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A study is made of the polaron effect that arises during tunneling of a heavy particle in the 
electron fluid of a metal. The problem of adiabaticity in a metal is analyzed with a consistent 
allowance for the intra-well motion of the particle. That part of the perturbed electronic wave 
function which is associated with virtual excitations having an energy SE greater than the level 
separation w in the well, is found to readjust itself adiabatically to the particle, whereas the 
other part, with SE < w, does not follow the particle but is directed toward the center of the 
well. The anti-adiabatic character of the second part of the intra-well wave function gives rise 
to a polaron effect which, however, is governed by the ratio T/w rather than T / E ~ .  In the 
presence of a relative shift 6 of the levels in adjacent wells the polaron effect decreases and is 
governed by the parameter 5 /a. The problem of the tunneling jump of a heavy particle with 
shake-up is solved for an arbitrary relationship between 6 and T. The 6 = 0 and T less than the 
effective width A, of the band, a diffusion under conditions of band-type motion arises and is 
characterized by a constant value of A, and by an intraband scattering by electrons which are 
not involved in the polaron effect. This effect is manifested only in the size of A,.  

1. INTRODUCTION 

A careful analysis of the motion of a heavy particle in a 
metal meets with substantial difficulties. On the one hand, 
the characteristic velocity of the electrons is large compared 
to that of the heavy particle, and this makes it natural to use 
the approximation of an adiabatic readjustment of the elec- 
trons to the instantaneous position of the particle. It might 
seem that there would be here an insignificant renormaliza- 
tion, of the order of m/M, to the mass M of the particle (m is 
the electron mass). On the other hand, even the very slow 
motion of a heavy particle in a degenerate Fermi fluid can 
give rise to electron-hole pairs of low energy, and this, in and 
of itself, contradicts the assumption of a complete adiabatic 
readjustment. Meanwhile, there is a class of phenomena for 
which the question of whether or not there is an adiabatic 
readjustment of the electrons to the moving heavy particle is 
of absolutely fundamental significance. 

In connection with the quantum diffusion of a heavy 
particle in a metal, this problem was first pointed out by 
KondolS2 (Ref. 2 contains a review of Kondo's more recent 
papers). Kondo considered the motion of a heavy particle in 
a narrow band arising in the periodic potential of a crystal in 
the tight-binding approximation with allowance for the in- 
teraction with the electron fluid. This interaction causes a 
renormalization of the tunneling matrix element of the tran- 
sition from cell 1 to 1 + g; this renormalized matrix element, 
which determines the actual width of the band, is then ob- 
tained as 

where 

is the overlap integral of the electronic states corresponding 
to a fixed position of the particle in sites 1 and 1 + g, and A, is 

the tunneling matrix element corresponding to the original 
potential relief. Th.e structure of expressions ( 1.1 ) and ( 1.2) 
is exactly the same as the familiar result for the ordinary 
small-radius polaron if Y, is understood to be the phonon 
wave function. 

Overlap integral ( 1.2), at least for T-  0, goes to zero, in 
a formal sense, to macroscopic accuracy. This result is a 
consequence of the so-called "orthogonality catastrophe" of 
Anderson, or, in othei words, of the presence of a large num- 
ber of electron-hole pairs of low excitation energy in the 
structure of the many-particle wave function \V, considered 
in the basis of unperturbed electronic It is the ad- 
mixture of these low-energy states that leads to the infrared 
divergence that makes (1.2) go to zero. As a result, the 
width of the coherent band narrows to zero or, in any case 
(when all the physical factors that smear out the divergence 
are taken into account), to a very small value compared to 
A,. This same infrared divergence causes the difficulties not- 
ed by Nozieres and Iches in the description of the Brownian 
motion of a heavy particle in a Fermi fluid. 

Actually, results (1.) and (1.2) imply that during the 
time of the under-barrier tunneling of the heavy particle 
there is no readjustment of the electron cloud of the heavy 
particle in the intial unit cell. This corresponds to a complete- 
ly anti-adiabatic picture. In the case of a small-radius po- 
laron, the light electron passes under the barrier in a time 
during which the polarized cloud formed by the displace- 
ment of the atoms in the crystal is unable to readjust. In the 
case under consideration, which is just the opposite, this is 
obviously not so. It is easily inferred that, on the contrary, in 
the case of a total adiabatic readjustment of the electrons the 
overlap integral in ( 1.1 ) in general goes to unity. 

5. The recent papers of K o n d ~ ~ ~ ' ~ . ~  have cast doubt upon 
the validity of the adiabatic approximation in metals. This 
doubt was based on the fact that if one takes as the variation- 
al wave function the purely adiabatic wave function 
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where p ( R )  is the wave function of the particle in an isolated 
potential well and $(r,R) is the wave function of the elec- 
trons at a fixed value of R, then the energy diverges. This 
divergence is a result of the action of the kinetic-energy oper- 
ator of the particle on the function $(r,R). In fact, 

and, using for the overlap integral the explicit form obtained 
in Ref. 7 for T = 0, we immediately find that this part of the 
total energy diverges macroscopically. (Here and below the 
symbol a, means a differentiation with respect to R that 
operates on the electron wave function only). This result 
also led to the conclusion that the interaction of the heavy 
particle with the electrons is of a nonadiabatic character. In 
fact, this is actually the case for the model Hamiltonian used 
by Kondo in analysis of the problem, 

where 2: and 2, are thezreation and absorption operators 
for a particle at site 1 and V ,  is the operator, fixed at site 1, for 
the interaction of the electrons with the particle. In this 
Hamiltonian the particle has no intra-well degrees of free- 
dom. Thus it was implicitly assumed that the excited levels 
of the particle in the well are separated from the ground state 
by an amount w that is greater than the Fermi energy E, of 
the electrons. But this is just the obvious anti-adiabaticity 
condition. It is not accidental that in considering a more 
general variational problem with allowance for the intra- 
well dynamics of the particle Kondo9 obtained a criterion of 
nonadiabaticity in the form 

It was concluded that under the opposite inequality there is 
no polaron effect. 

