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Measurements of the magnetic-field and temperature derivatives of the magnetization are used 
to determine the H-T diagram and to elucidate the nature of the change in the nonlinear 
magnetic susceptibility in iron-nickel-chromium and iron-nickel-manganese spin glasses. The 
results of the nonlinear-susceptibility study point to the existence of a phase transition to a 
"spin glass" state. The magnetic properties of Fe-Ni-Cr(Mn) spin glasses are compared with 
the theoretical predictions. 

1. INTRODUCTION 

Interest in the spin-glass state continues unabated. The 
primary reason for this is that the ergodic hypothesis, which 
is fundamental to statistical mechanics, may not apply to the 
description of this state.'.' The absence of ergodicity has 
been demonstrated for spin-glass models with an infinite- 
range exchange intera~t ion.~ The presence of a large number 
of equivalent energy minima (valleys) separated by infinite 
barriers (hills) in the Sherrington-Kirkpatrick spin glass3 
comes about because the minimum number of frustrated 
bonds in a system with an interaction of alternating sign can 
be reached in many different ways.4 Computer modeling of a 
spin glass with a short-range exchange interaction5 also 
points to the existence of an energy relief in the form of hills 
and valleys6 (but the barriers between the valleys, although 
they can be very large, are finite). If the energy barriers 
between the valleys are infinite, then an averaging over all 
possible thermodynamic states (valleys) is not equivalent to 
an averaging over time (having entered a valley, the system 
remains in it for an infinite time), i.e., the ergodic principle is 
violated. When the energy barriers between the valleys are 
very high, but finite, a quasinonergodicity arises-the sys- 
tem can sample all the valleys only over enormous observa- 
tion times. 

The theory incorporating the presence of random de- 
generate states is very complex and has been adequately de- 
veloped only for a model with an infinite-range interaction3 
(for which the mean field approximation is exact). Both 
~ t a t i c ~ - ~  and dynarni~ '~."  versions of the theory of a spin 
glass with an infinite-range interaction have been proposed, 
generally yielding the same results. Analytical expressions 
are obtained7-" only near the upper existence boundary of 
the spin-glass phase on the H - T  diagram (the de Almeida- 
Thouless line12). In recent years attempts have been made to 
go beyond the mean field approximation and develop a the- 
ory for a spin glass with a finite interaction range (see, e.g., 
Refs. 13-1 5).  

The subject of the present paper is a comparison of the 
magnetic properties of the disordered fcc alloys 
Fe65Ni20Cr15, Fe70Ni20Cr10, and Fe,,Ni,,Mn,, with the pre- 
dictions of the theory of spin glasses. These alloys have no 

long-range orderl6.I7 and exhibit all the characteristic prop- 
erties of spin glasses as low temperatures: 

a )  a sharp maximum (cusp) on the linear magnetic sus- 
ceptibility at a certain temperature Tf; this feature is sup- 
pressed by a relatively weak (of the order of lo3-lo4 A/m) 
magnetic fieldI7-'O; 

b )  irreversible magnetic behavior below the freezing 
point Tf: a large magnetic aftereffect and an increase in the 
coercive force and remanent magnetization on cooling be- 
low Tf (Refs. 16, 18,21, 22); 

C)  a magnetic contribution to the specific heat that is 
linear in the temperature for T 5  Tf (Refs. 20, 23); 

d )  a negative magnetoresistance at low  temperature^.'^ 
Other fcc alloys of the Fe-Ni-Cr and Fe-Ni-Mn sys- 

tems have also been found to have physical properties simi- 
lar to those of "classical" (RKKY) spin glasses (see, e.g., 
Refs. 25,26). However, the similarity may be purely superfi- 
cial. A more detailed comparison with the conclusion of the 
present-day theory of spin glasses (Refs. 7-15, 27-30) is 
needed. In particular, no one has considered the question of 
whether there is a paramagnetic-to-spin-glass transition at 
Tf or the form of the H - T  diagram in concentrated spin 
glasses, i.e., alloys between ferromagnetic and antiferromag- 
netic 3d metals. 

