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A study is made of the behavior of an electron gas in longitudinal electric and quantizing 
magnetic fields when the electrons occupy a single lowest Landau level. Only the interactions 
of the electrons with charged impurities, with optical phonons, and with one another in the 
field of randomly distributed impurities are taken into account. The inelastic interaction of the 
electrons and optical phonons is assumed to be strong enough to prevent the electrons from 
penetrating into the active region. In this case a closed nonlinear integro-differential kinetic 
equation is obtained for the distribution function in the passive region. This kinetic equation is 
used to find the distribution function in the limits of weak and strong electric fields. The 
nonequilibrium properties of the electron gas are studied for the case of the electrical 
conductivity in longitudinal and transverse electric fields. 

1. INTRODUCTION 

In ultraquantum magnetic fields, when practically all of 
the electrons are found in the lowest Landau subband, the 
nonequilibrium thermogalvanomagnetic effects exhibit a 
number of features due to the quasi-one-dimensional charac- 
ter of the motion of the charge carriers.' In particular, in a 
system of electrons with a substantially nonmonotonic ener- 
gy distribution, effects such as absolute negative conductiv- 
ity2 and the generation of plasma  oscillation^^.^ or electro- 
magnetic r a d i a t i ~ n ~ . ~  can arise. 

An applied electric field can cause appreciable heating 
of the charge carriers due to the decrease in the electron 
scattering efficiency with increasing energy 8 ,  primarily on 
account of the decrease in the density of electron states in the 
lowest Landau subband. In this case, Kogan7 has predicted a 
possible thermal instability of the electron gas, assuming the 
existence of an electron temperature. Such an assumption is 
justified, for example, if the density of charge carriers is large 
enough8 or if the heating electric field is oriented perpendic- 
ular to the magnetic field and the electron energy dissipation 
mechanism is quasi el as ti^.^ The behavior of an electron gas 
having a low carrier density in parallel electric and ultra- 
quantum magnetic fields was first considered in Ref. 19, 
where it was shown that for quasielastic relaxation mecha- 
nisms so-called "electron runaway" takes place. 

Substantial heating of the electron gas or the develop- 
ment of thermal instability either causes the next Landau 
subbands to be filled and thereby violates the ultraquantum 
condition or "switches on" some deeply inelastic scattering 
mechanism at high energy such as the spontaneous emission 
of optical ph~nons."* '~ The kinetic properties of the electron 
gas in the first case have been analyzed in a number of papers 
(see, e.g., Ref. 1 ), and it was found that the distribution 
function can retain its two-scale nature.13-lS 

In the second case, if the energy ho of the optical phon- 
ons is less than the energy separation of the lowest and next- 

lowest Landau subbands, if the lattice temperature To is low 
( To (fiw,), and if the interaction between the electrons and 
the optical phonons is sufficiently strong, then the electrons 
are practically all found in the lowest Landau subband even 
in the presence of appreciable heating of the electron gas. If 
the density of charge carriers is small, then collisions 
between electrons are unimportant, and one can find the dis- 
tribution function with the aid of a linearized (with respect 
to the distribution function) version of the quantum-me- 
chanical kinetic equation.' This limit has been studied in 
several papers (see, e.g., Ref. 1 ); we might mention one of 
the more detailed later studies, l6 in which the current-vol- 
tage characteristic in crossed electric and magnetic fields 
was found for semiconductors having a complex band struc- 
ture, and Refs. 17 and 18, which give an analysis of kinetic 
phenomena in longitudinal electric and magnetic fields. 

Because binary collisions of electrons are suppressed in 
ultraquantum magnetic fields,' one can also use a linearized 
kinetic equation in a strong electric field parallel to the mag- 
netic field when the penetration of the charge carriers into 
the active region ( > ho) is the order of the characteristic 
energy for changes in the distribution function in the passive 
region ( 8 < h , ) .  This limiting case was considered in its 
most general form in Ref. 19. 

