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It is shown that the amplitude of the anti-Stokes line in a Brillouin-scattering spectrum can 
oscillate with time following the onset of an intense co;vrent pc'ariton wave. The initial 
evolution of the correlated noise of scattered polaritons is investigated under conditions such 
that the intensity of the transmitted polariton wave greatly exceeds the stimulated-scattering ' -  

threshold. 

The analogy between the behavior of stimulated emis- 
sion and scattering close to threshold, on the one hand, and 
second-order phase transitions, on the other, has been point- 
ed out and discussed numerous times in the literature.Iw3 
The similarity lies in the onset of a macroscopically coherent 
state superposed on intense fluctuation noise that increases 
as the threshold is approached. The interaction of the fluctu- 
ations with one another and with the coherent mode there- 
fore plays a decisive role in both cases. A fundamental differ- 
ence between the two is that whereas in phase transitions the 
fluctuations are in thermodynamic equilibrium, in stimulat- 
ed emission they are excited by an external source. The sta- 
tistical properties of the fluctuation ensemble in this second 
case are therefore, generally speaking, not universal but are 
determined by the properties of the excitation source and of 
its interaction with the medium. In particular, they can be 
described by some additional correlations, such as the corre- 
lation of the scattered polaritons and phonons in the specific 
problem discussed below. In addition, many stimulated pro- 
cesses (particularly scattering) are observed as a rule under 
essentially nonstationary conditions (pulsed excitation). 
Establishment of a stationary fluctuation pattern near 
threshold, on the other hand, is a long-time process. The 
question of the time-dependent onset of coherence is here 
much more significant than in the typical formulation of the 
second-order phase-transition problem. Furthermore, the 
time available for passage through the regions below and 
near threshold, is quite possibly too short for the noise level 
to reach values that can influence substantially the onset of a 
coherent mode. The evolution of the fluctuations can also be 
strongly influenced by the size of the samples, whose linear 
dimensions can be comparable with or even smaller than the 
photon mean free path. 

Our present aim is to investigate certain phenomena of 
this kind, using as a very simple example the Brillouin scat- 
tering of polaritons in semiconductors. The stationary be- 
havior of this system was investigated in Refs. 4 and 5, where 
the variation of the dispersion of the scattered polaritons 
under the influence of the exciting radiation and their spec- 
tral distribution was studied. We use here the same approach 
as in Refs. 4 and 5, based on introducing two types of Green's 
function-retarded and ~orrelational.~~' As noted above, a 

characteristic feature of this system is the onset of the corre- 
lation of the scattered polaritons and the emitted phonons, 
and also of the scattered polaritons with one another. This 
additional coherence is manifested, in particular, in the in- 
tensity oscillations of anti-Stokes scattering following 
abrupt application of the pump wave. From the formal 
standpoint, this coherence is accounted for in natural fash- 
ion by the appearance of the so-called anomalous Green's 
functions, similar to the functions introduced by BelyaevRs9 
and by G o r ' k o ~ ~ . ' ~  in superfluidity and superconductivity 
theories. This also alters substantially the character of the 
equations that describe the spectral distribution of the scat- 
tered particles. The usual kinetic equation for an incoherent 
and strongly nonequilibrium many-particle system is re- 
placed by an equation similar to the equation, well know in 
quantum radiophysics, for the density matrix of a two-level 
system in a resonant external field, with the off-diagonal ma- 
trix elements replaced by the anomalous Green's functions. 

Especially noteworthy is also the physical meaning of 
the self-energy of these equations. In the so-called triangular 
representation, the off-diagonal elements (retarded and ad- 
vanced) of the self-energy matrix are related, as in the equi- 
librium case,9 to the polarizability of the medium and deter- 
mine the propagation of the field in it. On the contrary, the 
diagonal element of the self-energy matrix plays the role of a 
correlator of the flucutuating field sources. In thermody- 
namic equilibrium, this term is uniquely related to the off- 
diagonal elements by the fluctuation-dissipation theorem, 
but under the conditions far from equilibrium considered 
here, it becomes a fully autonomous nontrival physical char- 
acteristic of the problem. 