Actually, the adiabatic approximation is valid in metals 
and does not lead to a divergence of the energy." It was 
%hewn in Ref. 11 that when the nonadiabatic operator 
B = - d /2M is taken into account it is necessary to si- 
mukaneously take into account another nonadiabatic opera- 
tor A = - a, V, /M as well. Then the divergence in the en- 
ergy is eliminated and instead the corrections to the energy 
of the adiabatic state turn out to be small (see the foll%wing 
yction for details). We emphasize that the operators A and 
B, which differ in their structure and the effect of their oper- 
ation on the adiabatic wave function, derive from the same 
origin and should always be taken into account sim2lta- 
neously. Because the matrix elements of the operator A are 
nonzero only for the transitions that are non-diagonal in the 
state of the particle in the well, allowance for this operator 
necessarily requires consideration of a system of levels in the 
potential well, i.e., allowance for the intra-well motion of the 
particle. This circumstance is of a fundamental nature. 

Thus, the divergence of the energy of the adiabatic state 
due to ( 1.3) is spurious, and Hamiltonian ( 1.4), which does 

not take the intra-well transitions into account, does not give 
a realistic description of the problem in general. 

In this analysis of the problem, Kondo actually pro- 
ceeded from the assumed validity of ( 1.4) and ( 1.5) and 
thus considered the completely anti-adiabatic case. In ordi- 
nary metals the inequality opposite to (1.5) always holds, in 
accordance with the standard small parameter 

[as the ratio M /m in ( 1.5) is formally increased, it should be 
remembered that, in a fixed potential relief, w -M -'I2]. In- 
equality (1.5) actually fails also for the lighter kinds of 
heavy particles, including thep+ meson (the lightest of all), 
whose quantum diffusion in metals has been studied inten- 
sively in recent years. 

Although in the energy sense the validity of the adiaba- 
tic approximation in metals is not in question, the actual 
picture, as elucidated in the present study, turns out to be 
substantially more complicated. In the many-particle wave 
function arising upon the introduction of a heavy particle, 
the admixture of virtual excitations having frequencies 
SE> w adjusts to the particle and follows it adiabatically. At 
the same time, excitations with SE < w remain, and as the 
particle moves in the potential well the corresponding part of 
the wave function adjusts to the center of the well. By virtue 
of ( 1.6), the overwhelming majority of the virtual transi- 
tions are adiabatic, and this fraction of the transitions deter- 
mines the state energy, the screening, the effective adiabatic 
potential, etc. The low-energy excitations, which because of 
their small phase volume do not substantially influence these 
characteristics, nevertheless predetermine the occurrence of 
an appreciable polaron effect owing precisely to the nonadia- 
batic part of the wave function that is directed toward the 
center of the potential well. This is because the infrared ca- 
tastrophe due to the virtual creation of low-energy electron- 
hole pairs remains, though the sharp decrease in the nona- 
diabaticity interval from ( 0 , ~ ~ )  to ( 0 , ~ )  causes the large 
characteristic parameter ln(~, /T)  to be replaced by ln(w/ 
T) . Because this factor is in the exponent, the polaronic nar- 
rowing turns out to be several orders of magnitude smaller. 

In this paper we develop a technique of constructing the 
many-particle wave function in the presence of intra-well 
motion of the heavy particle through the use of the adiabatic 
basis and a perturbation theory in the nonadiabaticity pa- 
rameter x2 ( l .6). We systematically trace the separation of 
the electronic wave function into two parts, one of which 
actually does not follow the particle but turns out to be di- 
rected toward the center of the potential well. The results 
enable us to determine the polaron effect due to the electrons 
and to solve the problem of the quantum diffusion of a heavy 
particle in a metal both in the ideal case and in the presence 
of a static shift between the levels of adjacent wells. 

2. ADIABATIC APPROXIMATION IN A METAL 

Suppose that a heavy particle in a metal is moving in a 
potential relief U(R). For simplicity we assume that the 
electron fluid is uniform. The initial Hamiltonian is then 
written in the form 
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A=Aar+RIr+v(r, R), RM=.-VR2/2M+u(~) (2.1 ) 

(where ? ( r , ~ )  is the interaction of the electrons with the 
particle). We use the scheme developed in Ref. 11 for the 
adiabatic theory of the metal. In this theory the adiabatic 
wave function (zeroth approximation) is of the form 

where $, is the solution of the Schrodinger equation for the 
electrons at a fixed R: 

and pa (R) is the eigenfunction of the Hamiltonian gM. At 
first we shall neglect the weak tunneling between the poten- 
tial wells forming the periodic potential relief U(R). Then 
the wave functions pa will refer to an individual well, for 
which we shall assume, without loss of generality, that the 
harmonic approximation holds. In the case of a uniform 
electron fluid, En is independent of R and the function pa is 
independent of the index n. 

The system of functions @IP,' is complete in (r,R) space. 
Therefore, an arbitrary solution can be represented as 

By operating on @ (r,R) with the total ~amiltonian 2 (2.1 ), 
we arrive at a system of perturbation-theory equations 
which determine the corrections to the adiabatic solution: 

n n n 
where for the nonadiabaticity operator C = A + B we have 

Using Eq. (2.3), we can convert the matrix element 
(n la, Im) to a form which is convenient for further analysis. 
To do this, we operate with a, on both sides of Eq. (2.3) and 
then, after multiplying by $:, integrate over the coordinates 
of the electrons. As a result we find 

(nl dR(m) = - <nI aVlaRI m> 
, <nIdRIn>=O. (2.7) 

En-Em 

The solution of system of equations (2.5) permits us to find 
the nonadiabatic readjustment of the wave function and the 
corresponding corrections to the energy. Let us begin with 
the second. 