If, on the other hand, the carrier density n and charged- 
impurity density Ni are not too high and not too low (1014 
cmP3 5 n, Ni 5 1016 cmP3) and the electrical field is not too 
strong ( E 5  100 V/cm),19 the behavior of the electrons in 
the active region is, as before, governed by their interaction 
with optical phonons, whereas in the passive region for 
T , ( h o  the charge-carrier energy is redistributed in three- 
particle electron-electron-electron or electron-electron-im- 
purity collisions In fact, for polar semiconductors (e.g., 
InSb or GaAs), in which the interaction between the elec- 
trons and optical phonons is fairly intense, the relaxation of 
the charge-carrier momentum at the given values of the den- 
sities n and Ni occurs through elastic collisions with charged 
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impurities or with optical phonons; at an energy 8 - ho- 
0.02 eV the characteristic elastic collision frequency is 
vi - 10'0-1011 sec-', much smaller than the characteristic 
rate of spontaneous emission of optical phonons (yo- 1012- 
1013 sec-I), while the three-particle collision frequency 
vee - 109-1010 sec-I is considerably higher than both the 
characteristic frequency for energy relaxation on acoustic 
phonons ( 10'-10' sec- ' ) and the frequency of compound 
scattering by optical phononsZ0 as a consequence of their 
weak dispersion. In this case one cannot use the effective- 
temperature approximation but must solve the nonliner 
quantum-mechanical kinetic equation directly in order to 
find the distribution function. The case when the heating of 
the electron gas is due to the optical generation of "hot" 
electrons or to an applied electric field transverse to the mag- 
netic field was considered by the present authors in Refs. 21 
and 22. In the present paper we study the kinetic effects due 
to the heating of the electrons by an electric field directed 
parallel to the magnetic field, in the given ranges of carrier 
density and applied fields. 

2. KINETIC EQUATION; BOUNDARY CONDITION 

Let us consider a homogeneous n-type semiconductor 
in parallel magnetic ( H ) and electric ( E ) fields, assuming 
that the following condition is satisfied: 

where f l  is the cyclotron frequency of the charge carriers and 
To is the lattice temperature. We assume that the electrons 
interact with optical phonons sufficiently intensely that only 
an insignificant number of the electrons penetrate into the 
active region under the influence of the electric field. There- 
fore, in accordance with inequality ( I ) ,  practically all the 
electrons are found in the lowest Landau subband. Then the 
electron gas can be described by a distribution function f 
(the diagonal elecment of the electron density matrix) 
which in the steady and spatially uniform case depends only 
on the longitudinal (with respect to the magnetic field) qua- 
simomentum P of the electrons and satisfies a one-dimen- 
sional quantum-mechanical kinetic equation1 

vEaf /ap=I { f ,  p ) .  (2)  

Here Z{f, p} is the collision integral, which generally takes 
into account all the electron interaction mechanisms, 
v, = eE /Po, andp = P/Po, where Po = (2me h O ) ' l 2 ,  with 
me being the effective mass of the electrons. However, we 
shall take into account only the interaction of the electrons 
with one another, with charged impurities, and with optical 
phonons. 

For the sake of simplicity, we shall assume in the follow- 
ing analysis that the lifetime of the nonequilibrium optical 
phonons is short enough that we can neglect the departure 
from equilibrium in the phonon distribution function N,, 
i.e., by virtue of condition (1) we have N, = exp( - ho/ 
To). Then, under the assumptions we have adopted, the col- 
lision integral for electrons with optical phonons can be writ- 
ten (cf. Ref. 16, for example). 