2. EXPERIMENTAL TECHNIQUES AND SAMPLES 

The magnetization was measured by a ballistic method. 
The use of an external digital instrument in conjunction with 
an F190-1 microfluxmeter made it possible to decrease the 
error to 0 . 2 4 5 % .  Magnetic fields of up to 1.6.10' A/m 
were produced with a copper-wound solenoid. The vertical 
component of the geometric field was compensated to within 
+ 1 A/m. To decrease the error in the determination of the 

total susceptibility M /H and differential susceptibility d M  / 
aH for T> Tf under quasisteady conditions, we measured 
the field dependence of dM/dH with the aid of an R3003 
comparator and a PDP-4 plotter. The total susceptibility 
was found by numerical integration on a computer. We also 
measured the temperature derivativedM /dToFthe magneti- 
zation with the aid of an electronic circuit capable of main- 
taining a constant heating rate to + 1%. The emf, which is 
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ptoportional to the derivative dM/dT, was recorded con- 
tinuously with the aid of an R3003 comparator and PDP-4 
plotter. The temperature markers were registered by a digi- 
tal printer. The temperature was measured by a carbon 
(TSU-2) or semiconductor (KG)  thermometer. The tem- 
perature of the sample was held constant to + 0.01 K over 
the course of the measurements by means of a VRT-2 regula- 
tor. All the samples had a face-centered cubic crystal struc- 
ture. 

The alloys Fe,,Ni2,Cr,, and Fe,,Ni2,Cr,, were smelted 
at the Central Scientific Research Institute of Ferrous Me- 
tallury. Neutron-diffraction studies of samples of these com- 
positions, smelted in the same furnace and subjected to the 
same heat treatment, showed that the alloys contained no 
structural irregularities larger than two or three interatomic 
 distance^.^' A study on a Cameca microanalyzer showed 
that there were no macroscopic inhomogeneities of the com- 
position. The Fe,,Ni,,Mn,, alloy was smelted at the Insti- 
tute of Metal Physics in Sverdlovsk. No structural irregular- 
ities were observed by neutron diffraction.17 However, a 
magnetic thermal analysis revealed the presence of micro- 
scopic amounts (of the order of 0.1-0.01%) of a second 
magnetic phase in this alloy. This phase is ferromagnetic, 
and the value of the Curie temperature suggested the pres- 
ence of regions with incomplete atomic ordering of the 
Ni,Mn type. Quenching in oil from a temperature of 1100- 
1200 "C minimized the influence of the second magnetic 
phase on the properties of Fe,,Ni,,Mn,, (in many cases the 
contribution of the second phase was at the level of the ex- 
perimental error). The samples were in the form of cylinders 
with a length-to-diameter ratio 1 /d>,20. 

3. PREDICTIONS OF THE SPIN-GLASS THEORY 

Upon transition to a nonergrodic state, the theory of a 
spin glass with an infinite-range intera~tion'~~. '~*" predicts 
that the equilibrium susceptibility will be independent of 
temperature: 

where MFc is the magnetization measured after cooling in a 
magnetic field H below the freezing point Tf. The equation 
describing the line of this transition on the H-T plane was 
obtained by de Almeida and Thoules~. '~  In the limit of small 
magnetic fields 

T, (0) -TI ( N )  = (HIII , )  ", (2)  

where n  = 2/3 for the Ising model. According to Ref. 28, in a 
Heisenberg spin glass the transverse components of the spin 
freeze first (for this process n  = 2) and then the longitudinal 
components ( n  = 2/3). 

Below the de Almeida-Thouless line Tf (H) (in the 
nonergodic phase) the field dependence of the equilibrium 
susceptibility of the spin glass is nonanalytic (see, e.g., Refs. 
8, 29): 

wherex, is the generalized nonlinear susceptibility, P = 4/3 
for T<T, (we note that P =  1 for T =  Tf and P = 2  for 

T >  Tf ),29 and O ( H  2, denotes terms of higher order. 
In the nonergodic phase, according to Refs. 8 and 10, 

we have for E = (Tf - T)/Tf 1 

Ax=Y..-x,,,=A ( H )  e+B ( H )  ez,  (4) 

where x,, = MzFc/H is the nonequilibrium susceptibility, 
MzFc is the magnetization measured after cooling in the 
absence of magnetic field, and A(H) and B(H)  are coeffi- 
cients, with A(H) - 0 for H- 0. 

The transition to a "spin-glass" state from the high- 
temperature region, T- T f , was first considered by Su- 
z ~ k i . ~ ~  It turned out that when the Edwards-Anderson pa- 
rameter q,, is taken into account together with the reduced 
magnetization m in the Ginzburg-Landau funtional, the 
anomalous quantities at Tf are not the thermodynamic vari- 
ables themselves (the magnetization, specific heat, etc. ) but 
rather their derivatives with respect to the magnetic field, 
i.e., in the expansion 

where 

the exponent y equals - 1 but y2 equals 1 (in the mean field 
approximation). 

