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An analysis is made of the propagation of a train of ultrashort pulses in a resonantly absorbing 
medium with two sublevels of the ground state optically coupled to a third level. It is shown 
that under steady-state conditions the way such a train propagates and the parameters of the 
medium depend resonantly on the relationship between the frequency representing the splitting 
of the ground state w2, and the pulse repetition frequency a. Under resonance conditions 
described by w,, = mR (m = 1,2,. . . ) a sufficiently strong pulse train may result in coherent 
trapping of populations, i.e., it may transfer molecules to a coherent superposition state of the 
lower sublevels, leaving the upper sublevel almost empty. Coherent bleaching of a three-level 
medium by a resonant train of ultrashort pulses is predicted and it is shown that this effect is 
possible even when the radiation intensity is much less than that needed for saturation of an 
optical transition. 

$1, INTRODUCTION 

Resonant coherent effects in three-level media have 
been investigated beginning from the fifties (see, for exam- 
ple, Refs. 1-3 and also Ref. 4 and the literature cited there). 
In recent years more attention has been given to one of the 
variants known as the /Z scheme, when two sublevels of the 
ground state are coupled optically to an excited level (Fig. 
1). 

A theoretical analysis of the /Z scheme has been limited 
so far to situations in which a three-level medium interacts 
with two monochromatic fields or with two pulses, and in 
each case the interaction is via only one of the optical transi- 
tions which can be induced by such a field or pulse. This 
implies that the spectra of the fields are narrow and that the 
spectral lines are broadened homogeneously compared with 
the separation (splitting) between the sublevels o,,. In the 
case of pulsed fields this restriction can be written in the 
form of the inequality r; ', T ,  ' (w,,, where r, is the pulse 
duration and T2 is the transverse relaxation time. In this case 
we can expect coherent trapping of populations by the 
ground-state sublevels and associated resonances of coher- 
ent nonabsorption of the optical radiation interacting with 
the These effects are due to resonant excitation 
of low-frequency coherence (represented by an off-diagonal 
element p,, of the density matrix) when the differences 
between the carrier frequencies are equal to a,,. Such effects 
have been investigated extensively both theoretically and ex- 
perimentally because of the great variety of applications in 
ultrahigh-resolution spectroscopy,' frequency stabiliza- 
tion?1° competing two-photon ionization spectroscopy 
schemes,11,12 optical bistability systems,13.14 cooling of 
atoms,'' etc. Another interesting problem is the propagation 
in a three-level medium of a simulton, i.e., a soliton consist- 

In the opposite case, when r; ' , T ,  ') w,,, each pulse 
interacts simultaneously with both optical transitions. Isola- 
tion of two carriers separated from one another by a frequen- 
cy of the order of w2, is then pointless. Nevertheless, it is 
under these conditions that we can expect manifestation of 
resonant coherent effects when a three-level medium inter- 
acts with optical radiation if this radiation is in the form of a 
periodic sequence of ultrashort pulses and if the splitting 
frequency w2, is a multiple of the pulse repetition frequency 
a. A similar set of conditions was clearly satisfied also in the 
experiments described in Ref. 17, when mode-locked dye 
laser radiation tuned to the Dl line traversed a cell filled with 
sodium vapor and the resonances of the response of the me- 
dium observed on variation of the pulse repetition frequency 
were used to determine the Zeeman splitting of the ground- 
state sublevels. 

In the present paper we shall consider theoretically the 
resonances which accompany the interaction of a three-level 
medium with a periodic sequence of pulses in the case when 
5- ',T; ')o,,. We shall show that when the power is suffi- 
ciently high, such a resonant pulse train may cause coherent 
population trapping, i.e., it may transfer molecules to a co- 
herent superposition state of the lower sublevels leaving the 
upper level almost empty. This makes possible propagation 

ing of a pair of pulses with carrier frequencies coincident 
FIG. 1.  Schematic representation of the propagation of a train of ultra- with the frequencies of (see the re- short pulses in a three-level medium exhibiting a frequency splitting @*, 

view in Ref 16). which is a multiple of the pulse repetition frequency 0 = 2n-/T. 
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of a train of ultrashort pulses across a layer of a three-level 
medium practically without absorption, which can be called 
coherent bleaching of a three-level medium. 