The operator for the interaction of the electrons with 
the heavy particle in (2.1) and (2.7) can be written in the 
second-quantization representation as 

V = ~ k , t .  (~)blf*lk, , . ,  Vt,k. (R) = v k , k ,  (0) e-i(k-k')R. 

In calculating matrix element (2.7) we keep only the first 
term of the expansion in the small deviation of the particle 
from the equilibrium position in the potential well, setting 

A 

R = R, = 0. Then the operator B turns out to be diagonal 
with respect to the states of the p2rticle in the well, while the 
matrix elements of the operator A decompose into products 
of independent matrix elements: 

It  follows from the form of (2.8) that matrix elements 
(2.7) are nonzero only for transitions involving the creation 
of a single electron-hole pair: 

< n l a , l r n > - . - d ~ , ~ ~ l ( ~ k - e r ~ ) ,  
(2.10) 

dk,k,=<kl V R P  (r-R) I k'>=-i (k-k') Vk,ks. 

Let us calculate the correction to the energy of the adia- 
batic state. The first-order correction E "' is getermined by 
the diagonal matrix element of the operator B. This matrix 
element can be found immediately by using the completeness 
of the electron wave functions and the vanishing of the diag- 
onal matrix element of a, : 

After using (2. lo),  we have 

This correction to the energy agrees exactly with the result 
obtained from ( 1.3). It contains a pole of order two, which 
gives rise to a logarithmic divergence at T = 0: 

E")-ln N, 

where N is the number of electrons in thz system. 
A contribution from the operator A arises only in the 

second order of perturbation theory. If we take it into ac- 
count that V, has nonzero matrix elements only for transi- 
tions between adjacent levels 

(e, , o and NA are the polarization vector, the frequency, and 
number of the level of a degenerate three-dimensional oscil- 
lator; A = 1,2, 3), then we easily find that 

We can easily verify that for JE, - E; I ( w  the first term in 
this expression cancels exactly the first-order correction 
(2.1 1 ) 8, ef, e j = S , ,  ) . The divergence is thereby removed. 
This cancellation, which occurs in all orders of perturbation 
theory, is by no means accidzntal. i t  reflects the fact that 
both nonadiabatic operators A and B derive from the same 
origin and should always be taken into account together. A 
model which formally introduces only one lev21 in the well 
eliminates the contribution of the operator A because of 
(2.12) and thereby causes the nonadiabatic correction to the 
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energy to become infinite (see the Introduction). 
Combining (2.1 1 ) and (2.13), we get for the leading 

correction, quadratic in the parameter x2 ( 1.6), to the adia- 
batic energy 

A direct calculation of (2.14) gives the estimate 

Thus the nonadiabatic corrections to the energy not 
only turn out to be finite but they are small, in accordance 
with the adiabaticity parameter x2 ( 1.6), as well. 

3. NONADIABATIC READJUSTMENT OF THE ELECTRONIC 
WAVE FUNCTION 

Let us now consider the nature of the readjustment of 
the adiabatic wave function under the influence of a nona- 
diabatic perturbation. For this we return to the representa- 
tion of the wave function in the form an expansion in the 
adiabatic basis (2.4) and seek the coefficients la, from the 
solution of equation (2.5). Let the original unperturbed 
state have indices a = %and m,. Then, in the first order of a 
perturbation theory in A we have 

Here the state m, differs from m, by one electron-hole pair 
(k,k'). 

In this approximation the admixture of states having an 
excitation of the first level in the well is given by [see Eq. 
(2.1011 

de de'n,. (l-n.) 0' 
(3.2) 

.Here V is the characteristic scale of the interaction of the 
particle with the electrons, and p (E,) is the density of states 
at the Fermi surface. The main contribution to this integral 
is from electron-hole pairs with energy )E - E' I  < w. The con- 
tribution of the virtual excitations from all the rest of the 
phase volume is small, amounting in order of magnitude to 
x2. Therefore, 

We note that to go over from the sum to an integral in (3.2) it 
is necessary to formally supplement the definition of the in- 
tegration procedure because of the presence of a pole of or- 
der two; in particular, we must introduce a cutoff of the 
familiar logarithmic divergence at T = 0. We shall return to 
this later. For now it is important only that J, ) 1. 

To clarify the structure of the resulting wave function, 
let us first assume that the parameter x2 is so small that y 4 1. 
We find the coefficients la, to lowest order in this param- 
eter. Purely for simplicity of exposition, we shall consider a 
particle in a one-dimensional potential relief (the general- 
ization to the three-dimensional case is immediate). Then a 
coincides with the number of the level, and, to lowest ordq  
in y, 5,- arisezon the a-fold application of the operator A 
(the operator B is diagonal in the vibrational states): 

Earn a= 
<am, I A 1 a-lm.-,> ... <im, IA 1 Om,) 

m,...m.-I ao+Ema -Em o + E m , - E m  

In accordance with (2.9) and (2.10), operating with Â  
changes the number of electron-hole pairs by one (the state 
Im,) is taken to be the vacuum state) or leads to the rescat- 
tering of an electron or hole. If a pairs form, then the inter- 
mediate summation in(3.4) drops out, and 

Here, as in going from (3.2) to (3.3), in each integral over 
d ~ , d ~ :  for an individual pair, the main contribution is from 
the region of excitation energies IE, - E: I that are small com- 
pared to w.  Excitations with IE, - E: I > w give a negligible 
contribution. 