The nonlinear susceptibilities of higher order (e.g., x,) 
also diverge at Tf. Comparison of expressions ( 3 ) and ( 5a) 
show that the generalized nonlinear susceptibility X, should 
diverge at the phase transition point Tf. According to Ref. 
27, at a paramagnetic-to-spin-glass transition the behavior 
of the nonlinear susceptibility should be described by the 
scaling law 

where 0 and y, -- y2 are critical exponents. 
Going beyond mean field theory will give a correction 

to the values of the critical exponents and the exponents n 
and P in expressions (2) and (3).  l3-I5 The theory of a spin 
glass with a large but finite interaction radiusi5 yields a step- 
like phase transition to a "spin-glass" state. Consequently, 
according to Ref. 15, the nonlinear susceptibility x2 should 
increase on approach to the transition point in accordance 
with power law (5b), oscillating between two envelopes 
(x; and X; ), and the scaling-law behavior should not oc- 
cur. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

4.1. The H-Tdiagram 

Figure la  shows as an example the temperature depen- 
dence of the total susceptibility of the alloy Fe,,Ni,,Mn,, in 
various magnetic fields. The measurements were made on 
heating from 4.2 K after cooling from T >  Tf in a magnetic 
field H (x, = MFc/H) and in the absence of field 
(xne = MZFC/H). It is seen that at every value of the mag- 
netic field the peaks ofx, andx,, occur at the same tempera- 
ture Tf (H) ,  and the difference AX = X, - xne becomes 
nonzero at another value of the temperature: 

359 Sov. Phys. JETP 64 (2), August 1986 Deryabin etal. 359 



FIG. 1. a )  Temperature dependence of the equilibrium suscepti- 
bility X ,  = M,,/H(O) and nonequilibrium susceptibility 
x,,. = Mz,/H(0) of the alloy Fe,,Ni,,Mn,,, in magnetic fields 
H [in kA/m]: 1 )  0.4, 2 )  0.8, 3 )  1.6, 4)  4, 5)  8, and 6)  16. The 
equilibrium susceptibility was measured after cooling to 4.2 K in 
the same magnetic field H; b)  the difference between the equilibri- 
um and nonequilibrium susceptibilities versus the square of the 
reduced temperature E* = ( T - TR ( H )  )/TR ( H )  for Fe,,,N- 
i,,,Cr,,, in a magnetic field of 0.8 kA/m. 

Tm (H) ( Tf (H) . In a certain interval of temperatures below 
Tm (H) the equilibrium susceptibility X, depends relatively 
weakly on temperature, in qualitative agreement with the 
prediction of the analytical theory of the spin glaw7-12 Be- 
low the line Tm (H) the magnetic behavior becomes irrevers- 
ible: there is a rapid increase in the remanent magnetization, 
coercive force, and magnetic aftereffect (see Ref. 22). The 
appearance of magnetic irreversibility is customarily attri- 
buted to a transition to a quasinonergodic state.'V2 The prob- 
lem is to determine precisely the position of the T,,, (H) line 
on the H-T diagram. The relative error in finding the differ- 
ence AX = X, - x,, at small AX becomes extremely large, 
and the values of the temperature T,,, (H)  can be determined 
only to very low accuracy from an analysis of the tempera- 
ture dependence ofx, andx,, . Different methods of finding 
the Tm (H)  line are described in the literature. The most 
accurate way of finding this line is to analyze the tempera- 
ture dependence of the derivative dM /dT (Ref. 32) and the 
imaginary susceptibility X" (see, e.g., Ref. 34). Figure 2 
shows the temperature dependence of the derivative dMFc/ 
d T  and dM,/dT for Fe7,Ni2,Cr,, (in the first case the 
temperature derivative of the magnetization was measured 

after cooling in a magnetic field; in the second case, after 
cooling in the absence of field). Direct measurement of the 
derivatives dMFc/dT and dMzpc/dT permitted very accu- 
rate (better than + 0.5%) determination of the values of 
certain characteristic temperatures. The shape of the tem- 
perature dependence of dM,,/dT and dMzpc/dT in Fe- 
Ni-Cr spin glasses is approximately the same as in the spin 
glasses Ag-Mn (Ref. 32). There is a characteristic tempera- 
ture TR at which the temperature dependence of dM,/dT 
intersects the line OA, which is the continuation of the rapid- 
ly changing part of the curve of the derivative dMzFc/dT 
(see Fig. 2).  

