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The positions of the quantum levels and the transition matrix elements connecting them are 
found for superconducting tunneling junctions in the semiclassical approximation. The 
location of the upper levels affects the coefficient of the exponential in the expression for the 
probability for decay of the metastable voltage state. A variable current with frequency close to 
the difference between the energies of two levels increases the decay probability. The 
theoretical results are in good agreement with the experimental data. 

1. INTRODUCTION 

The voltage states of superconducting tunneling junc- 
tions are metastable. The investigation of the lifetime of such 
states is of interest in its own right. 

Furthermore, this problem is a convenient model for 
the study of the metastable states in other physical systems. 
Below we investigate how the quantization of the levels in 
the potential well affects the lifetime of a metastable state. 
For current strengths close to the critical value, the potential 
energy has the form of a cubic parabola. In such a potential 
the width of the well is of the same order of magnitude as the 
barrier width. One would have thought that the probability 
for decay of a metastable state would be small only in a semi- 
classical potential, in which the number of levels is large. But 
this is not so for numerical reasons. The difference in effec- 
tive action between two neighboring levels is equal to 2a. 
The tunneling probability is determined by an imaginary ac- 
tion. In potentials with equal well and barrier widths the 
ratio of the probabilities for decay from two neighboring 
levels is close to exp( - 277) = 0.00187. Therefore, the life- 
time of the metastable state is long even when the number of 
levels is small. In the experiments in which quantum tunnel- 
ing was investigated,I4 the number of levels was not large 
(ranging from 1 to 10). 

The discreteness of the levels has the greatest effect on 
the lifetime of the metastable state when the temperatures T 
are of the order of the level spacing. In this case the coeffi- 
cient exponential in the expression for the probability for 
decay of the metastable state is an oscillating function of the 
depth of the potential well. The oscillation amplitude de- 
creases as the viscosity increases. The quantization of the 
levels at small value of viscosity leads to a resonant depen- 
dence of the metastable-state lifetime on the pump frequen- 
cy. 

2. DISTRIBUTION FUNCTION 

Normally, it is assumed in the investigation of the tun- 
neling of particles through a potential barrier that the parti- 
cle motion in the classically accessible region can be de- 
scribed with the aid of wave packets. This approximation is 
valid for sufficiently broad potential wells. In Ref. 5 the pres- 
ent authors used this approximation for a potential in the 

form of a cubic parabola. The basis for this approximation is 
the fact that at energies close to the potential barrier height, 
the period of the classical motion is long, the level spacing is 
small, and we can construct wave packets. But for numerical 
reasons this approximation holds only for very high poten- 
tial barriers. The level spacing SE in the vicinity of the top of 
the barrier is equal to 

where N is the number of levels in the potential well, S1, is 
the frequency of the classical oscillations in the vicinity of 
the bottom of the well in the inverted potential, ma: 
= - d 'U/dq, at the maximum of U(q,). 

Quantum tunneling can be observed only when the 
number N of levels is not large. Level crowding does not 
occur in such potentials. On the other hand, the probability 
that a particle will tunnel through a potential barrier de- 
pends very strongly on the particle energy E, and for ener- 
gies close to the barrier height U, 

y ( E )  = ( 6 ~ / 2 n )  exp (- ( U - E )  IT , ) ,  T,=Qp/2n.  ( 2 )  

Therefore, we cannot go over to the continuous energy dis- 
tribution, and at small viscosity values must write down the 
kinetic equation for the probabilitiesp for finding the parti- 
cle at the j-th level: 

where W,, is the probability for transition from the state k 
into the state j due to the interaction of the particle with the 
heat bath. For an equilibrium heat bath the matrix elements 
W,, satisfy the condition 

Wjk=Wkj exp [ (Ek-Ej) I T ] ,  (4)  

where T is the temperature of the heat bath. 
As will be seen below, in a potential in the form of a 

cubic parabola 

only the transitions between the nearest levels are important. 
For sufficiently deep levels, i.e., forj < n, the tunneling prob- 
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ability y, is small compared to the transition matrix ele- 
ments W, - ,, , , and it can be neglected. In this approxima- 
tion the steady-state solution to Eq. (3)  has the form 

p, - exp( -EJT)  -C z e x p [ -  ( E , - L ) / T I I w ~ - ~ , ~ ,  jGn. 
k<j (6)  

where Cis a constant that is found from the solution of the 
system of equations (3)  for n( j <  n + v. 

For these states both the tunneling and dissipation pro- 
cesses are important. For states with j>n + v tunneling is 
much more probable than the dissipative-transition process, 
and the probabilitiesp, for j>n + Y can be set equal to zero. 
Because of the rapid growth of the tunneling probability y, 
as the number j increases, we can limit ourselves to small 
values of the quantity v. The solutions to the system of equa- 
tions (3) for Y = 2 and Y = 3 give practically the same re- 
sult. 