Here 8(x) is the Heaviside step function, and E = P2/ 
2 m , h 0  zP2 is the kinetic energy of the electron motion 
along the magnetic field scaled by the optical phonon energy 
h w  

The interaction of the electrons with charge impurities 
is elastic, and the collision integral for these collisions is of 
the form3.19 

where 

x is the low-frequency dielectric constant, Ni is the density 
of charged impurities, u = 8 s w d f l ,  and Ei is the exponential 
integral function. In this expression we have neglected the 
screening of the Coulomb potential, since at the densities 
under consideration the Debye radius is quite large. Fur- 
thermore, we note that ueu I Ei( - u) I 5 l ,  so that in our sub- 
sequent analysis we can for simplicity treat the quantity in 
square brackets in ( 5 ) as a constant. 

In the first order of perturbation theory the collision 
integral for binary collisions of electrons vanished identical- 
ly as a consequence of the quasi-one-dimensionality of the 
electron motion in an ultraquantum magnetic field. There- 
fore, we must take into account the interaction of the elec- 
trons with a third body. Let us for simplicity study a com- 
pensated semiconductor in which the density of charged 
impurities is much higher than the electron density: Ni Sn 
(obviously, for n -Ni the results obtained below will remain 
qualitively the same). In this limit we may ignore all but the 
scattering of the electrons in the field of the randomly dis- 
tributed impurities. Furthermore, at the electron densities 
under consideration the characteristic value of the quasimo- 
mentum transfer is much lower than the average quasimo- 
mentum. Consequently, the diffusion approximation is valid 
for the electron-electron-impurity collision integral, which 
in the second order of perturbation theory is given by the 
expression (see Appendix 1 ) 

e8Nc a 
z**{f, P I =  ( f i c l D ~ Z x '  (Aoo)  3 sign p  - a P 

1 de' 1 

Heref, ( E )  = 1/21f(p) + f( - p ) ]  is the symmetric part of 
the distribution function, A is the cutoff parameter for the 
logarithmic divergence at low energies, il = fic/eH, and 
q, ' is the static Debye screening radius (cf. Refs. 1 and 23, 
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for example ) : 

wherep ( i9 ) = rn~''/2~1TZ+LI 'i9 'I2 is the density-of-states 
function of the lowest Landau level. 

Thus, in the approximation under consideration we 
have 

where the symmetric part of the electron-optical-phonon 
collision integral I :f{f, p)  is nonzero only in narrow energy 
regions near the bottom of the condition band and near the 
point of the optical phonon energy tio,. Then kinetic equa- 
tion (2) with collision integral (8) can be written forp > 0 as 
a system of two equations for the symmetric partf, (E) and 
antisymmetric partf, (p) = If(p) - f( - p )  ]/2 of the dis- 
tribution function: 

Here I$(f,p) is the antisymmetric part of the electron- 
optical-phonon collision integral. In Eq. ( 10) we have ne- 
glected the three electron collision integral, since in the gas 
approximation it is small compared to the collision integral 
for elastic collisions of electrons with charges impurities. 

In what follows we shall assume that the electric field is 
not too strong, so that the energy "penetration depth" of the 
nonequilibrium electrons into the active region ( - v i / d ;  
Ref. 19) is much smaller than the characteristic energy for 
changes in the distribution function near the bottom of the 
conduction band; we can then write I >if, p) in the form of 
a S function. In addition, we shall assume for simplicity that 

vi>vo exp (-fiaolTo) 9 (1 1) 

as this is usually the case at the actual values of the impurity 
density for T o 4 h o .  Then, by virtue of expression (3) and 
inequality ( 11 ), equation ( 10) directly yields a relation 
between the symmetric and antisymmetric parts of the dis- 
tribution function in the passive region (E < 1 ): 

Integrating kinetic equation (9) over the quasimomentum 
from 0 < p  < 1 to infinity and using expressions (6), (7 ), and 
(12), we get 

Here the value of the dimensionless electron density 7 = n/ 
kg( h,) determines the normalization condition for the 
distribution function: 

vee is the characteristic frequency of three-electron colli- 
sions: 

ih e4NiZq  e'n" vs 

vee = (+ ) x z m i / *  (huo)a/* [ (15) 

(clearly, in the gas approximation vee 4vi  ), Y,  is the Cou- 
lomb logarithm, which in the present analysis is, for simpli- 
city, assumed constant, and 

I m 

This last identity is a consequence of conservation of elec- 
tron number and so is valid independently of the applicabi- 
lity conditions or expression (6). 