In a certain interval of reduced temperatures 
E* = ( T -  TR )/TR the difference AX, = x ,  -xne  is de- 
scribed well by the expression (4)  from the analytical theory 
(Refs. 8, lo),  which implies that Ax - E ~  in the limit of small 
H (see Fig. lb) .  An analogous result is obtai~ied'~ for the 
amorphous spin glasses (Fe,,, Mn,,, ),,P,,B,Al,. The 
temperature curves of dMFc/dT and dMzFc/dT ultimately 
converge at a temperature T,, which corresponds to an in- 
flection point. The temperature Tf of the susceptibility peak 
corresponds to dM/dT = 0. Finally, for T >  TI there is a 

FIG. 2. Temperature dependence ofthederivative of the magneti- 
zation with respect to temperature for the alloy Fe,,,Ni,,,Cr,,. The 
measurements were made on heating from 4.2 K at a constant rate 
in magnetic fields [in kA/m]: 1 )  0.8, 2 )  4, 3)  15.2. The open 
points correspond to a preliminary cooling In a magnetic field of 
the same strength (dM,,/dT), the filled-in points to a prelimi- 
nary cooling in the absence of magnetic field (dM,,/dT). 
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FIG. 3. a )  The H-T diagram of the alloy Fe,,Ni,,Cr,,, 
showing the values of the characteristic temperatures 
TR (v), T, (01, TY(O), and TB (0). The T, ( H )  line ( A )  
indicates the values of the magnetic field H,, above which 
(at a fixed value of the reduced temperature) the first four 
terms of the expansion (5a) are no longer sufficient for 
describing the field dependence of the total susceptibility; 
b) the field dependence of the temperatures T, ( v , ~ ) ,  
Tq(O,.), TJ(0) ,  TB (O.+),and T, (A,).) (inlogarith- 
mic scale). The filled-in points correspond to the alloy 
Fe,,Ni,,Cr,,, the open points to Fe,,Ni,,,Cr,,. 

characteristic temperature T, , which corresponds to an in- 
flection point of the curve dM(T)/dT in the region of nega- 
tive values (see Fig. 2).  

The H-T diagram in Fig 3a shows the values of TR , Tp , 
Tf, and TB for Fe,,Ni,,Cr,,. We have to decide which of the 
characteristic temperatures (T,, where a difference Ax 
arises between the equilibrium and nonequilibrium suscepti- 
bilities, or TR , where AX begins to increase sharply; see Fig. 
2) is most suitable for comparison with the theory. Cham- 
berlin et chose the temperature Tp, because (unlike 
TR ) its values for dilute Ag-Mn alloys scale in the coordi- 
natesp,gH /k, TI (0)  - T/Tf (0) .  This principlecannot be 
applied to concentrate Fe-Ni-Cr spin glasses, for which 
(unlike dilute alloys) the freezing temperature Tf (0)  divid- 
ed by the magnetic field Ho from expression (2)  is not pro- 
portional to the fraction of magnetic atoms (see Tables I and 
11). The field dependence of the temperature Tp in each of 
the two Fe-Ni-Cr spin glasses studied is described well by 
expression (2) with the same values of the field H,P and 
exponent n, over the entire range of magnetic fields studied 
(0-40 kA/m) (see Fig. 3b). The value of the exponent np 
(see Table I )  is very close to the value predicted by the mean 
field theory of the spin glass (for the Ising model, n = 2/ 
3) . , 'I2 At the same time, the values of the characteristic tem- 
perature TR in the indicated magnetic-field interval cannot 
be described by a power law of the form (2)  with a single 
value of the exponent nR . In particular, for Fe70Ni20Cr,o in 
weak magnetic fields the values of nR for the TR (H) line are 
close to unity for H-  lo4 A/m: n, ~ 0 . 6  (see Fig. 3b). Thus 
the field dependence of the temperature Tp has the better 
agreement with mean field theory (2).  However, expression 
(4)  from the theory of Refs. 8- 12 does hold in the neighbor- 
hood of the other characteristic temperature TR ( T S  TR , 
see Fig. lb).  

The values of the normalizing magnetic field H ,P in Fe- 
Ni-Cr spin glasses is several times smaller than the estimate 
found from the theoretical expression2': 

where S is the magnitude of the spin, g is the Land6 factor, 
p, is the Bohr magneton, k, is Boltzmann's constant, and m 
is the number of spin components. 

A similar disagreement between the theoretical esti- 
mate and experiment arises in RKKY spin g l a ~ s e s . ~ , ~ . ~ ~  It is 
obviously due to cluster effects, which make it necessary to 
replace the atomic spin S in expression (7)  by the cluster 
spin S,, > S. We see from Table I that the values of the nor- 
malizing field H,P differ strongly in the two Fe-Ni-Cr spin 
glasses, which have very similar freezing temperatures. This 
is probably because the concentrated spin glasses have an 
effective cluster size (and hence S,, and Ho) that depends 
strongly on the proximity to the critical concentration xf 
from the onset of ferromagnetism. In particular, for Fe,,Ni,, 
Cr,, a value H,P = 3.2.103 A/m has been found3, (corre- 
sponding to S,, - lo3-lo4). 