This same result (3.5) is obtained in the case when the 
absorption of pairs occurs in the intermediate transitions 
and the state [ma) corresponds to fewer thana pairs. In fact, 
in this case the intermediate summation over the momenta 
of the created and then absorbed pair k,, k: remains in (3.4). 
Then the integrand again has a pole of order two, 
(E, - E: ) -*, which makes it possible to neglect the energies 
of the electronic excitations in comparison with a, and the 
integral gives ( 3.3). 

As a result, every such "annihilation" leads to a factor 
of y2 in (3.5) which compensates for the lack of summation 
over the momenta of the two pairs in 8,=. 

Let us now show that the rescattering processes can be 
neglected in comparison with the creation or absorption of 
electron-hole pairs. The virtual rescattering of an electron in 
(3.4) corresponds to the creation of a pair 6, + a,, in one 
step and a pair 6, + 6, in a later step; the opposite order 
corresponds to the rescattering of a hole. If a pair (k,kl) is 
contained in state Ima ), then in amplitude (3.4) there is one 
intermediate integration over d ~ ,  . Again it is easily inferred 
that the energy of the electron-hole pairs can be neglected in 
comparison with w, and the sum of the two rescattering 
channels leads to an integral of the form 

l-n, - -1 Jdes [ (b-ekv) (el-e.) (EL-8.1 (e.-ekl) 

2 
=- S k '  ln-. 

8kq-ek 8 h  

This expression is nonsingular at E, = E,. . If we now evalu- 
ate the sum in (3.5), we are easily satisfied that each inter- 
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mediate rescattering removes a factor J,  % 1 and so, instead 
of two powers of y, the substantially smaller factor yx2  ap- 
pears. This result allows us to neglect rescattering processes 
in finding the amplitude (3.4). 

We note that by increasing the order of perturbation 
theory wken finding {am,, we could also have put in the 
operator B in the intermediate stage; since it is diagonalin a, 
the exact same transition occurs as when two operators A are 
used. The sum of two such channels, by analogy with the 
correction to the energy (see the previous section), largely 
cancels, and an extra small factor that is clearly smaller than 
y2 arises in sum ( 3.5 ) . 

From these results we can conclude that substantial 
readjustment of the adiabatic wave function involves the cre- 
ation of electron-hole pairs with an energy that is small com- 
pared to w. Therefore, in finding the amplitude {am, in 
(3.4) we can neglect the energy of the electronic excitations 
in the denominators whenever it occurs together with w .  We 
substitute (2.9) into (3.4) and use the well-known relation 
for the matrix elements 

Then, remembering that a, operates only on the electronic 
states, we find 

=- ( - l ) a  (ama 1 { ( ~ - ~ , ~ a ~ ~ l ~ m ~ ) ;  
a! 

here 

where P is the projection operator that selects from the total 
set of electronic states {ma) (at fixed R) only those states 
which differ from the initial state m, by the presence of elec- 
tron-hole pairs with energies smaller than w [the primed 
sum in (3 .7 )  corresponds to this same selection of intermedi- 
ate states]. The cutoff introduced on the frequency w has 
logarithmic accuracy, as follows directly form (3.3) [see 
also Eqs. (5.5) and (5.7) below]. 

To this same order in the parameter y, the expression 
for {am, can be written in the form 

Eam,=(amul exp {- ( R - R ~ ) ~ ~ ) ~ O ~ , > .  (3.9) 

Here we have given directly the expression for the three- 
dimensional oscillator-the corresponding generalization of 
(3.7) presents no difficulty (a is now a set of three quantum 
numbers). 

Actually, result (3.9) is more general and does not rely 
on the parameter y being small. In fact, if we recognize at the 
very beginning that it is electronic excitations with energies 
small compared to w that are important in the structure of 
the perturbation theory, we can rewrite the initial equation 
(2.5) in the form 

Let us show that (3.9) is a solution of equation (3.10) with 
E = E, =, = Eo. For this we substitute (3.9) into (3.10) 
and transform the left- and right-hand sides separately [see 
Eq. (2.1)]: 

(Eo-Ea) (an I exF ',- (R-Ro) ;R) 1 Omo) 

- - a R Z  
=<an 1 exp {- (R-R,) an) - 2M 

- 
ar' - ~ x P { -  ( R - 4 )  5.) V R  I Omo). (3.11) 

In transforming the right-hand side we use form (2.6) for 
the nonadiabaticity operators: 

- 
ar" dr'dr' 

= (an ( e x p { - ( ~ - & ) ~ ~ ( -  2M -+-) M 

Since the state In) in (3.10) belongs to the subspace 
projected by the operator P, the product a,;?, in the curly 
brackets is automatically the same as ;? :, , in operating on a 
state from this space, leads either directly to the creation of 
two electron-hole pairs belonging to this same subspace or to 
the creation of one such pair and a rescattering in the inter- 
mediate stage. In the latter case, however, it can be assumed 
by virtue of result (3.6) that no departure from the subspace 
under consideration will occur. Therefore, the operator :, 
in the curly brackets can be replaced by ;? . Now by compar- 
ing (3.11) and (3.12), we see that the two results agree. 
Thus Eq. (3.9) is actually a solution of equation (3.10). 

Importantly, this demonstration implies that a solution 
of the form (3.9) is valid not only for arbitrary y but also for 
an arbitrary form of the potential well, and also that it does 
not rely on the approximate representation (2.9) of the ma- 

h 

trix elements of the operator A. 
Knowing solution (3.9), we can now find the perturbed 

wave function (2.4) : 

= ( a n  1 exP {- (R-R.) ;R} 1 On/. )va (R-Ro) Q (r, R )  
an 

We note here that 

and, consequently, function (3.13) is automatically normal- 
ized. 

