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We consider the Brownian motion of a bubble in the multi-dimensional space of its parameters 
when the external pressure of the cavitating fluid depends on time. We construct for the 
distribution function, the flux, and the nucleation rate expressions which are asymptotically 
exact as far as the magnitude of the nucleation barrier is concerned. We study the structure of 
the non-stationary "source" of hypercritical bubbles in the limiting cases of large and small 
viscosity of the fluid. 

INTRODUCTION 

According to Zel'dovichl one can treat the process of a 
fluctuative formation of nuclei of a new phase (the so-called 
nucleation) as a Brownian motion of the nuclei along the 
axis of their sizes. One can naturally generalize the problem 
to a multi-dimensional case when description of the thermo- 
dynamic state of the nucleus calls for an additional set of 
parameters which characterize the deviation from the quasi- 
equilibrium values of the t empera t~re ,~  p r e ~ s u r e , ~  shape,4 
chemical compo~ition,~ and so on, of the nucleus. One calls 
such a nucleation a multi-parameter one and one describes it 
by a Fokker-Planck type equation" in the space of the bubble 
parameters q6 

Here f is a "kinetic" distribution function, j the flux density, 
D the diffusion tensor, and N the equilibrium distribution 
function which is connected with the minimum work re- 
quired W(q) to form the nucleus: 

are responsible for the subsequent removal of the metastabi- 
lity and for the peculiarities of the way the system changes to 
an asymptotic regime,' are formed. 

In the present paper we consider cavitation in a viscous 
fluid when the external pressure depends on the time; in a 
stationary version the process was studied in Ref. 1 "single- 
parametrically" and in Refs. 8 and 3 "multi-parametrical- 
ly." It turns out that the non-stationarity affects in an essen- 
tial manner the rate of formation of bubbles, and under well 
defined conditions also their properties (pressure). The re- 
sults obtained may turn out to be useful also for an analysis 
ofother physical situations where the role of the non-station- 
arity of the nucleation process is actively discussed-when 
metastable states are q ~ e n c h e d , ~  when the electron-hole liq- 
uid condenses,l0 and so on. We note that earlier a non-sta- 
tionary analysis was carried out only from the point of view 
of studying relaxation to a stationary distribution (see the 
reviews in Refs. 9 and 1 1 ), and the situation when the level of 
metastability of the initial phase changed so rapidly that the 
stationary approximation turned out to be inapplicable was . . 

not studied. 
N (q) -esp {- WIT). 

The potential contour W(q) has a saddle point correspond- 1. NON-STATIONARY DISTRIBUTION FUNCTION 

ing to a critical nucleus with parameters q,. The value The formation of a bubble of volume v and vapor pres- 

w ( ~ ,  ) W, determines the height of the barrier SUrep in a liquid of pressure f' requires a minimum workR 

which limits the kinetics of the nucleation process. 
The region of large dimensions in Eq. (I. 1 ) is a sink, 

and only current distributions which differ from equilibrium 
ones are possible. When the state of the initial phase is time- 
independent a stationary non-equilibrium distribution is es- 
tablished in the system6 and the rate of nucleation is deter- 
mined by the total flux which is constant along the size axis. 
The region of applicability of the stationary solution is, how- 
ever, necessarily restricted as the lifetime of the metastable 
state is finite. Changing the external conditions and deplet- 
ing the initial phase through the formation of nuclei affects 
first of all the quantity W,/T which is most sensitive to the 
values of the thermodynamic parameters of the system (in a 
comparatively narrow range of parameters, corresponding 
to the instability region, W, changes from cc to 0) .  It may 
turn out that the most important non-stationarity in the ini- 
tial stage of the nucleation, when the biggest nuclei, which 

