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The effect of saturation on the half-width S of the magnetic-resonance absorption line is 
investigated using the Bloch equations with memory as a model. The relation S a ( I d )  l f 2  is 
deduced and indicates that there is practically no saturation broadening in this model. 

1. INTRODUCTION 

Bloch's equations for the magnetization components 
Mx,y,z ( t )  are known not to hold for solids.'.2 The resonance- 
line shape is therefore usually investigated by using the fluc- 
tuation-dissipation theorem3 and is expressed in terms of the 
Fourier transform of the correlation function 

G (t) =Sp {IxIx(t) )/Sp I,', 

where I, is the total spin operator and the time dependence 
is determined by the broadening interaction Zsec. Since the 
function G(t) cannot be rigorously calculated, the method 
ofmoments4 is used, and G(t) is approximated by a Lorent- 
zian or a Gaussian profile', depending on the value of the 
parameter p = M4/M: (M, and M4 are the second and 
fourth moments of the resonance line). In the Gaussian case 
p = 3 and the line HWHM S is determined only by the value 
of M2. Actually, however, while the line shape in solids is 
close to Gaussian, nonetheless p # 3, and depends naturally 
also on the higher moments M,, M,, ... . 

Substantial progress was made recently5,, towards 
more accurate calculation of 6. In particular, an integro- 
differential equation was derived that describes the spin-spin 
relaxation of the transverse magnetization components 

t 

where K(t - t ' ) is the memory function. An explicit form of 
K( t )  is given in Refs. 5-7. Since M, ( t )  a G(t),  an identical 
equation holds also for the correlation function G(t) itself. 

The presence of memory in ( 1 ) is an indication that the 
total-spin operators I,, do not commute with XSec and are 
therefore not quasi-integrals of the motion, so that the trans- 
verse components M,, ( t ) ,  like G(t) and K(t) ,  vary rapidly, 
with a characteristic time T2 -6- '. 

Equation ( 1) was used to calculate S and to obtain ex- 
pressions for the absorption and dispersion line shapes in the 
case of a weak alternating In contrast to the method 
of moments mentioned above, the half-width S contained M4 
and the line shape described the experimental data better. 

Our aim was to investigate the effect of saturation on 
the resonance line width in the model of Bloch equations 
with memory. 

2. BLOCH EQUATIONS WITH MEMORY 

Consider the dynamics of a spin system in a magnetic 
field 

H(t)  =Hok+Hi(i cos at-j sin ot),  

which is the sum of a constant field Hollz and a circularly 
polarized field of amplitude H, and frequency w (i, j, and k 
are unit vectors along the axes x ,  y a.nd z).  

Replacing the relaxation term in the phenomenological 
Bloch equations1 by integrals of the form ( 1 ), we obtain, in a 
coordinate frame rotating about the z axis at the Zeeman 
frequency w0 =: yHo, the equations 

t 

dM* (t) - = 3 iulM, (t) eTiAt - ~ ( t - t ' )  M* (t') dt', 
dt (I 

(2)  

where 

T, is the spin-lattice relaxation time, and Mo is the equilibri- 
um relaxation. When so generalized, Bloch's equations be- 
come suitable for the description of spin dynamics in solids 
for arbitrary interactions between the spins, and permit also 
a study of the influence of the saturation effects on the shape 
and width of the resonance line in the memory-function for- 
malism. Note that Eqs. (2)  can be easily derived by choosing 
M,,y,z as the operators of interest and by using the method of 
Refs. 5 and 6. Making the change of variables 
a* ( t )  = M* (t)exp( + iht),  we obtain ultimately 

-- d"*(t) = t i ~ x *  (t) *iu,M,(t) 
at 

Taking the Laplace transform of (3) (Ref. 8) ,  in analo- 
gy with the procedure used in Ref. 6, we readily obtain a 
system of algebraic equations whose solution yields, for the 
initial conditions M, (0)  = Mo and 2* (0) = M* (0)  = 0, 

A?* (p) =* ( M , / p D )  (p+l/T,) io,[p+iA+K(p+iA)], 
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where 

D= ( p + l / T , )  [ p - i A + K ( p - i A ) ]  [p+ iA+K ( p + i A )  ] 
+ i / p o i 2  [2p+ K  ( p - i A )  + K ( p + i A )  ] 

andp is the variable of the Laplace transformation. 