$2. INITIAL EQUATIONS 

When a three-level medium interacts resonantly with 
both optical transitions, reducing the initial equations for 
the density matrix1' for the field carrier frequency w,  we 
obtain 

We shall also write down the reduced wave equation for the 
propagation of radiation along the z axis: 

Here, E is the complex amplitude of the field introduced by 
the relationship 

8 = [ E  exp ( - i o t f i k z )  +c.c.1/2; 

the quantity En = fi/p (TI T,) 'I2 is the amplitude of a mono- 
chromatic field which saturates an optical transition; a,, 
and *3 2 are related by P31.32 
= (T,/T, ) "203,,32 exp( - iwt + ikz) and represent the 
normalized amplitudes of off-diagonal elements of the den- 
sity matrix of optical transitions; 7, is the relaxation time for 
low-frequency coherence; Nis the density of the molecules in 
the medium. For simplicity, it is assumed that the spectro- 
scopic characteristics of both optical transitions (dipole mo- 
ment p, longitudinal relaxation time TI, transverse relaxa- 
tion time T,, and equilibrium population) are identical. 

We shall assume that the widths of the optical lines are 
much greater than the spectral width of a pulse and also 
much greater than the splitting frequency of the levels, the 
detuning of the carrier frequency of a pulse from the optical 
transition frequencies, and the characteristic Rabi frequen- 
cy: T ,  '97; 1,w21,(w31,32 - wI, pIE l/fi. We then can as- 
sume approximately that ao,,/at = aa,,/at = 0 and reduce 
the first two equations of the system (2.1 ) to the following 
algebraic relationships 

03t=-i(nst-pZt) E/2E,, osZ=-i (n3,-pZiw) E/2En. (2.3) 

Substituting them into the remaining equations, we find that 
Eqs. (2.1 ) and (2.2) yield the following self-consistent sys- 
tem of nonlinear equations: 

Here, I = c ( E  I2/8r is the field intensity; In = c ( En I2/8r; 
n = (n,, + n2,)/2 is the half-sum of the differences between 
the populations at the levels participating in the optical tran- 
sition; and a = 8rp2NwT2/cfi is the linear absorption coeffi- 
cient. 

The system (2.4)-( 2.6) differs from the corresponding 
rate equations for a two-level medium given in Ref. 18 by the 
presence of an additional equation (2.5 ) representing the 
complex dynamic variable p,,. This gives rise to a specific 
"coherent" nonlinearity, different from the nonlinearity of 
saturation and generally of a resonant nature. 

$3. COHERENT TRAPPING OF POPULATIONS BY A TRAIN 
OF ULTRASHORT PULSES 

The problem of describing the behavior of a three-level 
medium in a given field of a periodic sequence of ultrashort 
pulses reduces to finding a solution of a system of three real 
linear equations (2.4)-(2.6) with coefficients which are pe- 
riodic functions of time. We shall consider a steady-state 
solution describing periodic oscillations which occur in the 
medium at the pulse repetition frequency. The task becomes 
easier because we can distinguish two intervals in each peri- 
od. During the short action of a pulse [t~(O,r,  ) l ,  when re- 
laxation and natural oscillations of the medium can be ig- 
nored, the variablesp,, = u + iv and n vary only under the 
action of the field: 

I - [ I  - b ( t ) ] /4  0 - [ I  - b ( t ) ] / 4  
0 b'l. ( t )  0 

1 ~ ~ t = ( - l - b ( t ) ] / 4  0 ~ - 3 [ l - b ( t ) l / 4 )  l ~ l t ~ o '  

t 

b (I) = exp [- (2/InT1) S I (1, z)  d t ]  . 