Had a, operated throughout the whole space of wave 
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functions, i.e., if we had P = 1 in (3.8), then the operator 
exp{ - (R  - R,)&) would be the usual displacement op- 
erator. Then 

and function (3.13) would turn out to be 

@ (r, R) = 0% (r, RO) 1 

i.e., the initial adiabatic function would become a typical 
anti-adiabatic function-the electrons would not follow the 
position of the particle but would be directed toward the 
center of the well. 

In the situation under consideration, only the part of 
the wave function associated with low-energy virtual excita- 
tions turns out to be directed toward the center of the well. 
This can be seen most clearly in the case when interaction 
(2.8) is weak. Then, taking (2.10) into account, we can ex- 
pand the exponential in (3.9) and (3.13) in a series, keeping 
only two terms. Then in the same approximation we have 

(an I - P (R-Ro) &PI Om,) 

-(@k:) (r, R) I PO:: (r, Ro) ), an+Omol 
(3.14) 

Q (r, R) = Q~E)  (r, R) {I -(@:! (r, R) 1 @% (r, Ro) )} 
+ cpo (R-Ro) P4m (r, Ro) 

Operating with P on the function tClrno (r,R,) reduces to 
selecting from the expansion of this function in the adiabatic 
functions (2.2) only those states with SE < w.  

Thus, in this case wave function (3.13) decomposes 
into the sum of two functions, one of which is purely adiaba- 
tic and the other anti-adiabatic. 

4. TRANSITION MATRIX ELEMENT 

Let us now find the matrix element for the transition of 
a particle from unit cell 1 to 1 + g. Assuming that the ampli- 
tude of the tunneling transition of the particle is extremely 
small, we can say that within each cell there is sufficient time 
for the formation of an electronic wave function of the type 
found in the previous section (this statement is refined some- 
what in the next section). Here the nonadiabatic part of the 
electronic wave function gives rise to a polaron effect which 
reflects the fact that a part of the perturbed electron cloud 
does not follow the particle when it tunnels. We note that the 
inverse time (imaginary) for the passage of the particle un- 
der the barrier is of the same order of magnitude as w.  For 
simplicity we shall not differentiate between these two char- 
acteristic? 

Let H '(R) be the Hamiltonian responsible for the tun- 
neling transition between adjacent cells. Then, assuming 
that the motion is in the lowest vibrational level (a = 0) and 
taking (3.13) into account, we have for a transition involv- 
ing excitation of the electronic subsystem 

Here the states in the angle brackets correspond to the pure- 
ly adiabatic wave function (2.2); for the true wave functions 
(in parentheses) we retain the notation of the initial adiaba- 
tic states. 

Evaluating the electronic matrix element at the external 
point R, between the two cells, we find 

We note that for purely adiabatic states only the diagonal 
matrix element, which is simply equal to A,, is nonzero. 

The wave functions $, (r,R) is a solution of equation 
(2.3 ) . We operate from the left on both sides of this equation 
with the operator expi - gR 1. Introducing the function 

we find 

[P'+V (r, R)] $m (r, R) +AV (r, R) $m (r, R) =Ern$, (r, R), 
(4.3) 

AV (r, R) =exp{-g&) v (r, R) ~ X ~ { ~ & , ) - V  (r, R) . 
Because olthe projection operators in definition ( 3.8 ), 

the operator A V has nonzero matrix elements only between 
states having an energy of the electron-hole pairs that is less 
than o. Using the explicit form of the interaction from (2.8), 
we have 

k ,kr ,u  

- exp [-i (k-k') R])P&,s+ci~*B. (4.4) 

The solution of equation (4.3) can be written 

h 

The operator A V(t) is given in the interaction representa- 
t i o ~ .  H e r ~ t h e  Hamiltonian in the absence of the interaction 
is He' + V(r,R), i.e., the electronic Hamiltonian for a fixed 
position of the particle at point R. The eigenfunctions of this 
Hamiltonian are precisely the functions qrn, and the struc- 
ture of expression (4.5 ) corresponds to the assumption that 
the interaction is turned on adiabatically. 

In considering an electron gas without the interaction, 
we take the vertex in (2.8) and (4.4) to mean the screened 
potential or pseudopotential (which takes into account the 
readjustment of the one-electron wave function around the 
particle). 

Thus, matrix element (4.1 ) with allowance for (4.2) 
has actually reduced to the matrix element 

We now advance an important argument. As was 
shown in Sec. 3, in the amplitude for the creation of an arbi- 
trary number of electron-hole pairs, the governing channels 
are those in which only new pairs are created or absorbed, 
while the intermediate rescattering of excited pairs entails a 
sharp decrease of $is amplitude. If we neglect the rescatter- 
ing and rewrite A V from (4.4) in the form 
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then it is easy to understand that each term in the series of the 
ordinary S-matrix expansion will contain factors of 
A V,, (ti 1, which commute with each other. This allows us to 
remove the chronological operator T in (4.5), whereupon 
the integration over time can be done directly in the argu- 
ment of the exponential function. [Actually, the operators 
AV,. ( t )  for the same modes (s,sf) at different times do not 
commute with each other. However, allowance for this non- 
commutativity will lead to the unimportant phase factor 

which actually cancels out the analogous phase factor that 
was dropped in going from (4.2) to (4.5) 1 : 

By the same considerations, this expression can be rewritten 
in the form of a product: 

Here we have made use of the fact that according to (4.4) 
and (4.7), C,., = C:. . 

The evaluation of matrix element (4.6) can now be 
done without difficulty if it is taken into account that to 
macroscopic accuracy onlxthe first three items must be kept 
in the series expansion of A,, in powers of the argument of 
the exponential function. 

