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The asymptotic behavior of the dynamical form factor of a monatomic gas is investigated in 
the limit R )qv,. The result can be expressed in terms of the atom-atom scattering cross 
section, and is proportional to in the case of a gas composed of identical atoms and a-4 
in the case of a gas mixture. 

There are two essentially different limiting cases in the 
theory of inelastic neutron scattering in gases. For relatively 
small energy and momentum transfers ti0 and @, i.e., in the 
limiting case 

([is the mean free path of the atoms and v, = ( T / m ,  ) ' I 2  is 
their thermal velocity), the hydrodynamic regime is ob- 
tained, when the dynamics of the gas-density fluctuations, 
on which the scattering occurs, is governed by the equations 
of hydrodynamics. The spectral distribution of the scattered 
particles then exhibits peaks corresponding to the excitation 
of sound and temperature oscillations. In the opposite limit- 
ing case 

QBv, Q>qv, 

( Y  is the effective collision rate) we have the "collisionless 
regime." The scattering in this case occurs on the individual 
atoms (we shall henceforth have in mind scattering in a 
monatomic gas), and the line shape is determined by the 
velocity distribution of these atoms. (In the theory of light 
scattering this corresponds to Doppler broadening.) Natu- 
rally, in this case the intensity of the scattering involving 
large energy transfers (i.e., for which Rsqv,) is exponen- 
tially small, in accordance with the fact that the number of 
particles with velocities v v, is small, since the scattering is 
determined by the particles in the "tail" of the Maxwell dis- 
tribution (see below). But in 1941 V. L. Ginzburg, investi- 
gating light scattering in gases, noticed that, at sufficiently 
high values of Wqv, specifically, for 

the scattering intensity will again be determined by the colli- 
sions, and will decrease with R according to a power law. 
This law is different for a gas composed of atoms of the same 
kind and for a gas mixture. In the first case the intensity will 
be in the second, (Refs. 1 and 2). Actually, it 
has not been possible to observe this effect in light scattering 
in gases. It  turns out that it is masked by the stronger effect 
connected with the fact that the polarizabilities of the atoms 
in the course of a collision are time dependent because of the 
distortion of the electron shells of the atoms. This leads to 
the appearance of the so-called "collision-induced exponen- 
tial limb" of the scattering line, which has been the subject of 

a large number of theoretical and experimental investiga- 
tions (see, for example, Refs. 3 and 4). The Ginzburg effect 
is smaller under these conditions because of its relativistic 
character, i.e., because it is connected with the inhomogene- 
ity of the electric field of the light wave. But the effect of the 
electron-shell distortion manifests itself in a homogeneous 
field as well. Therefore, the first effect can be observed only 
in scattering on objects whose scattering properties do not 
vary during collision. In fact we can speak of scattering by 
free plasma electrons, which is governed by the electron 
charge, and of neutron scattering in a monatomic gas. The 
latter is determined largely by the scattering of the neutrons 
by the atomic nuclei. And the amplitude of the scattering of a 
slow neutron by a nucleus does not, of course, depend on the 
positions of the neighboring atoms. 

We will calculate the "collision" contribution to neu- 
tron scattering under the condition (2).  As a model prob- 
lem, we shall first consider the scattering of light in an elec- 
tron-ion plasma under the same conditions, with v, taken to 
be the thermal velocity of the electrons. 

According to the general theory of light scattering in- 
volving small frequency changes (i.e., with R <w, whereo is 
the frequency of the incident light), the extinction coeffi- 
cient is given by the formula ( 1 19.6) in Ref. 5. For the case of 
scattering on plasma electrons this formula, after being aver- 
aged over the polarizations, takes the form 

Here 0 is the scattering angle and S(R,q) is the dynamical 
form factor for the electrons, which is given in terms of the 
electron density fluctuation operator by 

S(P, q) =5(6iV, (t, r) 6iV,(0, 0) >ei(qr-"')dtdSr. (4) 

To compute the form factor, we must, generally speaking, 
solve the kinetic equation allowing for the collisions. But 
under condition (2) ,  the ions are virtually stationary, and 
the electron density fluctuations determine the total-charge- 
density fluctuations in the plasma. For the latter fluctu- 
ations there is a general macroscopic expression, on the basis 
of which we obtain for S (a ,q )  the formula (see Ref. 6, Chap. 
3, $4) 
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where E, (Q,q) is the longitudinal permittivity of the plasma. 
Below we shall limit ourselves everywhere to the case of 

moderate energy transfers, specifically, to the case when 
fin ( T. In this case the preceding formula reduces to 

The formulas ( 3 )  and (5)  reduce the problem to that of 
obtaining the well-known plasma-theory expressions for E!. 