More specifically, we consider here the evolution of the 
Stokes and anti-Stokes components in the spectrum of scat- 
tered polaritons following an abrupt application to the crys- 
tal of an electric field of frequency E, close to that of the 
polariton resonance. We use the equations obtained5 for nor- 
mal and anomalous Greens's functions by a diagram tech- 
nique for nonequilibrium proce~ses.~.' We confine ourselves 
here to the r-approximation, i.e., assume that the normal 
polarization operators are independent of the external-field 
amplitude, and only terms linear in the field amplitude are 
included in the anomalous polariton-phonon polarization 
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operator that takes into account the correlations between the 
scattered polaritons and phonons. The normal polarization 
operators, whose imaginary parts specify the widths of the 
corresponding levels, are integrals over a large range of fre- 
quencies and momenta, and vary little in fields that are not 
too strong, so long as the spectrum restructuring and the 
change of the occupation numbers are concentrated in re- 
gions of frequencies and momenta small compared with &, 

and po (where po is the quaasimomentum of the polariton 
wave). An exception, as shown in Ref. 5, is the behavior of 
the system near the stimulated-scattering threshold. In our 
problem involving the onset of the field, however, even this 
case is not dangerous (meaning that the r-approximation 
can be used), since the accumulation of weakly damped 
phonoritons (mixed polariton-phonon modes), which alters 
the polarization operators, is localized in a narrow spectral 
range (compared with the combined width of the polariton 
and phonon levels), and proceeds quite slowly. 

We use a mixed momentum-time representation of the 
Green's functions. In the diagram technique for nonequilib- 
rium processes, the Green's functions are 2 X 2 matrices. In 
the "triangular" representation, which we shall use for the 
most part, the off-diagonal components are retarded and ad- 
vanced Green's functions, while the nonzero diagonal com- 
ponent is the statistical function. Our procedure is the fol- 
lowing. We first solve the equations for the retarded and 
advanced functions. To obtain a unique solution these equa- 
tions must be supplemented by boundary conditions. Since 
the retarded (advanced) functions are proportional to the 
mean values of the commutators of the corresponding fields, 
at equal times the normal and anomalous functions are equal 
to + i and zero, respectively. To find the intensities of the 
Stokes and anti-Stokes components, we next calculate the 
statistical functions (proportional to the mean values of the 
anticommutators), using6 equations of the type F= FGr 
ClG "(a is the statistical component of the polarization oper- 
ator). We shall also find it convenient to combine4 the nor- 
mal and anomalous Green's functions into 4X 4 matrices 
whose retarded, advanced, and statistical components are 
2 x 2 matrices similar to (4)  (see below). These 4 X 4 matri- 
ces and their temporal 2 x 2 components will be designated 
by appropriate lower-case letters. 

The equations for the advanced Green's functions take 
the form 

xg" ( t ,  t'. p )  =6 ( t - t ' )  1, (1 

. a - z - ,  E p  -cD ( p ,  t ' ) e x p ( - i e 0 t 1 )  a t  
g a ( t ,  t', P )  a 

-@ ( p ,  t l ) e x p ( i e o t ' )  * (- i -  - epl, ( p )  
atf 1 

= s (t-t' ) I .  
Here 

is the polariton dispersion law, u the speed of sound in the 
semiconductor, y,,,,,,, the reciprocal polariton (phonon) 
lifetime, 

cD ( P ,  t )  --@,0 ( t )  =D ( lp-pa  I no /2f tpu)  '"0 ( t ) ,  ( 3 )  

D the deformation-potential constant for the polar it on,^ the 
semiconductor density, no the spatial density of the coher- 
ent-mode polaritons, 

(4)  
G i,, the advanced Green's function of the scattered polari- , 
ton, G L, the retarded one of the photon, and G 1 and G ", 
the advanced phonon-polariton anomalous Green's func- 
tions. Here and elsewhere the superscripts and subscripts 
refer to the anti-Stokes and Stokes components, respective- 
ly. It is assumed that the electromagnetic field is applied at 
the instant t = 0. The functions (4)  satisfy the boundary 
conditions 

The Stokes and anti-Stokes components in ( 1 ), (2) ,  and (5)  
differ in sign because the positive- and negative-frequency 
parts of the customarily employed Green's function are cho- 
sen for these respective components. 