5. QUANTUM DIFFUSION IN A METAL 

Let us begin our discussion of the diffusion problem 
with the case of a nonideal metal in which the static scatter 
g,,, + , of the energy levels in the neighboring wells, though 
small compared to w, is larger than the tunneling energy 
width A, (more precisely, the effective width a,, see below). 
The probability of a transition from cell 1 to cell 1 + g with 
allowance for the results of the previous section is given by 
the expression 

Taking (4.9) into account, we have for the diagonal 
matrix element of the product i,+ (t)X,, (0), averaged over 
the electron distribution (see the remark at the end of 
Sec. 41, 

where 2, is the Fermi distribution function. Using this re- 
sult, we immediately find 

(here we have the total sum overs and s', so there is no factor 
of 2). 

We note that the procedure used to obtain expression 
(5.2) is analogous to the familiar procedure in the theory of 
the phononic small-radius polaron (see, e.g., Ref. 12) and is 
a direct c2nsequence of the possibility of representing the 
operator A in the form of a product as in (4.9). 

Substituting the explicit form of the expression for C,. 
from (4.4) and (4.7) and averaging over the directions of 
the vectors k and kt, we obtain 

m 

b=2pZ (ep) I V(k-kt) l z [ l - ~ ~ ~  (k-k') g). (5.4) 

The limits of integration in (5.3) reflect the fact that only 
states with excitation energies smaller than w contribute to 
expressions (4.4)-(4.9). In integral (5.3) there is no pole of 
order two, and all the calculations can be done immediately. 
Suppose T(w. Then, making the change of variables 
E - E' = y and recognize that the integration with respect to 
E' is an interval that is small compared tow, we have 

The expression in square brackets can be rewritten in the 
form 

In the initial integral (5.2) we make the change of vari- 
ables t - t - i/2Tand then shift the integration contour onto 
the real axis. As a result we find 

. - - 
dy ch (y/2T) - l 

W I , I + ~ - A ~ ~  exp (%) -- J dt exp{ - 261 -[ ,, Y sh(y12T) 

The integral of the first term in square brackets is indepen- 
dent o f t  and equal to ln(w/qT), 7 7 ~ 2 .  Taking it into ac- 
count that the integral of the second term converges rapidly, 
we replace the upper limit of the integration over y by a. 
Taking then the integral, we get 
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Evaluating the resulting integral and making some straight- 
forward manipulations, we finally obtain 

If we set 6 = 0 and w = EF in this expression, the result goes 
over to that found in Refs. 10 and 13. 

Before embarking on a general analysis of expression 
(5.8), let us first consider the case of a weak interaction of 
the particle with the electrons of the metal, i.e., b ( 1. In this 
limit 

This result has the same structure as the general expression 
for the transition probability in the problem of quantum dif- 
fusion in an irregular medium in the presence of an interac- 
tion of the particle with ph~nons . ' ~ . ' ~  Expression (5.9) re- 
flects the competition between the relative shifts of static 
(c,,, + , ) and dynamic (aT) origin between the levels in ad- 
jacent wells. The dynamic shift is due to the difference in the 
energy of the levels in adjacent wells on account of the inter- 
action of the particle with the same fluctuation in the elec- 
tronic system (T4w) .  

For R, %el,, + , we have fl,, + , z RT and 

We thereby arrive at a diffusion that is uniform over the 
crystal and is characterized by D- 1/Tif the above inequali- 
ty holds everywhere. In the opposite limiting case we have 

Let us now return to the general case of arbitrary b. In the 
limit RT % lcI,l + , I expression (5.8), up to a numerical factor 
of the order of 1, becomes 

WE, l+g=aaov~) IQ.. 

Hence, on the assumption of cubic symmetry, we have for 
the coefficient of quantum diffusion 

zaz Ao2 (T) D =  i- 
3 QT ' 

where z is the number of equivalent sites in the immediate 
environment. 

Comparison with (5.10) with allowance for (5.7) im- 
plies that there is actually a polaronic decrease in the ampli- 
tude of the tunneling transition, but on a scale determined by 
the ratio T/w rather than T / E ~  (cf. Refs. 2, 10, 13, and 16). 
This result was actually predetermined by the limits of inte- 

gration in (5.3), which reflect the actual narrow energy in- 
terval of nonadiabaticity (O,w), contrary to the assumption 
that this interval extends throughout an entire energy band 
of the order of E~ or of the width of the electronic conduction 
band. Importantly, even by T-w the polaronic narrowing 
has vanished altogether. 

We note that w -M - ' I 2  in a fixed potential relief, and 
the polaron effect diminishes with increasing particle mass. 
In particular, the existing paradox concerning the nonphysi- 
cal behavior of the polaron effect in the formal limit M -  co 
is eliminated. For T4w 

and forb < 1, as is assumed in the absence of resonance scat- 
tering of the electrons on the particle, the diffusion coeffi- 
cient increases with decreasing T, albeit slowly, especially in 
comparison with the phonon case (see, e.g., Refs. 14,15, and 
17). The dependence in (5.13) agrees with that found in 
Refs. 10 and 13. 

In the case I[,,, + , I ) a T ,  again to within a factor of the 
order of 1, 

By comparing this expression with (5.10) we see that the 
polaron effect has now ceased to depend on T altogether: 

A o z  Ao ( 1 El, I+%[ Im) (5.15) 

Here, as follows from comparison with (5.7), the size of the 
polaron narrowing has also decreased. This is because a real 
transition with a change in the particle energy includes the 
time scale - I/,$, rendering ineffective the contribution to 
the polaron effect from excitations with energies smaller 
thane,, + , . On the other hand, since the phase volume creat- 
ed in the inelastic interaction of electron-hole pairs is now 
determined by the quantity Ie,,, + ,I, rather than T, the fre- 
quency R,,, + , (5.9) for c1,, + , > 0 ceases to depend on tem- 
perature (for {,, + , < 0 a trivial Gibbs factor arises). As a 
result, in this case the transition probability (5.14) does not 
depend on Ta t  all. 