In addition, after integrating ( 13) over E from zero to 
one, we find 

I 

This relation directly determines the energy balance of the 
electron gas, since collisions between electrons in the field of 
randomly distributed impurities cannot, in any order of per- 
turbation theory, effect a dissipation of the energy acquired 
by the charge carriers in the electric field. Relation ( 16) can 
also be written in the equivalent form 

where J is the electrical current density." 
If the solution of the kinetic equation (2)  in the active 

region is known, then under the assumptions made above, 
the set of equations consisting of ( 13) together with ( 12), 
( 14), and ( 16) yields the distribution function in the passive 
region; the usual boundary condition of the distribution 
function at the point E = 1 is the requirement that the solu- 
tions of the corresponding kinetic equations be continuous 
there. However, for a number of reasons it is difficult to 
obtain the solution of the kinetic equation in the active re- 
gion. First, the quasimomentum P i s  a good quantum num- 
ber only in strong electric fields, when the energy "penetra- 
tion depth" of the electrons into the active region is much 
larger than the energy uncertainty fiv, due to emission of 
optical p h o n ~ n s . ' ~  Second, the electron energy spectrum in a 
quantizing magnetic field is restructured in the presence of 
strong coupling with optical phonons, and an energy gap 
arisesz4 near the energy $ = h,. Third, in the active region 
the three-electron collision integral can be comparable to the 
field term of the kinetic equation, while at the same time the 
diffusion approximation for the electron-electron-impurity 
collision integral (6)  ceases to be valid, and the distribution 
functions suffers a di~continuity.~' However, in the weak 
electric field limit the distribution function is practically 
symmetric, and the flux of electrons in quasimomentum (p) 
space is governed by three-electron collisions and by the in- 
teraction of the electrons with optical phonons. This makes 
the electron motion in p space diffusive, and from the re- 
quirement that the flux of particles from the active region 
into the passive region be bounded in the presence of optical- 
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photon emission, the boundary condition on the distribution 
function at high values of v, is (see Appendix 2) 

In strong electric fields the three-particle collision integral 
I,, {f, p )  can be neglected in the solution of kinetic equation 
(2)  in the active region. Then for vi < vo we find immediately 
from the solution of this equation that 

Comparing relations ( 17) and ( 18), which were obtained in 
opposite limits, we see that the latter expression can be taken 
as a boundary condition on the distribution function in the 
passive region; by virtue of ( 12), this expression is equiva- 
lent to 

Equation ( 13) in conjuction with expressions ( 12) and 
( 16 ) , normalization condition ( 14), and boundary condi- 
tion ( 19) determines the distribution function in the passive 
region in closed form. We point out that near the boundary 
of the active and passive regions, these relations are practi- 
cally insensitive to the conditions that these approximations 
be applicable and thus permit one to study the kinetic prop- 
erties of the electron gas over a wider range of system param- 
eters. 

The methods of solving kinetic equation (13) differ 
substantially depending on the relationship of the frequen- 
cies vi, v,,, and YE, and we shall therefore consider the 
weak-electric-field and strong-electric-field cases separately 
(however, we assume as before that v, < v,) . 