The metastable-state decay probability r in this ap- 
proximation is equal to 

3. THE WEAK VISCOSITY LIMIT 

We can follow the qualitative pattern of oscillation of 
the coefficient exponential under the simplest assumption 
that Y = 1. This means that it is only at level j = n that both 
the tunneling and the dissipative-transition processes are im- 
portant. From Eq. (3)  with j = n we find 

En 1  - exp (-GEIT) 
pn=w ex*( - l') 

W+yn 
In deriving the formula (8) we use the expression (6) for the 
quantity p, and the assumption that pn + , = 0. Further- 
more, we assumed that the matrix elements Wj - , do not 
depend on the number j, and that the levels are equally 
spaced, with SE = Ej - E,- 

If the temperature Tis not very close to the temperature 
To (specifically, if T - To > T,,/~P), then it is sufficient to 
retain in the expression (7) for the quantity r only the terms 
with p, : 

I'=2 S h ( Q P / 2 T )  exp ( - U / T )  [ 1-exp(-6EIT) 19,  (9)  
U-En yn+W exp(-6EIT) 

F=W exp ( T) 
W+yn 

It follows from the formula (2) that the quantity y, depends 
critically on the level energy En. Therefore, the expression 
(9) is an oscillating function of the position of the level En. 

In the region W exp( - SE /T) < y, < W the process of 
tunneling from the nth level is a "bottleneck" and the quan- 
tity 9 depends weakly on the dissipation Wand is equal to 

F= (SEI2n) exp [- ( U - E n )  ( l / T o - 1 / T )  1. (10) 

In this region function 3 increases with increasing E n .  
In the region y, > W the transition of the system from 

the (n - 1)-th to the n-th level as a result of the interaction 
with the heat bath is the bottleneck. In this case the function 
F decreases as the energy En increases: 

In the region y, < W exp( - SE /T) the function 9 is given 
by the formula ( 1 1 ) with n replaced by n + 1. 

4. POSITIONS OF THE LEVELS AND THE TRANSITION 
PROBABILITIES 

For the purpose of making a quantitative comparison 
with the experimental data we must find the positions and 
widths of the levels. If a level is not very close to the top of the 
potential barrier (i.e., if U - E > 0, 4f2, ), then its position 
and width can be found with the aid of the semiclassical 
formulas: 

6E exp ( -2So ( E n )  ) 
r (En) = ( 2 n ) " T ( n + l )  

where S (E)  is the action in the classically accessible region 
and So(E) is the action in the classically inaccessible region. 
For a potential of the form (5 )  we find 

n 
S ( E )  - T ~ ( m U ) ' l '  (x2-x8)' 

where F is the hypergeometric function and x, <x, <x, are 
the roots of the cubic equation 

The interaction of the normal excitations with the heat bath 
is determined by the resistance R of the junction to normal 
current. The probability - ,,, for transition from the state 
j into the state j - 1 is given in Ref. 6: 

where 

K(k) and K ' (k)  are complete elliptic integrals. That value 
of the energy E in the formula ( 14) at which the roots x,,,,, 
in the formula (16) are computed is equal to E = (E, 
+ Ej- , )/2. A level lying close to the top of the barrier is 

quite wide. Therefore, the probability for transition to it is 
described by quantum-mechanical formulas for transitions 
into the continuum. The transition probability density in an 
interval dE is given as before by the formula ( 15), in which 
we must now replace the wave function of the upper level by 
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FIG. 1 .  

the continuum wave function normalized as a 6-function in 
energy. Using the semiclassical approximation for the wave 
functions, we obtain for the matrix element the expression 

where 

The expression ( 17) has a sharp maximum. The position of 
this maximum determines the level energy E, + , , while its 
width determines the tunneling probability y(Ej+ , ). These 
expressions are used in the computation of the decay prob- 
ability I? with the aid of Eq. (7).  Expression ( 17) can also be 
used in the case of transitions into states with energiesE > U. 
It is found that there exists in this energy region one virtual 
level whose width is small (of order Rp/21.r). This level 
should be taken into account in Eq. (7)  along with the sub- 
barrier levels. 