In the interval between the pulses [te(r, ,T) ] the field is 
zero. Three damped oscillations ofp,, and relaxation of n to 
the equilibrium value occur during this interval: 

e-tlTa cos ozlt e-t/q sin oz;t 0 
- e-t17a sin ozlt 8% cos oZlt 0 lii=( 0 0 e-t,Ti ) 1 i 

The amplitudes of steady-state oscillations of the parameters 
of the medium are determined by the fixed points of the su- 
perposition of the transformations (3.1) (during the action 
of a pulse, t = r, ) and (3.2) (during the interval between 
the pulses, t = T ) .  Hence, we can readily show that the am- 
plitudes at the end of a pulse can be found from the following 
inhomogeneous linear system of algebraic equations: 
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I In the interesting case of a narrow resonance, S< 1, when 
sin w,, T=:2r(R - Ro)/w2, is true within a resonance peak, 

I-bp it follows from Eqs. (3.6) and (3.7) that 
+u0, (9 - I )  sin w , , ~ + n 0 ,  - 

4  62=2(1-0 , )  (I-0,bP'la) h/ ( l+02zbP' i1 ) .  (3.8) 

-- (4 -01)  ( I -bp)  The ratio of the populations h =n,(sino,,T= 1)/  - 
8 

I n,(sin w,,T = 0) describing the depth of a resonance is giv- 

~ 0 ~ b ~ ' ~  sin o Z l T + v  (l-02bp'1' cos oz iT)  =O, ( 3.3 ) en by the formula 

3 / , ~ 0 ,  (1 -b , )  cos O ~ , T + ~ / , U ~ ,  ( I - b p )  sin o z i T  I-bp 401-1 
+n{I -0 ,  [I-"'(1-b,) ] ) = 1 / ~ ( 1 - 0 1 )  [ 1 - 3 / ~ ( f - b p )  I .  h = t l + ( l - b p ) v l  /,[ I 'A =+ 

u,v FIG. 2. Coherent population trapping. Resonant depen- 

The solution of this system of equations is described by (3.9) 
where 

u=- ( 1 - 0 , )  ( I - b , )  ( l -02bp'k cos o Z l T ) / 8 A ,  (3.4) 
V= (30i+Oz-40i02)/4(1-01) (1-02) .  (3.10) 

"25 

v=0,  ( 1 - 0 1 )  ( I - b , )  bPlh sin o z i T / 8 A ,  (3.5) The important parameters of the problem which deter- 

dences of the amplitudes of oscillations [Eqs. (3.4)-(3.7)] 
5 of a low-frequency coherencep,, = u + iu and of the popula- 
I \ tion of the upper level n, on the parameter sino2,T, repre- 

mine the resbnance characteristics are ;he coherent intensity 
n3= ( I - b p )  [ 1 + 0 , Z b ~ ' ~ - 0 ~ ( l + b p " ) ~ 0 ~  ~ z i T 1 / 4 A ,  (3.6) 

I ,=21,Ti / t2  (3.11) 
~ = 1 - 0 ~ b , - 0 ,  (1-bp) /4+022bp'"[ l -0ibp-  (1-bp)  141 

and the saturation intensity -oz[  ( I -B ibp)  (I+bPlh) - ( I - b , )  ( 1 + 0 i b , ' " ) / 4 ] ~ 0 ~  oziT.  

(3.7) Is=I,,Ti (1-01) IT, (3.12) 

-1-04 -U,OZ 0,OZ 0,Oq senting the detuning of the pulse repetition frequency 
I I R = 2r/T from the resonance value no = w,,/m 

inw,T -D.OY -0.02 17 U.02 U.oq m = 1 ,  . . ; sinw,,T--2r(R - Ro)/w,, when 
'sin w,, r I R - R, 1 (w2,) ,  plotted on the basis of numerical calcula- 

tions carfied out for the parameters T,/T, = lo5, T,/T 
= 10-1, I =  10-~1,  = 1031,. 

Here, n, = ( 1 - 2n)/3 is the population of the upper level at 
the end of a pulse: 

t = t p ,  bp=b ( t = ~ , ) ,  0,=exp ( - T I T i ) ,  0,-exp ( - T / z z ) .  

An analysis of these expressions shows that if 7,) T, when 
the low-frequency coherence does not have sufficient time to 
relax in the interval between two consecutive excitations, the 
amplitudes of the oscillations ofp,, and n, depend resonant- 
ly on the pulse repetition frequency (Fig. 2). The resonances 
occur when the splitting frequency is a multiple of the pulse 
repetition frequency: w,, = 2nm/T, where m = 1,2, . . . or 
when sin w2, T = 0. Since Rep,, < 0, excitation of a low-fre- 
quency coherence reduces the term on the right-hand side of 
Eq. (2.6) which is proportional to n + Rep2, and, conse- 
quently, it reduces n,. Therefore, we can speak of resonant 
suppression of the saturation effect. 