3. DISTRIBUTION FUNCTION AND CURRENT-VOLTAGE 
CHARACTERISTIC IN WEAK ELECTRIC FIELDS 

The weak-electric-field limit in the model under study 
corresponds to the condition that the redistribution of ener- 
gy between the electrons of the passive region be dominated 
by three-electron collisions. In this limit the left-hand side of 
( 13) is dominated by the second term. Consequently, to a 
first approximation the symmetric part of the distribution 
functionf, (E)  is Maxwellian, with an effective (dimension- 
less) temperature t, where t should be much less than unity 
( t <  1 ), since the distribution function in the active region is 
substantially non-Maxwellian. In this case it follows from 
the results obtained below that the value of VE = eE /Po sat- 
isfies the inequality 

At such values of VE the deviation of the distribution func- 
tion from Maxwellian in the energy region E - t is insignifi- 
cant, in accordance with the exponentially small parameter 
e- 11' , and so in relations ( 14) and ( 16) and in the integral 

factors in ( 13) we may use a first approximation to the dis- 
tribution function. Then, from ( 14) and ( 16) we find 

and in the next order of perturbation theory we obtain from 
Eq. ( 13) an expression for the symmetric part of the distri- 
bution function: 

i 
fs (e) = L e-'lt-nr" - tc/a 

(nt)  '" vee 

By virtue of expression (22), boundary condition (19) be- 
comes 

where to = To/tiwo. 
Relations (21) and (23) determine in closed form the 

dependence of i and t on the applied electric field E; the 
second term on the right-hand side of boundary condition 
(23) can be neglected unless the frequency v, is so small 
that it lies in the region where the electron gas is not heated 
significantly, ( t  - to)/to< 1; in that region one can use a lin- 
ear theory of the kinetic effects.' With this simplification in 
mind, we obtain from (21 ) and (23) a relation between the 
effective temperature t and the strength of the electric field 
(in units of VE ), viz., 

and a monotonically increasing current-voltage characteris- 
tic, which is given by the expression 

Here j = 2i/vvE is the dimensionless electrical current den- 
sity [in fact, by virtue of Eq. ( 16), J = ePonj/2m]. The func- 
tions t(v, ) and j(vE ) are represented by curves 1 and 2 in 
Fig. 1. 

In concluding this part of the paper, we note the validity 
of one of the basic assumptions, viz., that the number of 
electrons in the active region is small in the electric-field 
range under study. Actually, the energy "penetration 

- 

0 0.2 0.V 0.6 
VE 

(v,, vi)" 

FIG. 1 .  Effective temperature t as a function of the electric field (curve 2) 
and the current-voltage characteristic (curve 2 )  in weak electric fields. 

1010 Sov. Phys. JETP 63 (5), May 1986 I. A. Lubashevskiland V. I. Ryzhil 1010 



depth" of nonequilibrium electrons into the active region 
( -&/d)  is much smaller than unity, since, by assuming 
t - 1 in ( 2 4 ) ,  we obtain an estimate of the maximum possible 
value here, v,,,, - (vee vI ) I t Z ,  from which we find that 

4. DISTRIBUTION FUNCTION AND CURRENT-VOLTAGE 
CHARACTERISTIC IN STRONG ELECTRIC FIELDS 

Let us now consider the limit of strong electric fields, 
when three-electron collisions have an important effect on 
the form of the distribution function only in a rather narrow 
energy region near the bottom of the conduction band, 
E 5 0 4 1. This limit corresponds to having a small second 
term on the left-hand side of ( 1 3 )  for O 4&< 1, while v, 
satisfies 

Thus, in the energy region O 4&< 1 the second term on the 
left-hand side of ( 1 3 )  can be neglected, whereupon, by vir- 
tue of boundary condition ( 19 ) and expression ( 12 ) , we find 

f, ( e )  = f,(O) e-l"o+i/zqj 

and 

fa ( e )  ='l2qj. ( 2 8 )  