The solutions of Eqs. ( 1 ) and (2),  satisfying conditions 
(5) ,  take the following forms: For t, t ' < 0 

F o r t < O < t l  

G,",, ( t ,  t ' ,  p )  = [ A i  e x p ( i e i t t )  + A z  e x p ( i e , t r )  ] e x p ( - i e p o l t ) ,  

G a t ,  t', P, P O - P )  

=B e x p ( - i e P o r t )  [ e x p  ( i ( e , - e o ) t r )  - - C X P ( ~ ( E ~ - - F ~ )  t') 1, 
( 7 )  

G x a ( t ,  t ' ,  po-p,  p )  =B  exp ( - i s p h i )  [ e x p  ( i e , t l )  - e x p  ( i e , t l )  1 ,  
Gpl:(tf, t ,  Po-P) 
=f exp ( - i eph t )  [ A ,  exp ( ~ ( E ~ - P , ~ )  t ' )  + A i  exp  ( i ( e 2 - e , , )  t ' )  1.  
Finally, for t, t ' > 0 

GpOol ( t ,  t', P )  

= 0 ( t l - t )  [ A ,  exp  ( i e ,  ( t l - t )  ) + A, exp  ( i e ,  ( t l - t )  ) 1, 

G: ( t ,  t', p, po-p)  =0 ( t ' - t ) B  exp  ( - i e a t f )  [ e x p  ( i e i  ( t l - t ) )  
-exp ( i e z  ( t ' - t )  ) ]  , 

(8  
G x n ( t ,  t', pa-p, p )  =0 ( t ' - t )  B cxp  ( i e , t )  [ e x p  ( i e ,  ( t ' - t )  ) 
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Gphr(t', t, po-p) =* O(tl-t) [Azexp (i(e,-e,) (t'-t) ) 
+Ai exp (i(e2-eo) (tl-t)) 1. 

Here 

and the functions E , , ~  (p) are the split "phonoriton" 
terms4s5: 

Since the scattering probability increases with momentum 
transfer [see ( 3  ) 1, the splitting of the phonoriton terms is 
greatest for backscattering into modes located near the inter- 
section of the unperturbed polariton spectra and the ab- 
sorbed and emitted phonons; the characteristic frequencies 
E * and momenta p * of the latter are determined from the 
conditions 

At p-p, the occupation numbers of the anti-Stokes 
and Stokes components of the scattered polaritons are maxi- 
mal. To find them, we calculate first the statistical normal 
and anomalous Green's functions, using the equation5 

F P  ( 9 P FO (tr t'* Pc PO - P) 
f ( t * u 9 p ) = [ F x ( t , t 1 , ~ o - p , ~ )  max ( t .  t') Fpt,(tp.t,p0-p) I 

= 5 1 d t ~  dtrgr (t ,  t ~ ,  p)o(tl,  t:, P) P(h. f, P). (12) 
- "0 

where the statistical components of the polarization opera- 
tors take in the r-approximation the form 

where 

No, P,= [exp (ulp-p0 I lkBT) -1 I-', 

No, ,,,=[exp (~p/k,T) -1 I-' 

are the bare "thermal" occupation numbers of the scattered 
polaritons and phonons, while the retarded Green's func- 
tions are Hermitian adjoints of the advanced ones: 
g'(t , t l ,p) = [IP ( f t , f , ~ ) 1 + .  

The equal-time statistical functions are connected with 
the occupation numbers by the relations (a = pol, ~ h ) ~ . '  

N,(P, t)=[iF,(t, t ,  P)-1112. (14) 

Simple calculations yield" 

where 

%=Re (el-ez), y,,,=Im E , , , ,  

tg ( o , ~ + y r ) / ~ ~ ( r - ~ ) .  

To obtain the corresponding equation for N,, (p, - p, t ) ,  we 
must interchange the subscripts pol and ph in ( 15) (and, in 
particular, replace y by - y). 

We consider first the anti-Stokes scattering [the super- 
script in ( 10) and ( 15 ) ]. Equation ( 15) describes the estab- 
lishment of the stationary occupation numbers of the scat- 
tered polaritons. This process is relaxational in weak fields, 
i.e., at @,+ < r and oscillatory in strong fields @, > T. The 
oscillation frequency equals the splitting of the phonoriton 
terms; oscillations set in when the splitting exceeds the sum 
of the line widths. 