The relative width of a resonance of half-maximum 
6 = In - nol/flo, where no = 2n/T = w2,/m is the reso- 
nance value of the pulse repetition frequency, is found from 
the condition 

n3(s in  oZlT)  = [ n 3  ( s in  o Z l T = l ) + n s  ( s in  0 2 , T = O ) ]  12. 

where I ,  = ~ f i ~ / 8 n ; u ~ T , ~ ~ .  These quantities are related re- 
spectively to the excitation of a low frequency coherence and 
'equalization of the populations. In the case of a very low 
intensity, 

'IP 

i ~ , ,  i = j z ( t , z ) d t / ~ ,  
0 

resonance is shallow h 1 + T / I , ,  and the width of a reso- 
nance is determined by the width of a low-frequency transi- 
tion: 6~ 2rm/w,,~,. An increase in the intensity increases 
the depth and width of a resonance. 

The most interesting is the case when the lifetime of a 
low-frequency coherence exceeds the lifetime of the upper 
level (r2) TI )  and the intensity exceeds the characteristic 
coherent value given by Eq. (3.1 1 ) . Then, a train of ultra- 
short pulses induces coherent trapping of populations. In 
this effect the population of the upper level under resonance 
conditions is many times smaller than away from resonance 
in a two-level medium exhibiting an optical transition with 
the same parameters. Then, the low-frequency coherence is 
described by p2, =: - 1/2, i.e., its modulus is close to the 
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maximum possible value. In other words, molecules are cap- 
tured into a superposition state of the lower sublevels and the 
upper level is practically empty. It is important to note that 
this effect may appear even at an intensity much lower than 
the saturation value, because I, 4I, holds due to the condi- 
tion T * )  Tl,T. If I, 57 41s, it then follows from Eqs. (3.8) 
and (3.9)  that the depth and width of a resonance increase as 
functions of the intensity in accordance with the law 

This means that the coherent trapping of populations first 
becomes more and more prominent under resonance condi- 
tions and, second, appears in a wider range of the values of 
the detuning of the pulse repetition frequency from a reso- 
nance. 

The effect is observed also at intensities much higher 
than the saturation value [is I,, see Eq. (3.12) 1. In spite of 
the fact that outside a resonance the population of the upper 
level is close to 1/3, i.e., in spite of the populations of the 
three levels being practically equal, the saturation effect is 
suppressed at a resonance. In this case the width and depth 
of a resonance reach very high values. In the case of a medi- 
um with an instantaneous response when TI 4 T, we have 
h =:r2/4Tand S-2-112. For a medium with a finite response 
time, when TI ) T, we have 

h=+,/3T1, 

6% ( 2 n m / ~ ~ , ~ ~ )  [ T ~  ( l+ f / I , )  /3T1l8 for I,<I<I,T,/T, 

6-2(nm/3m2,T,)'" for IBI,T, /T.  
We can see that coherent trapping of populations in a medi- 
um with an instantaneous response is stronger because the 
ratio of the time constants r2/TI is greater. 

$4. COHERENT BLEACHING OF A THREE-LEVEL MEDIUM 

We shall now consider the self-consistent problem of 
the propagation of a periodic train of ultrashort pulses in a 
three-level medium. Substituting the above solution (3.1 ) 
into Eq. (2.4) and integrating the latter over the duration of 
a pulse, we obtain the following equation for the change in 
the energy of a pulse 

%P 

w p =  j l ( t , z ) d t  
0 

in the course of propagation: 

This equation has a simple physical meaning: the change in 
the energy of a pulse due to its steady-state passage across a 
layer of a medium dz thick is equal to that fraction of the 
energy stored in the medium as a result of filling of the upper 
level which has been dissipated during the interpulse inter- 
val as a result of relaxation of the population of the upper 
level at a rate T ,  I. 

It is clear from Eq. (4.1 ) that the absorption coefficient 
and the absorbed power are both proportional to n,. There- 
fore, they decrease resonantly under conditions of coherent 
population trapping. 