Here a is the surface-tension coefficient, s the surface area of 
the  bubble,^, the pressure in a bubble of critical dimensions 
(we shall in what follows denote all quantities correspond- 
ing to a critical nucleus by an asterisk). In dimensionless 
variables u, = v/v, , ul  = p/p, Eq. ( 1.1 ) takes the form 

where b = 1 - P /p, . The initial equation (I. 1) for the un- 
known function w = f /N takes in the variables u = (u,,ul ) 
the form 
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Here the vector 

is due to the non-stationarity of the external conditions. We 
assume that the non-stationarity is caused by the fact that 
the pressure P depends on the time. As the pressure in the 
critical bubble is close to the standard vapor pressure of a 
plane surface (the difference is small in a parameter equal to 
the ratio of the vapor and the liquid densities1') we can put 
6' lnp, /at = 0 in the expression for s with sufficient accura- 
cy. With the same accuracy 

where 

is the rate of change of the height of the activation barrier. 
The boundary conditions for Eq. ( 1.3 ) are determined 

from the requirement that the kinetic and equilibrium distri- 
bution functions for bubbles of extremely small size be the 
same1 and that the total number of nuclei in the system be 
bounded 

We study Eq. (1.3) for large values of the activation 
barrier height W, /T. Thetime-derivative (d  /at + sd /du) w 
in Eq. ( 1.3) does not contain a large parameter. The station- 
arity of the boundary conditions ( 1.5 ) enables us to state 
that for not too fast a change in the external conditions (we 
shall establish the criterion below) an intermediate quasista- 
tionary regime is realized in the region u, 5: 1 and is deter- 
mined by the equation 

The difference between the nucleation regime considered 
and a stationary one can be very important and is character- 
ized by the quantity y which is retained in the last equation 
as the derivative of the large quantity W, /T. 

We solve Eq. ( 1.6) by the method of matched asympto- 
tic expansions. l2  

Far from the saddle point u, = (1, 1) the derivative 
a W/du is not small and we can neglect in ( 1.6) the diffusion 
term (d /du)D(dw/du) : 

Here u is the velocity of the macroscopic (neglecting fluctu- 
ations) motion of the nucleus in configuration space and is 
connected with the tensor D through the Einstein relations 
u = - T-'DaW/du. We introduce the length interval dl 
and the velocity lu 1 along the trajectory 

(a  similar metrization enables us in the simplest possible 
way to match the "interior" and "exterior" solutions). Us- 
ing the first of the boundary conditions (1.6) we have 

where the integration is along the decay trajectory while the 
length I = Jdl is reckoned from the point where it intersects 
the u ,  axis. 

In the saddle-point region, where the velocity is close to 
zero and Eq. ( 1.9) cannot be applied, we change to the "inte- 
rior" variable 

In the main order in ( W, /T) ' I 2  Eq. (1.6) takes the form 

d dw d w 
yw=-D--xVD- 

dx ax ax' 

where the tensor 

describes the shape of the saddle. 
The explicit form of the tensors D and V is given in 

Section 3; here we shall use the following properties: the 
tensor V is symmetric and contains exactly one negative 
eigenvalue, the tensor D is symmetric and is positive-defi- 
nite. Upon a non-degenerate change of variables x = Ay, the 
contravariant tensor D and the covariant tensor V transform 
differently: 

(A  is the transpose of the matrix A ) .  To find the simulta- 
neous diagonalizing transformation of A we change to the 
covariant tensor D-' which, like D, is symmetric and posi- 
tive-definite. After diagonalization, the matrices of the ten- 
sors D and V take the form 

where d is the dimensionality of the space of stable variables 
(d  = 1 ). Among the diagonal elements A,, ...,A, there is ex- 
actly one (A,) which is negative ("law of the inertia of qua- 
dratic forms"13) and they are determined as the roots of the 
characteristic equation 

Det (V-kD-l) =O. (1.12) 

In the new variables Eq. (1.10) has the form 

In the main approximation in W, / T  the solution de- 
pends solely on the unstable variable yo; this is confirmed 
when we match up with the exterior solution (1.9), and 
( 1.13 ) reduces to an ordinary differential equation 

(a  similar equation was considered in Ref. 14). The possibil- 
ity of separating the variables means that we have in fact a 
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single-parameter nucleation in the regime considered; this 
is, in particular, demonstrated by the formal agreement of 
the stationary solution of an equation such as (1.1) with 
Zel'dovich's one-dimensional solution. 