In the general case the macroscopic diffusion coeffi- 
cient should be found from the solution of the equation for 
the distribution function& of the particles in the site repre- 
sentation (see Ref. 15 for details) : 

The problem actually reduces to that of finding the conduc- 
tance of a three-dimensional network with a random distri- 
bution of the resistances of the individual links. The answer 
depends on the nature of the statistical distribution of the 
relative level shifts 

+ , . 
In obtaining the result of this and the previous sections, 

we proceeded from the implicit assumption that the state of 
the particle in each well is described by a stationary function 
and thus that the formation of the polaron cloud of the parti- 
cle involves the participation of excitations of arbitrarily low 
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energies. In fact, in a self-consistent approach it is necessary 
to take it into account that the particle spends a finite time T 

in an individual cell and so components with SE < 1/r do not 
have time to form in the anti-adiabatic part of the wave func- 
tion (3.13 ). Therefore, the nonadiabatic energy interval is 
bounded not only from above but also from below. However, 
for 161.1 + * I s 80 

and the real low-end cutoff occurs at the much higher fre- 
quencies IS,,, + , I  or fl,. Moreover, for fl, ) z " ~ ~ ,  the re- 
sults are valid even for {,,, +, +0. In fact, as follows from 
(5.6), the correlator appearing in the initial expression (5.1 ) 
falls off at long times as 

exp (-QTt). (5.16) 

This means that the integral builds up within a time - l/fl,. 
From the result obtained above, however, it follows that 

and the cutoff again occurs at frequencies much larger than 
1 / ~ .  Thus all the results are valid not only for a static disrup- 
tion of the band (6) 8,) but also for a dynamic one ( a,$). 
The quantity fi, is just the characteristic frequency of the 
relative jitter of the levels in adjacent wells [see Eq. (5.20) 
below]. We note that the asymptotic form (5.16) is a conse- 
quence of the anomalous behavior of the integrand in the 
argument of the exponential function in (5.5) as y+ 0 on 
account of the finite density of states for excitations near the 
Fermi surface. 

The situation is fundamentally different when 

Q,<A (T) =2zA, (T) (5.17) 

and at the same time there is no static shift of the levels. In 
this case there is a itinerant motion and the particle leaves 
the unit cell after a time 7- 1/8 (T). Now components with 
6E < 8 ( T )  do not have time to form in the site wave function 
of the particle. 

To describe the itinerant motion it is necessary to deter- 
mine the band width A, corresponding to coherent motion 
of the particle (tunneling without excitation of the elec- 
tronic system), which is governed by the diagonal matrix 
elements of the operator in (4.8 1. In evaluating the latter we 
must take into account the low-end cutoff SE-A, on the 
energies of the electron-hole pairs. Then to logarithmic ac- 
curacy we have 

To describe the itinerant motion in the general case it is 
necessary to use the Bloch-function representation. How- 
ever, as was found for T> A, [which is compatible with 
(5.17) forb 4 1 1, the kinetic equation for the density matrix 

of the particle admits a unitary transformation to the site 
representation, in which the kinetic equation is of the form 
(see Refs. 14, 17, and 18) 

For 1 # 0 the collision integral, with the scattering taken into 
account by perturbation theory ( b g l ) ,  is given by the 
expression 

where for the case of an interaction with electrons [see Eq. 
(2.8)] we have 

In the mixed representation that arises upon the Fourier 
transformation of (5.19) with respect to n, we have 

In treating macroscopic diffusion, when the concentra- 
tion changes over distances L)a  and when g a g  1, we can 
take 

In this case the density matrix p, (q) falls off rapidly with 
increasing 1, and system of equations (5.21 ) can be reduced 
to the equations for 1 = g and 1 = 0, in which for 1 # 0 one can 
drop the time derivative (see Refs. 14, 17, and 18 for de- 
tails). The equation for 1 = 0 reduces to the ordinary diffu- 
sion equation 

a ~ o ( 9 ) / d t = - q ~ D ( 9 ) ~ o ( q )  

with a diffusion coefficient 

zaa (A,')' 
D =  --. 

3 QI 

Evaluating a, from (5.20), we immediately find fl, 
= 2rrbT. This agrees with expression (5.8) for fl,. Interest- 

ingly, the coefficient of hopping diffusion (5.12) in the case 
under discussion goes over directly to the coefficient of band 
diffusion (5.23). This result is due to the specific character 
of the electronic polaron effect and does not obtain in the 
case of the ordinary phononic polaron effect (cf. Ref. 17). 
Here two circumstances are important. On the one hand, 
under condition (5.22) only the nondiagonal density-matrix 
elements of the form p , ,  +,, i.e., only the correlations for 
adjacent sites, are important in the itinerant motion. On the 
other hand, in both the coherent and hopping diffusion the 
governing role is played by relative fluctuations of the levels 
in adjacent wells (see Refs. 17 and 18); this circumstance is 
reflected in the fact that a, and fl, are the same. 