5. COMPARISON WITH THE EXPERIMENTAL DATA 

The experimental data reported in Ref. 1 for the decay 
probability r are represented in the form 

QP r -- - exp (-UIT.) . 
2n 

for T >  To the quantity T, differs from the temperature Tof 
the heat bath because of the coefficient of the exponential in 
the expression for the decay probability. Therefore, the 
quantity Te, like this coefficient is an oscillatory function of 
the depth of the potential well. In the experiment reported in 
Ref. 3 the depth Uof the potential well was varied by varying 
the current J through the junction. Figure 1 shows the theo- 
retical and experimental data. The points in Fig. 1 indicate 
the experimental data reported in Ref. 3. The curve 1 is the 
theoretical curve obtained with the aid of the formulas (6), 
(7), (12), and (14)-(16). It was computed with thefollow- 
ing junction parameters: R = 190 C4, C = 6.35 pF, 
Jc = 9.489pA, and T =  0.151. 

The parameters p0 and U of the potential ( 5 ) are given 
in terms of the critical current Jc and the current J flowing 
through the junction by the formulas 

The curve 2 was constructed with the aid of the formula 
given in Ref. 5, in which it is assumed that level crowding 
occurs at an energy close to the top of the barrier. The curve 
2 is a smooth, nonoscillatory curve, but it lies very close to 
the curve 1 obtained in the present paper. The curve 3 was 
taken from Ref. 3, and reproduces the theoretical results 
obtained in Ref. 7. By varying the junction parameters with- 
in the limits of possible experimental errors (R = 190 + 100 
R and C = 6.35 + 0.4 pF), we can obtain an even better 
agreement between the theoretical and experimental results. 
The amplitude of the oscillations (curve 1 ) turned out to be 
small. This is due to the fact that the shunting resistance was 
not high (the case of intermediate viscosity: the viscosity q is 
of the order of 7, ), while the temperature T was high in 
comparison with To ( T- 3 To). Under these conditions the 
decay proceeds largely via a resonance level with E >  U 
whose width depends weakly on the energy. The amplitude 
of the oscillations increases as the temperature T is lowered 
in the region T - To> Td21.r. It also increases when the 
shunting resistance is increased, since at low viscosity values 
the system decays from deeper-lying levels whose lifetime 
depends exponentially on the energy (the formula (2) ) . The 
quantity Te / T  for current strengths close to the critical val- 
ue is a universal function of three dimensionless parameters: 

where 

k being the Boltzmann constant. Figure 1 shows a plot of T, 
fortheparametersT/T * = 0.017251 andR /R * = 13.8252. 
Figure 2a shows a plot of Te /T  for the junction parameters 
used by Martinis et R = 135.45 R, C = 47 pF, T = 28 
mK, Jc = 30.572 pA, T / T *  = 0.006658, and R / 
R * = 35.048. 

The quantity z is connected with the number N of levels 
in the potential well by the relation 

FIG. 2. 
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The period of the oscillations is determined from the require- 
ment that the number of levels in the potential well change 
by unity: 

6. RESONANT DECREASE OF THE LIFETIME UNDER THE 
ACTION OF AN EXTERNAL CURRENT 

The existence of levels is most strikingly manifested in 
the resonant decrease of the lifetime of the metastable state 
under the action of a variable current with frequency equal 
to the level spacing. Such resonances have been experimen- 
tally observed by Martinis et This phenomenon is inves- 
tigated theoretically in Ref. 8. In the present paper we inves- 
tigate two limiting case's: the case of high Q, when the width 
of the resonances is smaller than their spacing, and the case 
of arbitrary resonance width in the presence of a large num- 
ber of almost equidistant levels in the system. 

For the purpose of carrying out a quantitative compari- 
son with the experimental data obtained by Martinis et 
let us use the following system of equations for the density 
matrixH: 
dp,' iJi 
-= -cor(ot) z{y lrplm)exp[- i(~, , , -~j)f]p/ . l  

d t  e 

In the experiment performed by Martinis et the 
temperature T was small compared to the level spacing. The 
off-diagonal density-matrix elements, to within terms ex- 
ponentially small with respect to this parameter, are equal to 

where 

The system of equations (24) for the diagonal density-ma- 
trix elements has, when allowance is made for the formula 
(25), the form 

J,' 
k k - J - l , p i  -- ( i l q t j + l ) 2  

I ,  
he' 

Let us solve the system of equations (27) in the approxi- 
mation used to solve the system (3). Two equations of this 
system, namely, the equations for the virtual level lying 
above the barrier and the top subbarrier level, were solved 
exactly. For the deeper-lying levels the tunneling probabil- 
ity, y, was set equal to zero. In this approximation the solu- 

tion to the system of equations (27) can be represented in the 
form 

where 

G, = 
b,+exp[- (E,+,-E,)  I T ]  

-- 

I f b ,  i 

(29) 

The constant Cis determined from the condition for match- 
ing with the exact solution to the equations for the two top 
levels. The lifetime of the metastable state is given as before 
by the formula (7),  and is determined in the region T >  To by 
the distribution function at the upper levels. 