The solution of Eq. ( 1.14), which decreases as yo- UJ, 

has the form2' 

The coefficient B ( y )  is determined from the condition that 
the asymptotic form of the interior solution ( 1.15) as yo-* m 
be the same as the exterior solution ( 1.9) as u-u, . 

We consider the asymptotic behavior of the exterior so- 
lution. In the variables u the width of the saddle is small as 
( W,/T)-'I2 and one can consider the single trajectory 
which passes through the saddle point. On this trajectory 
( 1.9) has the asymptotic form 

The integration in ( 1.17) is along the decay trajectory of the 
critical nucleus. 

The asymptotic form of the interior solution ( 1.15) is 

We note that expressions (1.8) for the line element dl  and 
the velocity lul along the decay trajectory are invariant and, 
in particular, can be written in the variables y, for which 
D = I. Hence it follows that when one approaches the saddle 
point along the unstable direction dl-dy, we have 
- lul-IAolyo. Fromacomparisonof (1.16) and (1.18) we 

find 

The thermodynamic state of the nucleus on the saddle 
trajectory of the decay is uniquely determined by its volume 
v. This means that we can eliminate the stable variables and 
represent the results in an effectively one-dimensional form3' 

For sizes close to the critical one we have 

where A ,  is a component of the transforming matrix A. In 
the y-representation the tensor V is diagonal and 
A, = T-'a  W/ayi or, using the preceding equation, 

where We, ( v )  is the work done to form a nucleus with pa- 
rameters corresponding to the decay trajectory; one can use 
the condition A, = dv/dvl, to eliminate the quantity A,. 

When considering the decay trajectory one-dimension- 
ally it is natural to parametrize not the length I but the quan- 
tity U, = v/u,. Under the formal substitution 1-ti,, 

- lul = u,, ( 1.17) determines the constant C and Eq. 
( 1.15) for the distribution function takes the form 

m 

where n = y/(av/av), characterizes the level of non-sta- 
tionarity of the nucleation process. From the condition that 
one can neglect the non-stationary term dw/at it follows that 
the solution is applicable when 

i.e., in an asymptotically wide range (see Appendix). The 
allowable sizes are limited by the possibility of linearizing 
the coefficients in (1.6): Iv - v, I <u, . For n-values within 
the above-mentioned range the quasi-stationary distribution 
extends over a large range of size, but consideration of nuclei 
with v - v, 4 v, turns out to be sufficient to determine the 
nucleation rate. In the stationary limit n = 0, Eq. ( 1.21 ) 
changes to the solution' w = 4 erfc(6). 

The presence of the large parameter 

in ( 1.2 1 ) leads to a significant difference from the stationary 
solution even when In I - 1. The initial stage of the nucleation 
corresponds to n > 0 and the final stage to n < 0, when the 
height of the barrier increases and the nuclei which were 
formed earlier with sizes which turn out to be subcritical 
decay. (this corresponds to a maximum in ( 1.2 1 )--the flux 
changes sign in the circumcritical region). 

2. FLUX OF NUCLEI AND RATE OF NUCLEATION 

We turn to a multi-parameter consideration. On change 
of variables x = Ay the flux density is transformed as 
j, = Aj, and under a simultaneous diagonalization of the 
tensors D and V it takes in the vicinity of the saddle the 
simple form 

Integrating this expression over all stable variables we get 
the total flux in the yo direction 

From the invariance of the divergence of the flux density j we 
have for the total flux I, along the size axis 

where a(q ,,..., q, )/a(y, ,... y, ) is the Jacobian of the transi- 
tion. The quantity 

determines, accurate to a factor ( - T - ' a 2  W/dv2 )  1, ) ' I 2  
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the equilibrium distribution function 

and using ( 1.2 1 ) we get from these expressions 

L 

(2.2) 