We did not observe any indication of the presence of a 
line associated with the freezing of the transverse spin compo- 
nents on the H-T diagram of Fe-Ni-Cr spin glasses (the Ga- 
bay-Toulouse line2,). According to Ref. 28, this line should 
correspond to an exponent n = 2 in expression (2).  

It is possible that the transverse and longitudinal compo- 
nents of the spins are weakly coupled to each other and that 
the freezing of the transverse components is not reflected in 
the measurement of the longitudinal susceptibility. More like- 
ly, however, is the situation described in Ref. 30. According to 
Ref. 30, the Gabay-Toulouse line arises for weak anisotropy: 

where d = D /k, T, h =pH /kB T, p = Sp, , and D is the an- 
isotropy constant. Contrarily, for strong anisotropy 
(d$h *I3) the H-T diagram should exhibit only the de Al- 
meida-Thouless line.30 The case of strong anisotropy can ob- 
tain in Fe-Ni-Cr spin glasses during measurements in weak 

TABLE I. Values of the exponent and normalizing magnetic field in power law (2)  for various lines on the H - T  diagram of several spin glasses. 
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2 , .  

- ,  , :  
0..-17 

1.78*0,15 
l.Il5+0.11.1 

- 
- 

0,:;ti 

0.60*0.05 
- 
- 
- 
- 

O , ~ ~ ~ * O , O . j  
0 , :~5*0.0~ 
0.51*0.10 
C1.56*0.10 

- 

1.12 
- 
- 
- 
- 
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- 
- 

0.09 

0 . 0 0  
0.23*0.03 

2.48 
2.02 - 

O.Gtit0.05 
U.tiG+0.05 

- 
- 
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magnetic fields because of the extremely large unidirectional 
anisotropy of these materials.'' 

It should be noted that in Fe-Ni-Cr spin glasses the line 
Tf(H)  of susceptibility maxima and the line T, (H) along 
which magnetic irreversibility arises [here, as in Ref. 32, 
Tp (H) is clearly the better choice for the latter temperature] 
do not coincide. This behavior is typical in other spin glasses 
as In the theory of the Ising spin glass'-'2 the lines 
Tf (H) and T, (H) are identical, in disagreement with exper- 
iment. 

Mean field theoryx-l2 is also unable to explain the field 
dependence of the position of the susceptibility peaks in Fe- 
Ni-Cr spin glasses. On increasing magnetic field H ,  the sus- 
ceptibility peak is shifted first to higher and then to lower 
temperatures (see Fig. 3a). The same kind of field depen- 
dence Tf (H) has been observed in the spin glasses Gd,,Al,, 
and Cu-Mn (Ref. 14) and in the alloy Fe,,Ni,,Mn,, (Ref. 
19). In Ag-Mn spin glasses, however, Tf decreases monoton- 
ically on increasing magnetic field.32 It was shown in Ref. 14 
that the nonmonotonicity of Tf ( H )  can be explained in the 
framework of the mean field approximation by assuming a 
definite form of the scaling function g ( x )  . 

The T, (H) line in Fe-Ni-Cr spin glasses is described 
well by a power law of the form (2 )  with values of the expo- 
nent nB that are close to those found for Ag-Mn alloys32 (see 
Fig. 3b and Table I ) .  In Ref. 32 it is assumed that T, is not a 
well-defined temperature but corresponds to the middle of the 
transition region between the region of critical behavior for 
T = T, (0 )  and the temperature region in which the Curie- 
Weiss law holds. Our findings are consistent with this view. 
The H - T  diagram (Fig. 3a) exhibits another crossover line 
T, (H) which was found from analysis of the nonlinear sus- 
ceptibility (see Subsec. 4.2 below). As will be shown in Sub- 
set. 4.2, the line T, (H) has a clearer physical meaning. The 
susceptibility in Fe-Ni-Cr spin glasses begins to obey the Cu- 
rie-Weiss law at temperatures considerably higher than TB 
and T, . 

The values of the exponents np , nf, and n, ( n ,  ) are con- 
nected by certain critical-exponent relations. '.'3314332 This top- 
ic will also be discussed in the next subsection. 

TABLE 11. Values of the temperature Tf of the magnetic transition, the critical exponents, and certain other parameters for various spin glasses. 