If % 0, (a, is the electron plasma frequency), then we can 
set JE, 1 2 = :  1. When the collisions are ignored, E? is deter- 
mined by the Landau damping: 

As to the collision-related part of E?, it is determined by the 
collisions between the electrons and the ions, and is equal to 
(see, for example, Eq. (44.8) in Ref. 7) 

where 02. is the transport cross section for scattering of an 
electron by an ion: 

0.; = j(I - c o s 0 ) d a i .  (7) 

Here I? is the electron-scattering angle, due, is the differen- 
tial scattering cross section, v is the electron velocity, and the 
angle brackets denote an average over the Maxwell distribu- 
tion. Substitution into (5 )  yields finally 

It can be seen from Eqs. (6) and (8) that the scattering 
is indeed proportional to W4 (provided f in<T),  as it 
should be for a system composed to two kinds of particles- 
electrons and ions. It can also be seen from Eq. (8) that the 
contribution in question to the electron form factor is pro- 
portional to q2. Since q2 5 w2/c2 in the case of light scatter- 
ing, this contribution contains the square of the velocity of 
light in the denominator, which makes the effect even 
smaller, as noted above. 

Turning to the investigation of the corresponding effect 
in the case of neutron scattering in monatomic gases, we first 
consider a gas composed of atoms of the same kind. Accord- 
ing to the general theory of neutron scattering (see, for ex- 
ample, the problem at the end of $86 of Ref. 8), the probabil- 
ity for scattering by a unit volume of the gas in unit time is 
given by 

where a is the slow-neutron scattering length on an atom, M 
is the reduced mass of the atom and neutron, p' is the final 
neutron momentum, andS(Q,q) is the gas's dynamical form 
factor, which is given by a formula identical with (4) ,  except 

that 13%~ is replaced by 6% = % - z, the density fluctuation 
operator for the atoms of the gas. 

To find S(Q,q) from the general theory of fluctuations 
would require the solution of the kinetic equation, this time 
for the gas atoms. Naturally this cannot be done in the gen- 
eral case. Under the condition (2) ,  however, we can simplify 
the problem by assuming the collision integral to be small 
and using the method of successive approximations. The 
computations turn out in this case to be quite tedious. We 
shall use here another more intuitive, but quite rigorous 
method that allows us to obtain the answer effecting the cor- 
responding changes in the formula (8)  for the electron form 
factor. 

We shall proceed from the exact quantum-mechanical 
formula for the form factor, According to this formula, the 
form factor is proportional to the following sum of squares of 
matrix elements": 

(where r, is the coordinate operator for the ath particle). In 
the theory being developed, the momentum transfer fzq is 
assumed to be small, and the matrix elements can be expand- 
ed in powers of it. For the case of collisions between different 
particles-between electrons and ions, for example-we can 
limit ourselves to the first term of the expansion, an approxi- 
mation which is clearly equivalent to the dipole approxima- 
tion in the theory of radiation. Then the square of the matrix 
elements in ( 10) reduces to 

Our problem now is to follow, proceeding from the formula 
(12), how the transport cross section for scattering of an 
electron on an ion arises in ( 8). 

