Dt,U2-' ( t ,  t o )  Us-' ( t ,  to) 

and satisfies the Liouville equation 

The explicit form of the operators Ha, ( t , S )  and 
JMa ( S )  depends on the specific choice of the semiconductor 
model. The analysis that follows is based on the use of a very 
simple model defined by the equation1'-l3 

{iynd/dt+sy [ idldr-eoA (r ,  t )  l~--e,A,,~ (r ,  t )  / c ]  

+ RQ, (r ,  t )  -ms2) Y (r ,  t )  =O. ( 3 0 )  

Here Y, A, and @ are respectively the operators of the elec- 
tron-hole, photon, and phonon fields in the Heisenberg rep- 
resentation; yp are Dirac matrices ( p  = 0,  1 ,  2, 3 ) ;  R is a 
certain matrix that depends on the constants of the interac- 
tion of the phonons with the electrons and holes. Equation 
( 3 0 )  describes the dynamics of the carriers of a semiconduc- 
tor consisting of two isotropic and orbitally nondegenerate 
bands with extrema at one and the same quasimomentum 
space of the electron. 

We present the operators Hex, ( t , S )  and J M ,  (5') direct- 
ly in the interaction representation. Within the framework 
of the chosen semiconductor model we have 
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where e,, is the polarization vector of the photons of field 
21, 

j(') (r, t )  =-eos:Y ( I ) +  (r, t )  yoyY ('I ( r ,  t )  : ( 3 3 )  

is the electric-current density operator constructed with the 
aid of the electron-hole field operator P") ( r , t ) .  The latter 
obeys the equation ( 3 0 )  of the two-band model for free elec- 
trons and holes, and can be represented by the expansion 

'4"') (r, t )  = (z) 'la [a&::') (r, t )  + b ~ - a q : ~ l )  (r, t )  1.  
Pa 

The bispinor functions q, ' ) ( r , t )  satisfying Eq. ( 3 0 )  at 
A(r, t )  r O ,  A,, ( r , t )  ~ O a n d  9 ( r , t )  =0, are given in Refs. 14 
and 15. 

In the Furry representation the operator J,, takes the 
form 

lk*, (sjP) 

and the electron-hole operator in the Furry representation 
obeys Eq. ( 3 0 )  with A(r, t )  =0, @(r , t )  E O  and can be ob- 
tained from ( 3 4 )  by formal replacement of the carrier wave 
functions q, ( r , t )  by the wave functions rG,: ( r , t ) ,  that 
describe the behavior of the electrons and holes in the classi- 
cal external field ( 1 )  and satisfy the asymptotic condition 

9:" (r, t )  +&') (r, t )  as t+-OO 

Thus, 

( 3 6 )  
The presence in ( 3 5 )  of a term containing the classical cur- 
rent density 

is due to the redistribution of the charges in the Dirac "vacu- 
um sea" by the external field ( 1 ) . l6  

After substituting ( 3 6 )  in ( 3 5 )  and introducing the no- 
tation ( j, j ,  = + 1 ) 

it is convenient to rewrite the operator J,, (SI") in the 

form 

The wave functions $:: ( r , t )  will henceforth be re- 
placed by the approximate functions obtained in Refs. 14 
and 15 by the Krylov-Bogolyubov-Mitropol'skii asymptotic 
averaging method." For simplicity we shall neglect the 
wave vectors k and 16. 