4.2. Nonlinear susceptibility 

According to theory,27 in the vicinity of the phase transi- 
tion temperature one should analyze the susceptibility corre- 
sponding to the static limit. The separation of the nonlinear 
contributions to the static susceptibility with the aid of both 
(3 )  and (5a) has been described in the l i t e r a t ~ r e . ~ , . ~ ~  Our 

E = ( T ! - I  1 1 1 ,  

0.05-0.3 
0.05-0.4 

- 

0-0.t 
0.1-2 
11.1-2 

II.(JI -ll.,; 
11-0.3 

Composition [Ref.] 

I:{,,, . 1 1 : , C r , ,  
IT~,-,,Xi.,,Cr,,,  
l.(,,.,Si, \ f ~ i ~ , ,  

Mn aluminosilicate [ 371 
( ' 1 1  - $.I; jIn hIn [3tiI 
( ; . I  ,.41,:. [36]  
.\u - l.>05 Fe [40]  
.\g - 10.6% hln [ i l l  

study and the results of Ref. 37 indicate that the use of expan- 
sion (5a) yields more-reliable results (but only if at least four 
terms are taken into account). 

The field dependence of the susceptibility at different 
temperatures was analyzed on a computer by the least- 
squares method. According to Ref. 37, for each isotherm 
there is a critical magnetic field H,, above which there is a 
rapid increase in the standard deviation when the experimen- 
tal M ( H ) / H  curves are described by the first four terms of 
expansion (5a). The values of H,, for different values of the 
reduced temperature are given in Fig. 3a [the line T, (H) 1. 
The temperature dependence of the coefficientsx,, x,, andx, 
for Fe70Ni,oCrl, is shown in Fig. 4a. We see from Fig. 4b that 
this dependence conforms well to a power law 

x =a 8-7" 
n n ,  (9 )  

[a = ( T - Tf )/Tf, a, is a coefficient] with the values of the 
critical exponents y, given in Table 11. 

Scaling law (6) gives a rather good description of the 
behavior of the nonlinear susceptibility of Fe-Ni-Cr spin 
glasses at values of a in the interval from 0.01 to 0.3-0.4 (see 
Fig. 5) .  The smallest scatter in the points is obtained at the 
values of the critical exponentsfland y, given in Table 11. The 
form of the scaling functiong(x) (x  = H * / E Y ~  + ) is approxi- 
mately the same for Fe-Ni-Cr spin glasses and manganese 
a lumin~si l ica te .~~ 

7'/, K 1 Y, ( Y, I r4 I n 1 R 1 ' ' l T , l  

FIG. 4. a )  Semilogarithmic plot of the temperature dependence of the coef- 
ficients of the nonlinear susceptibility of the alloy Fe,,Ni,,,Cr,,: 1 ) x,, 2 )  
x4,  3 ) ~ ~ ;  b)  log-log plot ofthecoefficients~, ( 1 ) , x 4  (2) ,  andx, (3)  versus 
the reduced temperature E = ( T  - Tf)/Tf for the same alloy. 
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FIG. 5. Plot illustrating the applicability of scaling law (6) for describing 
the nonlinear susceptibility X ,  of the alloy Fe,Ni,,,Cr,,. The measurement 
temperatures [in K ]  are: A)  21.0; B )  21.4; C )  21.8; D) 22.2; E) 22.6; F)  
23.0; G) 23.4; H)  23.6; K )  24.0; L) 24.4; M) 24.8; N) 25.2; 0) 25.6; P) 
26.0; R) 27.0; S) 28.0; T) 29.0; U) 30.0; W )  32.0; Y) 35.0. 

For Fe,,Ni,,Mn,,, owing to the presence of microscopic 
quantities of a second (ferromagnetic) phase, there was a 
large error in the analysis of the field dependence of the sus- 
ceptibility above Tf with the aid of expansion (5a). We shall 
therefore omit the results of this analysis. However, an analy- 
sis could be done using expression (3 ) , since lg (x, - x,) as a 
function of log H is practically a straight line. 

Figure 6 shows the temperature dependence of the gener- 
alized nonlinear susceptibility X, and the exponent P for the 
alloy Fe4,Ni,,Mn2, (similar curves are found for Fe,,Ni,, 
Cr,, and Fe7,Ni0Cr,,). The values of the exponent P in Fe- 
Ni-Cr(Mn) spin glasses and the spin glasses Cu-Mn, Gd-Al, 
and manganese a lumin~s i l i ca t e~~ .~~  are quite similar (see Ta- 
ble 11). The predictions of the analytical theory of the spin 
glass7-' ' are confimed in the sense that the field dependence of 
the equilibrium susceptibility of the spin glass is nonanalytic. 
The temperature dependence of the generalized nonlinear 
susceptibility,y, above Tf can be described by power law (9) 
with the values of the critical exponent y, given in Table 11. 