From the formula (28) we find in the approximation 
linear in the pump power that 

pj=p," + b r l  (p?i-p!" ) erp (- (Ej-E.)IT) , (30) 

where the  function^^^^' are given by Eq. (6). 
At high Q values the function b, has a sharp maximum. 

The pump-induced change in the distribution function at 
high levels is equal to the sum of the resonance contribu- 
tions. The linear approximation (30) breaks down for two 
reasons. In the case of narrow resonances the quantity b, 
can be greater than, or of the order of, unity in the vicinity of 
a resonance. This leads to the equalization of the populations 
of the Y- and (Y  + 1 ) th levels. Further increase in the pump 
power does not cause the peak to grow. At low temperatures 
the magnitude of the effect is exponentially large: 

AI'lI'=b, exp [(E,+,--E,)  /TI. 

For broad resonances the overlapping of neighboring reson- 
ances can be important. If the quantity b, for two neighbor- 
ing levels is greater than, or of the order of, 
exp( - [E ,  + , - E, )/TI, then the general formula (28) 
should be used. The linear approximation (30) is valid for 
the conditions under which Martinis and his co-workers4 
performed their experiment. The positions of the levels and 
the transition matrix elements connecting them were com- 
puted with the aid of the semiclassical formulas (12) and 
( 15)-( 17). Only one adjustable parameter-the pump pow- 
er, which was unknown to us-was used in the comparison 
with the experimental data of Martinis et A good agree- 
ment is obtained for a pump power P equal to 

where w is the pump frequency. In Fig. 2b the points indicate 
the experimental data obtained by Martinis et and the 
continuous curve is the result of the numerical computation 
performed with the use of the formulas (7)  and (30). The 
junction parameters are the same as those used in the com- 
putation of the curve in Fig. 2a, and the frequency satisfies 
w/2v=2x109 sec-'. 
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7. CONCLUSION 

The good agreement between the experimental and 
theoretical data on the resonant decrease of the lifetime of a 
metastable state of tunneling junctions confirms the exis- 
tence of quantum levels in the potential well. The positions 
and widths of the level can be found with a high degree of 
accuracy with the semiclassical formulas. The coefficient of 
the exponential exhibits oscillations when the level leaves 
the potential well. Under the conditions of the experiment 
reported in Ref. 3 the oscillation amplitude was small, and 
was less than the spread in the experimental data. The junc- 
tions most suitable for the observation of the oscillations are 
those with high effective resistances at temperatures close to 
the transition temperature T,. The experimental data re- 
ported in Ref. 3 are in good agreement with both the results 
obtained in the present paper and those obtained in Ref. 5. 

In the present paper we have assumed that the system 
goes over into a continuum state when it decays from a meta- 
stable state. Such a situation results in the case of a junction 
included in a circuit with a prescribed current, or in a circuit 
with a high inductance. If the inductance of the external 
circuit is comparable to that of the junction, then the poten- 
tial energy U(q) has a small number of wells. The coefficient 
of the exponential in the expression for the probability for 

transition from one well into another depends on the relative 
disposition of the levels in these wells. In the case of weak 
viscosity a resonant increase can occur in the probability for 
that transition in which the level energies in the initial and 
final states are equal. It is possible that such a phenomenon 
was observed in the experiment reported in Ref. 9. To carry 
out a quantitative calculation, we must know the values of 
the capacitance and resistance of the junction. 

'R. F. Voss and A. R. Webb, Phys. Rev. Lett. 47,647 (1981). 
*L. D. Jackel er al., Phys. Rev. Lett. 47, 697 (1981). 
3M. H. Devoret, J. M. Martinis, and J. Clarke, Phys. Rev. Lett. 55, 1908 
(1985). 

4J. M. Martinis, M. H. Devoret, and J. Clarke, Phys. Rev. Lett. 55, I543 
(1985). .-- --, 

5A. I. Larkin and Yu. N. Ovchinnikov, J. Stat. Phys. 41,425 (1985). 
6A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 87, 1842 
(1984) [Sov. Phys. JETP60, 1060 (1984)l. 

'M. Biittiker, E. P. Harris, and R. Landauer, Phys. Rev. B 28, 1268 
(1983). 

'A. I. Larkin and Yu. N. Ovchinnikov, J. Low. Temp. Phys. 63, 315 
(1986). 

91. M. Dmitrenko, G. M. Tsol, and V. I. Shnyrkov, Fiz. Nizk. Temp. 10, 
21 1 ( 1984) [Sov. J. Low Temp. Phys. 10, 11 1 (1984)l. 

Translated by A. K. Agyei 

189 Sov. Phys. JETP 64 (I), July 1986 A. I. Larkin and Yu. N. Ovchinnikov 189 