We return now to Eq. ( 2  1 ). Its form in the Furry repre- 
sentation is 

where 

We seek an expansion of the right-hand side of (40) in pow- 
ers of the interactions of the subsystem S with the boson 
fields 2, and 2,. Assuming these interactions to be weak, we 
retain in this expansion only the leading terms. Since the 
operator J,= ( S )  is itself of first order in the interaction, it 
suffices to retain in the expansion of the operator U, ( t , ~ )  the 
zeroth-order terms, so as to obtain the expansion of the 
right-hand side of ( 4 0 )  accurate in terms of second order of 
smallness, inclusive: U, ( t , ~ )  1. Putting J L2l ( t , ~ )  
z J,, ( S  : F ) )  in ( 4 0 )  and introducing the reduced statistical 
operator 

we get 

Upon substitution of ( 3 9 )  in ( 4 1 ) ,  the right-hand side 
of the latter is expressed in terms of the mean values of the 
products of four Fermi operators. Let us calculate these 
mean values, pairing the operators in accordance with the 
Bloch-de Dominicis theorem.18 As a result we get a kinetic 
equation containing only single-particle distribution func- 
tions of the electron-hole excitations 

We can derive for these, in turn, kinetic equations of type 
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( 4 1 )  by using the method developed in Refs. 7  and 8. The 
interactions of the electron-hole subsystem with the fields 2, 
and 2, make in the lowest order an additive contribution to 
the collision integrals of these equations, while the collision 
integrals themselves depend on the Planck distribution func- 
tions ( 18) of the equilibrium photons and phonons. 

In the next higher approximation we omit from the 
right-hand sides of the kinetic equations for the functions 
f b:', f and (N,, ), the rapidly oscillating terms, in ac- 
cord with the averaging method of Ref. 17, and retain thus 
only the secular terms. Being interested in the electron-hole 
subsystem state that interacts with the external field ( 1 ), a 
state resulting form the relaxation, we seek stationary solu- 
tions of the kinetic equations for the functions ( 4 2 ) .  If the 
conditions 

are met, we can neglect in the right-hand sides of these equa- 
tions the interactions of the electrons and holes with the 
quantized electromagnetic field 2, (Refs. 3 and 19). The 
solutions sought are then the Fermi distribution functions 
defined by the expression 

in which 

Ep,=uo (l+hp, sign 6,)/2, h,,= ( 6 p 2 + p , ~ ' J ,  
(45 

6 p = 2 ~ p / ( ~ O - l ,  pa=p ( l+oG) 12. 

Using ( 4 4 ) ,  we get ultimately 

a ( N , , , > ,  eo2s' 
-=- & dl) ( I ( ~kh , )  z 1 ' ~ o , - o > I  

at 2uk~3&"~,=*,  

x v,2,,vpo26 ( E ~ ~ S E ~ ~ , + - O ~ ~ . , - ~ ~ ~ )  1. ( 4 6 )  

Here 

Up,=['/, ( I +  16p11Xp,) ]'!',V,,=sign 6p[1/2(1-i /Apo) libr ( 4 7 )  
('J) 

ekh, = (ekh , ) l+ i~( rk i . )  u. 

3. RECOMBINATION-RADIATION SPECTRUM 

Equations ( 4 6 )  allows us to investigate the recombina- 
tion-radiation spectrum of a semiconductor the an external 
field ( 1 ) .  The right-hand side of ( 4 6 )  difers from zero if 
w ,  ~ w , , ,  =a,. Therefore at temperatures that are not too 
high, when k ,  T<w,,, we can omit from this side the terms 
proportional to the equilibrium-photon distribution func- 

tion N$' ,  and confine ourselves thus to consideration of 
spontaneous emission. 

The energy radiated in the frequency interval ( w , ,  
w ,  + dm, )  by a unit semiconductor volume per unit time is 
equal to W ( w  , )dw ,, where 

According to ( 4 6 ) ,  the function W ( w ,  ) can be represented 
as a sum of two terms: W ( w , )  = W,, ( a , )  + W, ( 0 , ) .  We 
shall investigate below their behavior at temperatures 
k* T < w , .  