If the electromagnetic field is turned on for a time T, it 
can be easily shown that 

Na ( t > ~ )  

=No, a [I-exp (-2ya (t-T) ) ]+Nu (T) exp (-2ya (t-T) ) , 

( a  = pol, ph). If, for example, T - u , ~  T-I, the anti- 
Stokes component modulation depth is large and small 
changes of the duration of the passing pulse T or of the inten- 
sity of the transmittted wave can give rise to considerable 
changes, from r to r- I, of the duration of the back-reflected 
anti-Stokes pulse. 

For Stokes scattering, the splitting of the phonoriton 
terms in the central part of the line near p-p- is always 
small compared with T. No line-center oscillations are 
therefore produced. In sufficiently strong fields, at @,- 
> (yph ypo, ) 'I2, the sign of the damping y, is reversed5 in a 
certain momentum region near p-, and stimulated scatter- 
ing sets in. It follows from ( 15) that in this case the number 
of scattered polaritons and of emitted phonons increases ex- 
ponentially with time. If @ ,  % (yph yPoI ) ' I2  and there is no 
thermal source of polaritons (N,,,po, = 0) ,  we have 

Note that wp > r at the end points of the Stokes line and 
oscillations of the occupation numbers are possible. 

In strong fields @, % ( yph y,,, ) ' I 2  phonoriton back- 
scattering causes a rapid buildup of the transmitted-phonor- 
iton-wave fluctuations, consisting of correlated pairs of po- 
laritons with momenta p, + k and p, - k. The approach 
developed here permits a description of the initial stage of 
the onset of the noise, for times t < T- when the intensity of 
the scattered polariton wave is still low compared with that 
of the transmitted wave, and the fixed pump approximation 
is applicable. In second order of perturbation theory in the 
polariton-phonon intersection, we obtain2 at N,,,, = 0 the 
following expressions for the density of the "noise" polari- 
tons near the transmitted wave 

N,,, (po+k, t )  =(a+ (po+k, t)a (pofk, t ) )  
and for th'e equal-time noise correlator (a(p, - k, t)  
a(p, f k, t )  ) (where a(p, t )  is the polariton annihilation 
operator in the Heisenberg representation and Ikl< Ip,]): 
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X{[ 6  PO+^) - eo-Q ( p ,  k )  ] 

where 

~ ~ ~ = ~ / ~ D ~ l p - - p ~ J / f i ~ u ,  

Using ( 9 )  and'(l0) we obtain 

(a(po--k, t)a(p,+k, t )  )=exp (-2ieot) N,,, (po+k, t )  ( 2 1  ) 

and 

Npo, (pa ,  t )  x ( l+No,  p h ) 2  exp (4(D,-t) I'/cD,_. (22) 

We emphasize that Eqs. ( 18)-(22) are valid in strong fields, 
when the transmitted-wave intensity exceeds substantially 
the stimulated-scattering threshold, and during the initial 
stage of the process, at times t  satisfying the condition @,_ - ' 
S: t ( r - ' .  

We note in conclusion that the question of the effects 
observable outside the crystal calls for additional considera- 
tion of the coefficient of polariton passage through the crys- 
tal boundary, which is also changed by the change of the 
polariton spectrum. 

APPENDIX 

By calculating (12) with the aid of ( 1 3 )  and ( 6 ) - ( 8 )  
we obtain, e.g., at t  > t  ' 

Fa ( t ,  t', p) =Fa ( t ,  t', p) + (1+2No, a )  Gar ( t ,  t', P I ,  
F ,  ( t ,  t', P, PO-P)  

= f r o  ( t ,  t', p)+ (1+2N0, ,,,)G', ( t ,  t ' ,  P,  PO-p), (A.1)  

Fx ( t ,  tC,  PO-P, P )  

= f r x  ( t ,  t', p) - (1+2No, P O I )  Gxr ( t ,  t', PO-P, P )  , 
where a = p o l ,  ph and f=O if O > t > t l  and t > O > t l .  If 
t > t 1 > O  we have 