Here is the size-independent stationary flux value corre- 
sponding to Zel'dovich's formula 

The solution (2.2) is applicable for not too large sizes: 
v - u, < u, . However, even when 

the "interior" variable [ turns out to be large and (2.2) can 
be replaced by its asymptotic form 

where r ( n  + 1 ) is a gamma function. 
From a macroscopic point of view the region of subcriti- 

cal sizes can be considered to be a "source" with characteris- 
tics which are the initial size of the nuclei which are formed 
v, and the nucleation rate J (the flux for v = v,). These 
quantities can be found from the condition for matching the 
drift solution for the supercritical nuclei with the solution 
inside the source. It is clear that v, and J(v , )  are then 
uniquely determined, since the flux in the macroscopic re- 
gion I(v) = I,<, [ t  - T(U,V,) ] (T  is the time for a nucleus to 
grow to size v )  is the only "observable," and the condition 
that it be independent of the choice of initial size is equiva- 
lent to the drift condition. One verifies easily that this means 
that the asymptotic expression (2.4) is applicable and must 
therefore be regarded as determining the non-stationary nu- 
cleation rate. In the region (A8) where the solution is appli- 
cable the nucleation rate decreases monotonically when the 
non-stationarity index n increases. 

When finding the solution it is important to use the 
symmetry of the tensor D. The generalization to the case of 
an asymmtric tensor D (for instance, when the inertia of the 
fluid is taken into account16) does not involve in principle 
any difficulties. The expression (2.3) for the stationary nu- 
cleation rate remains then unchanged; in particular, one can 
show that if the nucleus moves without dissipation (com- 
pletely antisymmetric tensor Dl7) Eq. (23) leads directly to 
the result of Eyring's theory, where the flux is independent 
of the form of the barrier top (in Ref. 1 it was proposed to 
obtain the corresponding result from an independent consi- 
deration). 

3. CAVITATION IN A VISCOUS LIQUID 

Neglecting effects connected with the thermal conduc- 
tivity and with the inertia of the fluid, the equation for the 

rate of change of the radius R of a bubble has the form 

where q is the viscosity of the fluid. To describe the raw: of 
change in the number g of molecules in the drop we use the 
equation 

Here a, is the condensation coefficient andfl, the frequen- 
cy of collisions of vapor molecules with a unit surface at a 
pressure p,. Changing to a dimensionless time t ': 
dt ' = dt.3bp, /4q and to the variables u, = v/u, , u, =p /  
p, we have 

where v, is the average thermal velocity of the molecules. 
The diffusion tensor and the potential contour tensor 

corresponding to ( 1.1 ) and (3.1 ) were evaluated in Ref. 3 
and have in the foregoing variables the form 

As is clear from the preceding consideration, the saddle 
trajectory plays the decisive role and its form u, = u, (u,) is 
determined from (3.1) and (3.2) and from the condition 
u, ( 1) = 1. It is impossible to determine analytically the 
shape of the trajectory for arbitrary 8. Below we consider the 
limiting cases as 8- co and 8-0 (the stationary solution is 
determined by the behavior of the trajectory solely close to 
the saddle point and can be obtained for any 8 (Ref. 8).  

As 8- (high viscosity) the pressure in the bubble 
remains close to equilibrium: u, = 1 - ( 1/8) (u;'~ - 1 ) . To 
determined the non-stationary nucleation rate (2.4) it is suf- 
ficient to evaluate the quantity (the width of the saddle 
differs little from the single-parameter one: 

W,,/au< = - 4 W, + 0(8  ) . We determine the 
quantitiy accurate to 1/8 (uo=u) 

In the purely single-parameter situation4' = +e''16 ~ 2 . 0 8  
and the expression for the non-stationary nucleation rate has 
the form 

w -" U -u -" a w. 
J = J~~ (0.32 1) ( )  I'(n+l), -n=3---. 

dt' T u. 