At energies E 5 O, three-electron collisions "smooth 
out" the distribution function, eliminating the nonintegra- 
ble singularities in the expressions for the kinetic coefficients 
that follow formally from relation ( 2 7 )  when E + 0 .  In addi- 
tion, in the leading approximation in the energy region 
E -  O, elastic collisions of electrons with charged impurities 
ensure that the antisymmetric part of the distribution func- 
tion will be small compared to the symmetric part. There- 
fore, an estimate of the value of the distribution function 
f, ( 0 )  near the bottom of the conduction band can be ob- 
tained by setting E - O in ( 2 7 ) .  One thereby demonstrates 
that the first two terms on the right-hand side of ( 2 7 )  are 
small in the energy region E -O, i.e., 

and for & 2 

No general analytical method of solving the kinetic 
equation ( 13 ) has been found, but the method of scale trans- 
formations of the distribution functionf, (&) and energy E 

can yield fairly complete information on the distribution 
function and the kinetic characteristics of the electron gas if 
the asymptotic behavior of the distribution function in the 
energy region @$E( 1 has a power-law character. 

The behavior of the distribution functionf, ( E )  in the 
low-energy region, where three-particle collisions have an 

appreciable influence, is rather insensitive to the actual val- 
ues of the quantities appearing in boundary condition ( 1 9 )  
and so is practically the same as the solution of the analytical 
continuation of equation ( 1 3 )  to the energy interval 
O < E <  03: 

with the auxiliary boundary condition 

We define the scale transformations of the distribution 
function and the energy as follows: 

where the coefficients 4 and O of the scale transformations 
satisfy the relations 

Then Eq. ( 3  1 ) becomes 
m 

dx' 1 acp(5) acp (1'1 1 
x J - - = ; [ T c p ( z / ) - p ( x )  -I=--. 

As X' ) 'x+)~x  dx' 2 

( 3 6 )  
Equation ( 3 6 )  does not have any large or small parameters, 
and the function p ( x )  should therefore vary smoothly in the 
interval 0  < x  5 1,  with the asymptotic behavior p ( x )  zz 1/2x 
for X )  1, and the value p ( 0 )  - 1. ( A  distribution function 
consistent with this behavior of p ( x )  is shown in Fig. 2 . )  
Hence we also see that it is the parameter O that sets the 

FIG. 2. Qualitiative shape of the distribution funct'on in strong electric 
fields. 
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FIG. 3. Current-voltage characteristic in strong electric fields (the shaded 
area is the weak-field region). 

characteristic energy scale near the bottom of the conduc- 
tion band. 

Making use of the fact that O is small, we find from the 
normalization condition (14) and expressions (34) and 
( 35 ) that 

where the number I;b is 

Relation (39) gives the current-voltage characteristic 
in Fig. 3, while the set of relations (37)-(39) gives, in para- 
metric form, the dependence on the applied electric field of 
the characteristic scales O and 6 of the distribution function 
near the bottom of the conduction band (see curves 1 and 2, 
respectively in Fig. 4). The maximum strength of the electric 
field (in units of v, ) at which the basic approximations of 
the model remain in force in this case is determined by in- 
equality (29), which serves as a measure of the validity of 
the gas approximation: 

Let us analyze these results in greater detail. If 

thenj( 1, and we find from relations (37)-(39) thatj- v;'~, 
O -v& 4/7, and {-417 ({01/' = const). When 

the electrical current density is practically independent of 
the impressed electric current ( jz 1 ), since the number of 
electrons located near the bottom of the conduction band is 
rather small, and all the electrons of the passive region actu- 

ally move without collisions under the influence of the elec- 
tric field (the streaming condition), and we have O - v; 2'3 

and 6-v, ' I3  (6 /a1'* = const). 
In concluding this section of our paper, we call atten- 

tion to the fact that the condition that the penetration depth 
of the nonequilibrium electrons into the active region 
( - v i / 4  ) be small with respect to the energy scales of the 
distribution function, in particular O, does not impose any 
fundamental limitations on the existence of the limit under 
study. In fact, the characteristic value of O corresponding to 
the maximum electric field at which the gas approximation 
still holds [see Eq. (40) ] is found to be of the order of (v,, / 
vi )415. We thus have O) /vi if the frequency v, is high 
enough. 