Fpol(t, t', p) =-ilB12(Ell+E22-E12-E21)r (A.2)  

P o ( t ,  t', P )  

=Ti exp (-~E~~')B'(A~E,,-A,E~~+A~E~~-A~E~~), (A.3)  

Fx ( t ,  t', P )  

=*i exp ( ieot)  B(A2*EI,-AI*E22-A,'E,,+A,'E,,) ,  (A.4)  

where 
Eij= (1~1+2NO,  ,hT2N0, ,,r)exp(-iei't+iejtl) 

x{I-exp [ i(ei l -ej)  t '] ) [ i ( ~ i l - ~ ~ )  -2yph] li (ei0-e.) , , ( - 4 . 5 )  
E~ = E~ ( p )  [see ( 10) 1, and i = 1,2. To obtain the function 
F', (t,t ',PI, we must interchange the subscripts pol and ph in 
(A.2)  and (A.5)  

The correlation properties of the noise near the trans- 
mitted wave are described by the corresponding components 
of the normal and anomalous Green's functions of the direct 
polaritons5 

D(po+k, t ,  t ' ) ,  Do (po+k, pa-k, t ,  t ' ) .  
It is convenient to continue by transforming from the "trian- 
gular" to the " * " representation of the Green's functions, 
in which6*' 

G+-=I/? ( F - G r + P )  , G-+=1/2(F+Gr-Go), 

G--=0 ( t l - t )  C;-++€I  ( t - t ' )  G+-. (A.6)  

In the " + " representation the functions D and DO are 
related to the polariton correlation functions by 

D+-= (p,+k, t ,  t ' )  =-i(a+(p,+k, tl)a(p,+k, t )  >, 
(-4.7) 

no  +- (p,+k, p,-k, t ,  t ' )  =-i(a (PO-k, t ' )  a (po+k, t )  ). 

In the r approximation the backscattering of the phon- 
oritons into modes close to the transmitted wave is disre- 
garded, and in the absence of a thermal polariton source 
(No,p,, = 0) we have5 

D,+-= D,, , = 0, D,+ (p ,  t>tf) = - iexp [ieT,l ( ~ ) ' ( t '  - t)l. 
(A .8 )  

In second order of perturbation theory in the polariton- 
phonon interaction, taking diagrams a and b of Fig. 1 into 
account, we obtain for the equal-time functions the follow- 
ing expressions 

A- + t 
\*-'+4& 

Po- P + k 

+ :\dk- 
Po- P + k 

FIG. 1.  Diagrams of  second-order perturbation theory in the polariton- 
phonon interaction for the Green's function D + - ( p i ,  + k,  t ,  t )  ( a ) ,  
D $ - (p , ,  + k,  pi, - k,  t, t )  (b),  and for the polarization operators 
n,: - (pi,+ k ,  t, t ' )  ( c ) ,  n,: - (p , ,  + k,  pi,- k ,  t ,  t ' )  ( d ) .  Notation: 
1 - D , , + + , 2 - G z , , 3 - G p ; + , 4 - G -  o 
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X n:: (po f k, P, - k, t ' ,  t") D i f  (p, - k, t ,  t"), 
(A.lO) 

where the normal and anomalous polarization operators 
(diagrams c and d of Fig. 1 ) are equal to 

~ G ~ - ( p , p ~ - ~ , t , t ' ) G i + ( ~ - k , ~ ~ + k - ~ , t ' , t ) ,  (A.12) 
ni+ ( t ,  t l )  = - e ( t - t l ) n - + ( t ,  t T ) - e ( t T - t ) n + - ( t l ,  t ) .  ( A . I ~ )  

In the derivation of (A.9) and (A. 10) we used the fact that 
in the " f " representation the Green's functions are inde- 
pendent of the time index at the maximum time. Calculating 
(A.9) and (A. 10) with the aid of (A. l b ( A . 5 )  for Stokes 

scattering far above the stimulated-scattering threshold, we 
obtain Eqs. (18) and (19). 

'The final expressions for the statistical Green's functions ( 12) are given 
in the Appendix [Eqs. (A.l )-(AS) 1. 

*'The calculations are given in the Appendix [Eqs. (A.6)-(A.13) ] 
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