The situation as 8- 0 (low viscosity or small condensa- 
tion coefficient) means that the number of molecules in the 
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bubble changes very slowly. From the exhibit expressions 
(3.3) for the tensors D and V we find that when 8b 1 and 
Ib - 31 %98 we have 

From (3.6") and (2.3) it follows that the nucleation rate 
vanishes with 8 for moderately expanded liquids (b  < 3 ), 
which is patently incorrect. Physically it is clear that for very 
slow evaporation the formation of practically empty cavities 
begins to play the decisive role,' and this does not corre- 
spond to the saddle trajectory wherep =p, . 

To trace the transition between the various paths of nu- 
cleus formation we consider the motion of a bubble in the 
plane of the reduced variables zo-uo( 1 - l/b)3, z ,  -u,/ 
(b - 1) (see the figure). We shall characterize the trajec- 
tory by the parameter a = g/g, ; the rate of change of a is 
small as 8 is small. The line LM corresponds to mechanical 
equilibrium and on the section QL (Q is the point of tangen- 
cy to the hyperbola u,u, = a,, = &b 3/(b - 1 ) 2 )  the equi- 
librium is stable, but on the section QM it is unstable. The 
source region is bounded by the section EQ of the "critical" 
hyperbola and the line QM of unstable mechanical equilibri- 
um. We consider the situation of the saddle point for b23. 

When b > 3 the saddle point turns out to lie on the line of 
unstable equilibrium (the point F i n  the figure). The decay 
of the critical nucleus proceeds along the "fast" line FH until 
it approaches the point H ofstable equilibrium, after which a 
slow decay begins along the line HL of stable equilibrium. 
The quantity 8 does not affect the rate of going through the 
saddle point [Eq. (3.6') ] and its effect reduces to a decrease 
of the constant e. This constant acquires a factor 
exp( - lob 2 ,  thanks to the slow section HL, as follows from 
the growth equations (3.2) at b> 1. For trajectories with 
smaller a the contribution from the slow section is smaller 
and is of the order exp( - a2/28b '). We compare the saddle 
trajectory FHL with the trajectory MO for the decay of an 
empty cavity (a = 0).  The height of the activation barrier at 
the point M is 

where g ,  is the number of molecules in the critical bubble. 
One can therefore, taking (2.4) into account, estimate the 
ratio of the nucleation rates along the corresponding trajec- 
tories to be 

" ' I  
(we consider the initial stage of the nucleation where n > 0).  
It is clear from this expression5' that for any non-vanishing 
non-stationary index n and for sufficiently small 8 the for- 
mation of empty cavities is decisive. The non-stationary nu- 
cleation rate can in that case be determined using Eq. (3.51, 
where the barrier height W, is replaced by W, in accor- 
dance with (3.7). When the level of non-stationarity de- 
creases for fixed 8 the role of trajectories with a > 0 in- 
creases, and in the stationary limit the saddle trajectory 
remains decisive. 

When b < 3 the saddle point turns out to lie on the line of 
stable mechanical equilibrium (the point H in the figure). 
The critical nucleus decays along the slow trajectory HL; 
this leads to an increase of the non-stationary index n as 1/8. 
The corresponding nucleation rate turns out to be negligibly 
small in the limit as 8-0. More favorable is the fast sur- 
mounting of the higher barrier along the line FM. The rela- 
tive contribution from those trajectories is taken into ac- 
count similarly to the case b >  3. The continuity of the 
obtained expressions when b passes through 3 follows from 
the merging of the point F and Q as b- 3. In the stationary 
limit, as before, the saddle trajectory remains the decisive 
one provided 8 does not turn out to be exponentially small 
[when the smallness of the quantity Ro of (3.6") compen- 
sates for the difference in the height of the activation bar- 
riers]. 