If the electromagnetic wave ( 1 ) is elliptically polarized, 
we have W , ,  ( w , )  = 0 in the regions w, -pw, ( l  - IG I ) /  
2 < w ,  <w, ,andw,<w,  < w , + p w , ( l  - I G ) ) / 2 .  At thefre- 
quenciesw,,w, f pa,,( 1 - IG / ) /2andw, +pw,(  1 + / G  I ) /  
2  the wave has resonance singularities. If the inequality 
A  < p a ,  holds, the resonant frequencies 
w, - pw,( 1 f  I G  1 ) / 2  are located in the band gap of a semi- 
conductor not acted upon by the electromagnetic wave. The 
resonance singularities of the function W , ,  (a ,  ) , which are 
present at the frequencies w , + p w , ( l  - / G / ) / 2  and 
w, + pun( 1 + I G  / ) / 2  in the case of linear polarization, 
merge. For circular polarization of the external field, reson- 
ances exist only at the frequencies w ,  and w ,  f p w , ,  and 
there is no radiation at all in the region w, - pw, < w ,  < E ~ .  

The quantity W , ,  ( a , )  is responsible for emission of 
phonons whose polarization vector e,, lies in the xy plane 
that is perpendicular to the propagation direction of the elec- 
tromagnetic wave ( 1 ). If the vector e,, is perpendicular to 
the xy plane, the spectrum of the radiation in the vicinity of 
the external-field frequency is described by the function 
W, ( 0 ,  ) . In the case of elliptic polarization this function is 
zero at w , = o , ,  0 , -pw , /2<wI<w, -pw , lG1 /2 ,  
w, + pw,l G  1/2 < w ,  < w, + pw,/2, and has at 
w ,  = w, f pwo/2, w,  _+ pw,lG 1/2, resonance singularities. 
For linear polarization, the function W, (a , )  has only three 
resonance peaks at the frequencies w, and w, pw,/2, sepa- 
rated by regions in which there is no radiation at all. For 
circular polarization, the spectrum of the radiation with 
(e,,, ), = (e,,, ), = 0 is described by a smooth curve that 
has no resonance singularities whatever, with W, ( w , )  = 0 
when w , < w , - A / 2 - [ ( A / 2 ) 2 + ( p o , / 2 ) 2 ] " 2  and 
wO<w, g o ,  - A/2 + [ ( A / 2 ) 2  + (pw,/2)21 ' I 2 .  

Thus, in the vicinity of the external-field frequency the 

FIG. 1. Recombination-radiation spectrum of a semiconductor at 
O < J G I < 1 / 2 ;  w j + ' = w , , k p w , , ( G 1 / 2 ,  w:"=w, ,pw, ( l  - J G 1 ) / 2 ,  
w j + ' = o ( , k p w ( , / 2 , w : " = w O f  p o , , ( l +  IG1, /2 .  
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4. CONCLUSION 

, band E g) goes to the valence band E it); 2) atj(  (p  / - p I ) < 0 
an electron from the one-photon replica E k '  + w, of the 
valence band E goes to a one-photon replica E :',' - w, of 
the conduction band E E. The suppression of the emission 

I 
A 

at the frequencies w , = wo + pw,( 1 + aG)  /2, w, + pw,/2 
at T-0 is due to the fact that the subbands A b') from which 
the electron transitions stem are populated only at finite 
temperatures. The subbands A 2' to which the electron goes 

1 g>++, -P. E*-, 0 p,=im~rf i / ,  E ' = J - ~  // 6 over at finite temperatures are only partially occupied. 

spectrum of the spontaneous recombination radiation of a 
semiconductor can contain, generally speaking, nine reso- 
nance peaks whose positions and heights are determined by 
the type of polarization of the electromagnetic wave (Fig. 
1 ) . The radiation intensity at the frequencies 
w, < w,, - pw,jG (/2 increases with lowering of the absolute 
temperature, while at the frequencies w, >w, - pw,lG 1/2 it 
decreases also as T-0 and vanishes at zero. If the electro- 
magnetic wave is linearly polarized, the foregoing results go 
over into the results of Ref. 20, which were confirmed experi- 
mentally in Ref. 2 1. 