3. STATIONARY SOLUTION 

To resolve Eqs. (4) into partial fractions and to take the 
inverse Laplace transforms, i.e., to obtain a general solution 
of Bloch's equation with memory, we need the explicit form 
of the memory function K(t) .  Since however, the denomina- 
tors of (4)  have a rootp = 0, one of the partial fractions can 
be easily determined and yields a stationary solution of the 
system (3) without the use of the explicit form of K(t).  
Omitting the straightforward calculations (the result is ob- 
tained by leaving out thep-' term and then settingp = 01, 
we give only the value of I@:, which determines the station- 
ary process of absorption and dispersion of the alternating- 
field energy by the system of interacting spins, with account 
taken of the memory effects: 

B S t + = i o l M , [ K ( i A )  +iA]  { [ K ( - i A )  - i A ]  [ K ( i A ) + i A ]  
+ t / 2 ~ t Z T t  [ K ( i A )  + K  ( - i A )  I)-'. ( 5 )  

Since K * ( t )  = K(t)  (the asterisk denotes complex conjuga- 
tion), we get K * (iA) = K( - iA). Putting K( f iA) 
= K '(A) f iK " (A) and separating the real and imaginary 
parts of M :, we get ultimately 

~ , ~ + = i x o ~ M ,  [ g .  ( A )  +ti?.' ( A ) ] ,  (6) 

where the functions 

~H(A)=K'(A)/z{K'~(A)+[A-K" ( A ) ] 2 + 0 1 2 ~ t ~ 1 ( ~ ) ) ,  (7) 
SX'(A)=[A-K"(A)]/~{K"(A)+[A-K~~(~)]? 

+ o t 2 T , K ' ( A ) )  (8) 

are the waveforms of the absorption and dispersion signals 
with allowance for saturation. 

In the presence of saturation, Eq. (6)  coincides with 
Eq. ( 1.123) of the book of Abragam and Goldman., 

4. LINEWIDTH CALCULATION 

We obtain an explicit expression for the half-width S at 
half-maximum of the absorption line, using the Gaussian 
approximation of the memory function,, when 

where x =S(2N2) -'I2,N2 = M2(p - 1 ) is the second mo- 
ment of the memory function, and Y (x)  is a special function 
expressed in terms of the error function of imaginary argu- 
ment, with Y I,,, 0 . 5  (Ref. 9 )  Putting 
gH(6)  = (1/2)gH(0), weget 

wheres is the saturation parameter andg(0) = [TK '(0) ] - ' 
is the maximum of the unsaturated line contour 
g(A) = g, (A) I,, =, . Substituting (9)  in ( l o )  we get 

f . (x ,  S )  = f  ( x )  +e-"IZ[ (2-e-"+s)'"- (2-e-$) lh] ,  
(11) 

f ( x )  = (2-e-d)'he-s'a+2n-'hV ( x )  . 
In the limits = 0 (zero saturation) expressions ( 1 1 ) go 

over into results of the theory expounded in Refs. 5 and 6. 

5. CONCLUSION 

We now investigate how S depends on s and p. Since 
f (x)  z 1 (Ref. 6), we get at saturation (s) 1, 
slt2exp( -x2))1)  

6 ~ 6 ~ s "  exp (-x"2)), 6 , s  [ n M , / 2  ( p - I ) ]  ", (12) 

where So is the unsaturated half-width. It follows from ( 12) 
that the dependence of s on x2 is mainly exponential 
(S -x2 exp( - x2) ), SO that the inverse dependence of 6 on s 
is very weak, i.e., 

6 = 2 6 0 ( ~ - 1 )  [ ( l n s ) / n ] ' " ,  (13) 

whereas the usual Block equations give rise to the stronger 
dependence S ~ s ' / ~ 6 , .  The 6 a (In s )  'I2 dependence is diffi- 
cult to observe in experiment, thus attesting to practically no 
broadening by saturation in the model considered. That 6 
depends on s was observed earlier in experiments on magnet- 
ic-resonance saturation in solids,1° and was explained by re- 
sorting to Provotorov's two-temperature theory." It follows 
from this that an alternate explanation of the absence of 
broadening by saturation can be based on Bloch's equations 
with memory. 

Comparison of 6 with 6, shows that under saturation 
conditions the form of 6 as a function of the parameterp also 
changes, the more so the largerp. We note also that account 
can be taken in the calculation of S also of the contributions 
of the moments of higher order, M,, M, ... , by writing an 
integrodifferential equation such as (1) for the memory 
function itself.", 

"We have used the representation exp ( - x2)F( 1/2; 3/2; x2)  = Y (x) /  
x ,  where F is a confluent hypergeometric function. 
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