5. CONCLUSION 

Let us give a numerical estimate of the characteristic 
electric field at which V; - (v,, vi ) 'I2. If vi - 1010-1011 
sec-', v, - lo9-10'' set-', fiOO-0.02 eV, and me -O.lmo 
(m,  is the free-electron mass), then E * - 1-10 V/cm; this 
value, as expected, is considerably smaller than the electric 
field necessary for the kinetic equation to hold in the active 
region, E, 2 100 V/cm (Ref. 19). 

We note that in ultraquantum magnetic fields one can 
experimentally obtain fairly detailed information on the 
properties of the distribution function near the bottom of the 
conduction band by studying transport phenomena in the 
direction perpendicular to the magnetic field. For example, 
the diagonal component of the transverse conductivity ten- 
sor (perpendicular to the magnetic field) is given by1 

i 

and the curve of al ( E )  as a function of the applied longitudi- 
nal electric field is plotted in Fig. 5. 

FIG. 4. Electric-field dependence of the characteristic energy scale O 
(curve 1) and amplitude scale 6 (curve 2 )  of the distribution function 
near the bottom of the conduction band in strong electric fields, 
@ = [dlnq(x)/dxl,=, 1 [ d l n f ( ~ ) / d & I ~ = ~ ] - ' ,  6 =f(O)/p(O) (the 
weak-field region is shaded). 
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a,, arb. units 
r 

FIG. 5. Transverse conductivity of the electron gas as a function of the 
longitudinal electric field. 

We also note that the results obtained in the strong- 
electric-field limit are actually independent of the specific 
form of the collision integral for the three-particle electron- 
electron-impurity collisions, being determined by its group 
properties with respect to the scale transformations of the 
distribution function and energy. 

We wish to thank I. B. Levinson for his interest in this 
study and for a detailed discussion of the results. 

APPENDIX 1 

The electron-electron-impurity collision integral in an 
ultraquantum magnetic field was first obtained in general 
form in Ref. 8. However, in the cases studied in the present 
paper the characteristic value of the electron quasimomen- 
tum transfer as a result of such collisions ( -fqD, where q; ' 
is the Debye screening radius) is much smaller than the 
average electron quasimomentum ( P ), and so one can use 
the diffusion approximation for the three-particle collision 
integral. Furthermore, in accordance with the gas approxi- 
mation, the energy transfer ( d 8 ,  /dP )fiqD in such collisions 
is substantially larger than the energy smearing fiyi of the 
electron state with quasimomentum ( P ) in elastic colli- 
sions with impurities. Therefore, one does not have to go 
beyond second order in the interactions of the electrons with 
one another and with impurities. 

One can easily obtain an expression for the three-parti- 
cle electron-electron-impurity collision integral in the diffu- 
sion approximation by using the obvious relation 

whereil = W e H ,  Vis the volume of the semiconductor, P 
is the electron quasimomentum parallel to the magnetic 
field, and Jee {f, P ) is the flux of particles in quasimomen- 
tum space due to three-particles collisions. 

The value of the flux J,, {f, P ) in the second order of 
perturbation theory is determined by the scattering pro- 
cesses whose diagrams are shown in Fig. 6 (the exchange 
diagrams are unimportant, since they correspond to a large 
quasimomentum transfer). Using the standard procedure of 
calculating the transition matrix elements in the second or- 
der of perturbation theory,26 we get for a nondegenerate 
electrons gas 

x dPW S a!?: d29Pg,' S da9;Ms2 [f (PI) f (P') 

Here Ni is the density of charged impurities, f ( P ) is the 
distribution function, g, = P 2/2m, is the kinetic energy, q, 
and 9, are the longitudinal and transverse components 
(with respect to the magnetic field) of the vector q, and M, is 
the interaction matrix element 

where u (q) = 4?re2/x (q2 + 9; ) is the scattering potential of 
a screened Coulomb center. 