The non-stationary thus significantly redistributes the 
relative contributions of the different paths of nucleation, 
and this may turn out to be important also in the case when 
there are several saddle points in the potential contour 
W ( Q ) . ~  

The author expresses his deep gratitude to A. F. An- 
dreev for useful hints while the work has carried out. 

APPENDIX. REGION OF APPLICABILITY OF THE SOLUTION 

When changing to the quasi-stationary Eq. ( 1.6) we 
neglected the derivative dw/dt 1, = Rewriting the "ex- 
terior" solution ( 1.9) in one-dimensional form 

and using the equation d lnu, /dr = - 3yT/2 W, we get 

In the region where (A1 ) is applicable the double inequality 

FIG. 1. must be satisfied. The diffusion coefficient D(u, ) can be 
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estimated at (y/n) ( W, /T)-', whence it follows that as 
U+U* = 1 

ala~~awlau-nyw (u-1) -" W.IT) - I  

(we assume that n ) 1 ). From this relation and the first part 
of the inequality (A3) we find that the solution (A1 ) is 
applicable when 1 - u & ( W, /nT) - ' I 2 .  Estimating the de- 
rivative d lny/dt in (A2) at y( W, /T)-' we find that the 
second part of inequality (A3) is satisfied under the very 
weak condition 

In the above-critical region the "interior" solution 
( 1.21 ) can be replaced by its asymptotic form 

W- ( W./T) -n'2C"I' (n+l) e-c'c-n, 
(A51 

( 2 n ) ' " ~ t ~  (W,/T)'". 

The derivative dc  /at 1 is determined as y( W ,  / 
T) - ' [< + (3 W, /T) "2/2] and, proceeding as before, we 
find 

where$(n + 1) = (d  /dn)lnr(n + 1) is thedigammafunc- 
tion. This expression must be small compared to yw, whence 

n+ZB (W.IT) - I ,  (A71 

n<2 (W./T) /{ln(W./T) -2 In C). (AS) 

Condition (A8) is a somewhat more stringent limitation 
than (A4) but the asymptotic range of applicability of the 
solution remains large. 

We estimate for which reciprocal times v of an action on 
the liquid (e.g., v being the ultrasound frequency) the non- 
stationarity may turn out to be important (n R 1 ). Changing 
to a dimensional time t we have at b )  1 

Replacing 8 /at( W, /T) by Y W, /T  and bp, by IP I we find 
from this equation that n R 1 when 

v 2  1 PI T/4q W.. (-49) 

We did not consider in the present paper the effect of the 
inertia of the liquid, which may turn out to be important 
when the viscosity is small. The criterion for neglecting the 
inertia was established in Ref. 8: 

where p is the density of the liquid. Combining (A9) and 
(A10) we find that the results can be used when 

We note that for homogeneous nucleation W, /T-- 10' to 
lo2. 

"To simplify the formulae we use matrix notation (no indices); vectors 
are denoted by lower case letters and second-rank tensors by capitals and 
they are assumed to be transformed to those variables in which the corre- 
sponding equation is expressed. 

"The integral in ( 1.15) can be expressed in terms of special functions, in 
particular, for integer n = y/lA,I it determines the so-called "repeated 
error function";15 however, the representation ( 1.15) is more conven, 
ient for finding the asymptotic behavior as 6- * m. 

3'A. F. Andreev indicated the possibility of such a procedure. 
4'If the diffusion coefficient has a power-law dependence on size, 

D(u)  o: uv, we have for a_macroscopic nucleus ti cr uv ( 1 - u-'I3) and it 
follows from (3.4) that C = +exp{$(7 - 3v) - $(I)}, where $(v) is 
the digamma function (in the case considered v = 1 ). 

"On trajectories for which the slow section is sufficiently large it is impos- 
sible to establish the quasi-stationary regime considered; however, the 
nucleation rate along such trajectories is even smaller than the one ob- 
tained in the estimates and the conclusion reached below remains valid. 
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