On the whole, the results on the nonlinear susceptibility 
of Fe-Ni-Cr and (somewhat less reliably) Fe-Ni-Mn spin 
glasses indicate the existence of a phase transition to a "spin- 
glass" state. The model of Ref. 38 which describes the block- 
ing of the magnetic moments of the clusters in the anisotropy 
field cannot explain the presence of a well-defined transition 
point (see Fig. 6, for example) and the existence of a scaling 
law for the nonlinear susceptibility (see Fig. 5). However, the 
following questions arise. 

a) Why do the critical exponents have different values in 
different spin glasses (see Table II)? 

b) Why does scaling law (6) hold over such an extremely 
wide temperature interval? 
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As to the wide interval of E over which the scaling law 
holds, a similar situation also arises in the neighborhood of 
the Curie point T, in inhomogeneous ferromagnets (for ex- 
ample, in the alloy Euo,,Sro., S in the interval E 5 0.5-0.6).39 
However, the large temperature region in which the scaling 
law holds does not preclude true critical behavior in the phase 
transition point itself.39 

As to the difference in the values of the critical expo- 
nents, one can suggest the following possibilities: 

a )  The difference might be due to the use of different 
methods of measurement and data processing. In particular, 
it is possible that the reason for the low value of the exponent 
y, in the spin glass Au-1.5% Fe (Ref. 40) is that it was ob- 
tained from analysis of dynamic susceptibility measurements 
(moreover, in this case it is harder to separate contributions 
to the nonlinear susceptibility ); 

b) It is possible that there are several universality classes 
for spin glasses depending on the type of anisotropy and its 
value, the characteristic interaction radius, etc. In this case 
the Fe-Ni-Cr and Fe-Ni-Mn spin glasses would clearly be- 
long to the same class as Cu-Mn alloys (with y, - 3 ,P  < 1 ). 
Then the other class would include the spin glasses Au-Fe 
(Ref. 40) [and possibly Ag-Mn (Ref. 41 ) 1, with y2 - 1. 

To distinguish these two possibilities it is necessary to 
analyze the nonlinear susceptibility of different spin glasses by 
the same method [best done using expression (5a) with 
allowance for at least four terms]. Such an analysis has so far 
been carried out only for manganese al~minosilicate~~ and 
Fe-Ni-Cr spin glasses (present study) ; 

c) The difference in the values of the critical exponent y2 
could be due to the variance of the exchange interaction and 
its influence on the static (noncritical) correlations of the 
spin orientations at finite values of the reduced temperature E 

(Ref. 42). In this case the effective critical exponent y,* 
= ( d  In X; ) / ( d  In E )  could take on a continuous set of val- 

ues. However, in the theory of Ref. 42 the exponent y,* de- 
pends on E, whereas no such dependence is seen in experiment 
(see Fig. 4b). 

The theoretical conclusions of Ref. 15 do not agree well 
enough with the results on the nonlinear susceptibility of Fe- 
Ni-Cr spin glasses. No noticeable oscillations are seen on the 

FIG. 6. Temperature dependence of the generalized nonlinear susceptibil- 
ity X, (0) and of the exponent P (a) from expression (3) for the alloy 
Fe,,Ni,,Mn,,. 
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temperature dependence of the nonlinear susceptibility X, 
(see Fig. 4) ,  and, in disagreement with Ref. 15, a scaling law 
holds (see Fig. 5). It is possible that the effective range of the 
exchange interaction in Fe-Ni-Cr alloys is not large enough 
that the model of Ref. 15 can be used to describe its properties. 

Finally, we turn to a comparison of the exponents np , nf, 
n, , and nk (corresponding to different lines on the H-T dia- 
gram; see Fig. 3a and Table I )  and critical exponents (see 
Table 11). According to Refs. 13 and 14, 

nP=2/(p-, (10) 

12 ,=2 / (y ,+I )  (11) 

(in the magnetic-field region in which the freezing tempera- 
ture Tf increases with increasing magnetic field), 

n k = 2 /  (y ,+B),  (12) 

with y, + p = p+;  p+ and q,_ are the values of the crossover 
exponents above and below Tf, respectively, and y, is the 
critical exponent of the nonlinear susceptibility. 