We examine now the quantum processes responsible for 
the presence of the foregoing singularities in the semicon- 
ductor emission spectrum. To this end we turn to the pic- 
ture, obtained in Ref. 5, of the quasienergy spectrum of an 
electron in the external field ( 1 ) (Fig. 2). We recognize here 
that according to (44) the subbands A F' and B b'' are com- 
pletely occupied, while the subbands A b'' and A P) are com- 
pletely empty (see Ref. 3 ) .  The latter are populated when 
the temperature is raised. We assume for the sake of argu- 
ment O<G< 1. 

Emission of photons of frequency 
w,=w,,+jpw,(l +aG)/2 ( j=  _f 1 , a =  _ + I )  isdue to 
two types of quantum transition of an electron: 1) at 
j( ( p 1 - p ,  ) > 0 an electron crosses over from the conduction 
bandE:',' intothevalencebandE:?,; 2) atj(Ip1 - p , )  <O 
an electron from the one-photon replica E + w, of the 
valence band E :I, crosses over to the one-photon replica 
E E) - wO of the conduction band E :T). The radiation in the 
propagation direction of the laser wave is circularly dextro- 
polarized at frequencies w , = wo + jpwo( 1 - G)/2 and is el- 
liptically levopolarized at frequencies 
a, = w, + jpw,( 1 + G)/2. This result is due to helicity con- 
servation in this system. Emission of photons of frequency 
w, = w, + jpw,/2 is also due to two types of quantum transi- 
tion: 1 ) at j( I p/  - p ,  ) > 0 an electron from the conduction 

! \,'-----\ 

4 

The presence of resonance radiation peaks is due to the 
appearance of Van Hove singularities in the electron energy 
spectrum at / p /  = p ,  (Ref. 23). The divergence of the radi- 
ation intensity at the resonance frequencies can be eliminat- 
ed by taking into account the dissipative processes, for exam- 
ple the transfer of the energy of the excited electrons to the 
phonon subsystem. Allowance for electron-phonon interac- 
tion causes the electronic states to acquire a finite half-width 
r, and the singular functions S(x)  in (46) to be replaced by 
r/n-(r2 + x2).  AS a result, the height of the resonant-radi- 
ation peaks is found to be finite." For standard values of the 
semiconductor parameters ( E ~  = 1 eV, m = 0. lm,, E = 16, 
r = 10" S - I )  and at (Eo( - lo5 V/cm and k, T-pa, the 
value of W at the resonance points (w , #a,) reaches values 
on the order of lo2 erg/cm3. 

The estimate presented is valid if the following inequal- 
ities holdI9 

?+I ,v, Two types of quantum transition are responsible for the 
<\O'fLJ emission at the frequencies w, = w, + ( 1/ 

[,-I - ~ ' 7  2)apw"G sign( lpl - p , )  (a = + 1): 1) an electron from 

In the opposite case we must allow in the calculation for the 
finite wavelengths of the radiation incident on the semicon- 
ductor and of the outgoing radiation.24 This allowance leads 
to additional anisotropy of the radiated electromagnetic en- 
ergy. The optimal, from the experimental standpoint, is ob- 
servation of radiation propagating in the same direction as 
the exciting strong laser field. 

the conduction band E E goes over to a one-photon replica 
EE', - w, of the conduction band Ef!, 2) an electron 

A'") from the one-photon replica E fi) + w, of the valence band 
6 E fi) goes to the valence band E r',. Finally, the radiation of 

FIG. 2. Quasienergy spectrum of an electron in the field of a resonant frequency w, = w0 is due to the transitions E:','-E~) - 
electromagnetic wave at 0 < G < 1 .  The solid lines show the valence band and E + w,+E fi). These processes Compton 
Eh:;' = - E, , and the conduction band E:',' = E,,; the dashed lines 
show the single-photon replicas of these bands. scattering of electrons by a resonant electromagnetic wave 

(see, e.g., Ref. 22). 
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