Let us first of all note that (8)  corresponds to the situa- 
tion in which only the binary collisions are considered. Ac- 
cordingly, in ( 12) also we can consider the scattering of one 
electron on one ion and multiply the result by N,N, .  Fur- 
thermore, since it is clear apriori that, in an isotropic medi- 
um, the answer can depend only on I q 1, we can average over 
the directions of q, so that, instead of ( 12), it is sufficient to 
compute 

Let us now assume that the following relation is satisfied2': 

where t,,, is the duration of a collision event. Such a require- 
ment underlies the entire theory that uses the ordinary kinet- 
ic equations. The use of the condition (14) becomes more 
obvious if we assume that the collision can be described 
semiclassically (the final result does not depend on this as- 
sumption). Then, in the case of suitably normalized wave 
functions the matrix element is equal simply to the Fourier 
transform of the corresponding quantity: 

m5 m 
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The last formal transformation has been made in order to 
make the integrand vanish at infinity, where the electron 
acceleration is equal to zero. Now on account of the condi- 
tion (14), we can set a =  0 under the integration sign, so 
that 

where Av = v' - v0 is the change that occurs in the electron 
velocity during scattering. Using the last expression, we can 
reduce the expression ( 13) to the form 

The summation over the final states in the formula ( 11) 
reduces in the present case to integration over the scattering 
cross section de,,, as a result of which the transport cross 
section 4 appears in (8). 

Let us now turn to the case of a gas composed of identi- 
cal atoms. As before, we can consider mutual scattering of a 
pair of atoms and multiply the result by the number of pairs, 
N(N - 1 )/2 z N '/2. As in the theory of radiation, however, 
the effect vanishes in the dipole approximation, since the 
sum r, + r, does not possess off-diagonal matrix elements in 
view of the conservation of the velocity of the center of mass. 
Therefore, we must take account of the next "quadrupole" 
term, i.e., make the substitution 

where we have introduced the relative radius vector 
r = 2r, = - 2r, for the two particles. Averaging (12) over 
the directions of q with the aid of the usual relation 

and allowing for the foregoing, we obtain in place of ( 13) the 
expression 

For the matrix element we have, as before, 

Here v is the relative velocity of the atoms and A (vi  v, ) = v j  
v;  - upv: is the change that occurs in the tensor vi v, during 
scattering. We took into account the fact that when the 
atoms are far apart, xi = vi t .  Substituting into ( 16), we re- 
duce this expression to the form 

1 q4v4N2 -- (I - cos 2 6 )  
15 Q6 

Now comparing the formulas ( 15) and ( 17), we arrive at 
the conclusion that the required expression for S(fl,q) can 
be obtained from Eq. (7)  by making the substitution 

1 qLv2 
N.Ai',(l - cos6 )+-N2-  (1 - cos 2 6 ) .  

10 P' 

Thus, the final expression for S ( a , q )  has the form 

where 

~ " ( v )  = 1 ( l  - cos 2 0 )  do. 

The scattering cross section is proportional to W6, as it 
should be. Let us emphasize that, in the case of neutron scat- 
tering, the expression for the momentum transfer does not 
contain any relativistically small factor, so that the effect 
may not be small. We see that the observation of neutron 
scattering in this region provides direct information about 
the atom-atom scattering cross section. 

To conclude, we discuss the scattering of neutrons in a 
mixture of two monatomic gases. We can easily show by 
carrying out calculations similar to those that led to (15) 
that the scattering probability can be obtained from Eq. (9) 
by making the substitution 

where ,u is the reduced mass of the atoms of the first and 
second gases, M ,  is the reduced mass for an atom of the first 
gas and a neutron, m, is the mass of an atom of the first gas, 
etc. As it should be, the probability in this case is proportion- 
al to 

The authors are grateful to A. Ya. Shul'man, a discus- 
sion with whom motivated us to undertake this investiga- 
tion. We are also grateful to A. F. Andreev and Ya. B. Zel'- 
dovich for a discussion for the results obtained. 

A 

"To obtain (10) from (3), it is sufficient to represent N(r, t)  in the form 

''We need to impose the condition (14) in order to be able to solve the 
problem in the general form without specifically computing the matrix 
elements. As to the condition fiR 4 Tadopted earlier, in the majority of 
cases it is a consequence of ( 14). Only in the case of very low tempera- 
tures, when the de Broglie wavelength is much greater than the atomic 
dimensions, can we violate this condition without violating ( 14). In this 
case the atom-atom scattering cross section does not depend on the ener- 
gy of the atoms, and it is again possible to derive a general relation. We 
shall, however, not dwell on this here. 
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