Because the electron momentum transfer in three-parti- 
cle collisions is small (fig, 4 P ) ,  one can neglect in the ex- 
pansion of the factors in expression (A. 1.2) all but the terms 
which are nonzero in q', and q;. Furthermore, the diffusion 
coefficients and the dynamic friction in quasimomentum 
space are determined by the integral of the distribution func- 
tion over all values of the energy. Therefore, if the distribu- 
tion function is not too highly localized about some quasi- 
momentum P, # 0, the terms with I P' - P " I (P make an 
insignificant contribution to the integral in (A. 1.2). Because 

FIG. 6. Diagrams of the scattering processes which determine the value of 
the electron-electron-impurity collision integral. 
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of this, in expression (A. 1.3 ) we can to good accuracy take 
into consideration only the terms in the first or in the second 
set of square brackets. Then, doing the integration over q' 
and q" in expression (A. 1.2), we get 

v Nim,%e8 
l e e { ! ,  PIE - sign P 

(231) 'h2fi 2.2"'fiqDh2x' 

(A. 1.4) 
wheref, (2?) = 1/2Lf(P) + f( - P ) ]  is the symmeric part 
of the distribution function, and A is the cutoff parameter of 
the logarithmic divergence at low energies. Relations 
(A.1.2) and (A. 1.4) imply expression (6) .  

APPENDIX 2 

Let us consider the limit of weak electric fields, when 
the energy "penetration depth" of electrons into the active 
region is due mainly to three particle collisions and is small 
compared to the characteristic energy for changes in the dis- 
tribution function near the bottom of the conduction band. 
Let us first assume that the diffusion approximation of the 
collision integral I,, {f, p } is valid even forp > 1. In the ac- 
tive region the distribution function decays rapidly, and 
therefore in expression (6) we need keep only the term of the 
form Dd 2 f ,  /dp2, where D is the electron diffusion coefficient 
in quasimomentum space; here it can be assumed constant. 
Then the kinetic equation (2)  forp > 1 becomes 

Introducing the variable f = (p - 1 ) (2'120 /yo) -213 and 
the quantity u ( f )  = f(p) -f, (O)exp( - &,/To), we find 
from (A.2.1) that 

The desired solution of equation (A.2.2) is clearly an 
expression of the form Au* (g),  where u* (0 is decreasing 
function o f f  with a characteristic scale for changes with 
respect to the coordinate 5 and an amplitude both of order 
unity, and A is a constant factor. In this case the flux A of 
electrons from the active region to the passive region due to 
their interaction with optical phonons is 

0 (. 

The electron flux A is a bounded quantity at arbitrarily large 
values of vo; consequently, u (0) - v; 2'3 and so, to within the 
small parameter (D /yo) 2'3, we have u (0)  = 0. However, 
when the frequency vo is so high that the diffusion approxi- 
mation is no longer valid, the value of the flux A can be 
estimated by assuming that d Zf, /ap2(, = , -u  (0)q; 2, and 
the distribution function u (p) for q, 4 1 - p 4 1 is therefore 
considerably larger than u(0) and practically agrees with 
the solution of the kinetic equation (2) with the boundary 
condition u (0) = 0. 

If, on the other hand, the energy spectrum is apprecia- 

bly restructured and an energy gap arises25 at $ = &,, then 
in some neighborhood (of size Qp ) of the gap the interaction 
between the electrons and optical phonons is important; here 
Qp increases with increasing yo. Then either u (0)  Qp vo - A 
and thus u (0)  = - v; Y, where y > 0, or the situation is 
analogous to the case in which the diffusion approximation 
breaks down, and we can therefore assume u (0)  = 0 in this 
case. 

Thus, in the three possible limiting cases the solution of 
the kinetic equation (2) in the passive region is practically 
independent of u (O), and one can therefore use relation ( 17) 
as the desired boundary condition. 

'' Expression (16) enables one to find the current-voltage characteristic 
in explicit form if the dependence of i on the applied electric field E is 
known. 
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