For T <  T '  = A, (T ' )  the width of the band goes to a 
constant value which is determined self-consistently from 
relation (5.18): 

where A = 2zA0 is the width of the band in the absence of the 
polaron effect. 
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For T,n, (A, the particle moves in itinerant manner 
and is scattered by electronic excitations of energy T which 
do not take part in the formation of the polaron effect, as is 
clear from the preceding discussion. In this case one can find 
the diffusion coefficient by using the ordinary quasiclassical 
kinetic equation and treating the interaction with the ther- 
mal electronic excitations by perturbation theory (b  < 4). 
Let T(A, . Then it can be assumed that the particle has a 
quadratic dispersion relation ~ ( p )  =p2/2M,, where 
M, = 3/zh,*a2, after which the solution is found by the 
standard method. The momentum transferred by the parti- 
cle to the electrons is limited to the scale of the thermal mo- 
mentum~, z ( 2M,, T) 'I2. Therefore, forp, gpF the inverse 
mean free time is -a, (p,/pF )2, and the diffusion coeffi- 
cient, with allowance for the mean square velocity 
(vZ) - T/M, of the particle, turns out to be 

An analogous temperature dependence was found in Ref. 19. 
In the case of semimetals and degenerate semicon- 

ductors, the opposite limiting case pF4pT  or pFa 
((T/A,*)'I2 < 1 can become important in a certain tem- 
perature interval. Here the particle in colliding with the elec- 
trons is scattered at a small angle 8-pF/pT, but there is no 
restriction on the scattering angles of the electrons. In this 
case, the inverse transport mean free time is - RT (p,/p, )2, 
and instead of (5.25) we have a dependence 

There are two points of interest here: the vanishing of the 
dependence on the width of the band and the decrease of the 
diffusion coefficient with decreasing T. In the limit of ex- 
tremely low T, dependence (5.25) is restored. 

6. CONCLUDING REMARKS 

The results obtained in the previous section solve the 
problem of the quantum diffusion of a heavy particle in the 
electron fluid of a metal at all temperatures. What is remark- 
able in these results is that although the adiabatic approxi- 
mation is energywise valid for a metal to an accuracy of the 
order of W / E ~  4 1, there is an electronic polaron effect in the 
tunneling transition of the particle to an adjacent cell. 
Granted, the scale of the polaron effect turns out to be sub- 
stantially diminished and is determined by the ratio of the 
inverse time - w for passage of the heavy particle under the 
barrier to the largest of the following three parameters: the 
relative shift 5 of the levels, the temperature T, and the re- 
normalized band width A,. The electronic polaron effect 
vanishes when Tis  comparable to w.  In obtaining these re- 
sults it was of fundamental importance to allow for the na- 
ture of the intra-well and under-barrier motion of the parti- 
cle, with the possibility of virtual transitions between energy 
levels of the particle in an individual well. In this connection 
it should be noted that the usual allowance for only one level 
in each well, as is typically made, for example, when the spin 
Hamiltonian model is used for the two-well problem (see, 

e.g., Ref. 20), implicitly corresponds to the assumption of 
nonadiabaticity and therefore leads to an incorrect result. 

The treatment given in the present study actually corre- 
sponds to allowance for the interaction with the electrons in 
the Born approximation. In principle, to find the polaron 
effect the problem can be generalized to take into account 
the screening of the potential of the particle7 or to make a 
consistent allowance for scattering of arbitrary 
~trength.~.~.'.~' 

In the actual case the particle interacts with phonons as 
well as with electrons. This leads to another overlap integral, 
now over the wave functions of the atoms forming the lattice 
in which the particle is moving. The two overlap integrals 
are independent, and the true value of &,(T) is obtained by 
simply multiplying the quantities found in the previous sec- 
tion by the ordinary phononic polaron exponential J,, . In 
the three-dimensional case the argument of this exponential 
does not have any singularities as T-0. Therefore, the over- 
lap integral that is diagonal in the phonon occupation 
numbers is finite at any T. 

A characteristic feature of the interaction with phonons 
in the case of narrow bands is that the polaron effect is due to 
single-phonon interaction, whereas the relative fluctuations 
of the levels in adjacent wells, at least for small 5, is due to 
two-phonon intera~tion.'~*'~," (For 5 = 0, single-phonon 
scattering processes are forbidden by the conservation 
laws.) It was found in the papers cited that the transition 
probability in the case of a purely phononic mechanism of 
interaction is described for T >  5 by an expression of form 
(5.9) with 

where OD is the Debye temperature, and B2- 1. 
When 5 is appreciable, single-phonon processes also be- 

come possible. Here (see, e.g., Ref. 15) 

If the particle diffuses via interstitial sites which are energe- 
tically equivalent but are inequivalent from the standpoint of 
the principal axes of the strain tensor, then the transport 
effect goes away, and to a first approximation the exponent 9 
in (6.1) is replaced by 7 (simultaneously, the numerical fac- 
tor changes from lo6 to lo4), and the exponent 4 in (6.2) is 
replaced by 2 (see Refs. 22 and 23). 

From a comparison of (6.1) and (6.2) with +, 
(5.9) and RT (5.8 ), we easily conclude that in ordinary met- 
als with (pFa)  - 1 at low temperatures (actually up to 
T- OD ) the governing role is played by the interaction with 
the electrons. This means that quantum diffusion in ordi- 
nary metals will be described by the expressions found in the 
preceding section if only the following replacement is made: 

&, (T) , A,*+&, (T) Jph (T), A* ( J P ~  (0) ) i'(l-b). (6.3) 

We note that for 6 = 0 the electronic polaron effect be- 
comes weaker with increasing temperature (5.7), whereas 
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the phonon effect becomes stronger. Granted, at appreciable dence is replaced by D- T 2b - ' [see Eq. (5.13 ) 1. For 
values of T, comparable to OD, it becomes necessary to take T- A, (T) it goes over, according to (5.26), to a depen- 
into account the tunneling transitions that are nondiagonal dence D- Tand, finally, for T <  A, ( p,a)2, the dependence 
in the phonons ("phonon shake-up"), and this alters the D-1/T (5.25) is established. 
picture. 
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