Generally speaking, it is not clearI3.l4 which nonlinear- 
susceptibility exponent should be used in expressions ( 11 ) 
and ( 12) : y, or y,. In Fe-Ni-Cr spin glasses relations ( 11 ) 
and ( 12) are better satisfied if we take y, = y,. The crossover 
line Tk (H),  which separates the region of "low" magnetic 
fields from the region of "high" magnetic fields (fields which 
suppress the critical fluctuations), has approximately the 
same value of the critical exponent (p,) as does the line 
Tp (H) on which the irreversibility appears (p- ) . This means 
that the lines T, (H) and Tp (H) and also Tf (H) can be de- 
scribed consistently in a non-mean-field theory of the spin 
glass.I4 Mean field t h e ~ r y ~ - ' ~ " ~  gives p- = 3 but p+ = 2, 
whereas experimentally p + > 3  (see Table 11). We note that 
for the line T, (H) a relation of form ( 12) (with values of the 
exponent y, equal to y, or y2) is satisfied considerably less 
well than for the line Tk (H). 

5. CONCLUSION 

Mean field theory7-', gives a qualitatively correct de- 
scription of the magnetic properties of the investigated alloys 
of the systems Fe-Ni-Cr and Fe-Ni-Mn, which lack long- 
range magnetic order. Below the point Tf of the transition to 
the "spin-glass" state, the equilibrium susceptibility X, is 
weakly temperature-dependent. The line along which mag- 
netic irreversibility arises is described by (2) with an expo- 
nent n that is close to the theoretical values for the Ising model 
(2/3). The difference between the equilibrium and nonequi- 
librium susceptibilities AX =,ye - x,, is described by expres- 
sion (4) in a certain temperature interval, while the field de- 
pendence ofx, is nonanalytic. 

One wonders why a theory developed for a magnetic in- 
s u l t ~ r ~ - ' ~  gives a satisfactory description of certain properties 
of metallic spin glasses. This question pertains not only to the 
3d-metal alloys studied in the present paper (such as Fe-Ni- 
Cr and Fe-Ni-Mn) but also to dilute metallic alloys with the 
RKKY interaction. In alloys of the Fe-Ni-Cr(Mn) type the 
exchange interaction is long-ranged and has a rather complex 
spatial structure. However, this interaction (like the RKKY 

interaction in dilute alloys) is characterized quite well by a 
model5 with a nearest-neighbor interaction of alternating sign 
(see Ref. 43 for details). 

The experiment also revealed a numhp:- 3f discrepancies 
with the predictions of mean field theory7-12: 

a )  The theory7-', cannot give a consistent explanation of 
the form of the H-T diagram of Fe-Ni-Cr spin glasses. In 
diagreement with the predictions of the the line on 
which the magnetic irreversibility arises in the experiment 
does not coincide with the line Tf (H)  of susceptibility maxi- 
ma. In Fe-Ni-Cr spin glasses the field dependence of Tf is 
more complex than predicted by the theory7-', (according to 
which Tf always decreases with increasing magnetic field). 

b)  The values of the exponent P in expression (3)  and of 
the critical exponents, 8, y,, and p+ in Fe-Ni-Cr and Fe-Ni- 
Mn spin glasses are substantially different from the mean field 
values (see Table I1 ) . 

By going beyond the mean field approximation'3-'5 (i.e., 
taking fluctuations into account), one can explain the form of 
the H-T diagram of Fe-Ni-Cr spin glasses and also (in princi- 
ple) the difference of the critical exponents from the mean 
field values. However, the non-mean-field theory of the spin 
glass requires further development. For example, the results 
of Refs. 13 and 14 depend substantially on the choice of scal- 
ing function, which was found by the principle of optimizing 
the agreement with experiment. 

The results on the nonlinear susceptibility that the Fe- 
Ni-Cr and Fe-Ni-Mn alloys have a phase transition to a 
"spin-glass" state. The question of universality of the critical 
behavior of spin glasses will require studying the nonlinear 
susceptibility of different spin glasses by the same method. 

Spin glasses of the systems Fe-Ni-Cr and Fe-Ni-Mn are 
concentrated spin glasses and cannot be expected to exhibit 
appreciable "cluster" effects. Our studying (and studies of 
other concentrated spin glasses, e.g., Refs. 36 and 37) show, 
however, that correlations in the orientation of neighboring 
spins will necessitate only the replacement ofthe atomic mag- 
netic moment Sp, in the formulas [e.g., in (7) ] by a certain 
effective magnetic moment S,, p, . Such a correction is also 
necessary in RKKY spin glasses at magnetic atom concentra- 
tions - 1% (Refs. 32, 33). The nature (at least) of the mag- 
netic transition at Tf will clearly not be affected much by 
"cluster" effects of this kind. The size of the static spin clus- 
ters is probably substantially smaller than the correlation 
length of the critical fluctuations for the phase transition at Tf 
(see Ref. 42 for details). 

We wish to thank A. V. Vedyaev, I. Ya. Korenblit, S. V. 
Maleev, E. F. Shender, and M. V. Feigel'man for helpful dis- 
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