The substitution of Eq. (3.6) into Eq. (4.1) yields a 
nonlinear first-order differential equation for the energy of a 

pulse, which is generally integrable in quadratures. In parti- 
cular, in the case of a strictly resonant sequence of pulses the 
integral can be calculated explicitly and the result can be 
presented in the form of a relationship governing the change 
in the average intensity of the pulses as they propagate in the 
medium: 

According to Eq. (4.2), the nonlinearity of the absorption 
law is described by the average intensity 

INL=I,T,/2T ( v i - I )  -min{I,, I , ) .  (4.3) 

If the intensity is much less than this value, i.e., if it is much 
less than the saturation (3.12) and coherent (3.11 ) values 
7grninC1, ,Ic I ) ,  the nonlinearity is not manifested and an 
exponential decay occurs in accordance with the law ?(z)/ 
?(0) = exp( - az) . However, if the intensity at the entry to 
the medium exceeds I NL ?> min{I,,~,)), then during the 
initial stage the intensity decreases proportionally to a coef- 
ficient which itself is inversely proportional to a parameter 
Y +  1 = [3/(1 - 8 , )  + l / ( l  -B2)] /4(seeFig.3) :  

Ti.) /T(O) -1-nzl,,Tli2 ( v + l ) i ( O )  T .  (4.4) 

Only at high values of z when the intensity decreases to such 
an extent that the nonlinearity becomes unimportant 
[T( z )  g I NL 1, does the decay law become exponential, as 
found in the linear theory of propagation of radiation. The 
characteristic length in which the intensity decreases by the 
factor e -- 2.7 is 

We can show that in the case of a two-level medium 
with the same optical transition parameters the law describ- 
ing the decay of the average intensity of the pulses as they 
propagate differs from Eq. (4.2) by the replacement of the 
parameter Y + 1 with 1/( 1 - B1 ) . This is due to the fact that 
in a two-level medium the coherent nonlinearity is absent 
and only the absorption nonlinearity may be manifested 
(when?> Is ). Qualitative differences of the propagation of a 
resonant train of ultrashort pulses in a three-level medium 

FIG. 3. Coherent bleaching of a three-level medium by a train of ultra- 
short pulses. The curves represent nonlinear decay of the intensity of the 
pulses as they propagate in a three-level medium, found by numerical 
calculation for the following values of the parameters vand 21(0) T / I n  T,: 
0.25 and 0.25 for curve 1; 0.25 and 4 for curve 2; 4 and 4 for curve 3. 
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from the propagation in a two-level medium, and also from 
the nonresonance case appear in a situation when the coher- 
ent nonlinearity is important (?$I, ) and the saturation 
nonlinearity is weak compared with the former [I, gI,, see 
Eqs. (3.11) and (3.12) 1. In other words, the differences oc- 
cur in the case of coherent population trapping. Then, under 
resonance conditions the characteristic length L of penetra- 
tion of radiation into the medium described by Eq. (4.5) is 
many times greater than under off-resonance conditions or 
in a two-level medium: if I, <1(0) <Is the difference is a 
factor of ?(0)/1,, whereas for 1(0) $1, the difference is a 
factor of r2/T1 for a medium with a finite response time and 
a factor of r2/T for a medium with an instantaneous re- 
sponse. 

In this way a three-level medium is bleached coherently 
by a train of ultrashort pulses: a strong resonance train of 
ultrashort pulses propagates in a three-level medium over 
large distances practically without absorption. 

This coherent bleaching effect and the simulton propa- 
gation16 involve resonant excitation of a low-frequency co- 
herence so that the pulses propagate practically without en- 
ergy losses. However, it must be stressed that the conditions 
for coherent bleaching a,, < 7,- ' < T ,  ' are opposite to the 
conditions for the simulton propagation w,, $ T,- ' $ T; ', 
and the characteristic value of the coherent intensity of Eq. 
(3.11) in the case when T, $ Tis much less than the intensity 
necessary for the simulton propagation which is -I,, Tl/T2. 

We shall conclude with some comments on the possible 
applications of coherent population trapping and coherent 
bleaching of a three-level medium by a train ultrashort 
pulses. 

A series of experimental investigations was recently re- 
in which the resonant response of a three-level 

medium to a periodic train of ultrashort pulses was used in 
ultrahigh-resolution spectroscopy. Resonances with widths 
of the order of 30 Hz were recorded.'" This method makes it 
possible to determine small and large frequency splitting, 
because the condition r p  '$wZI can currently be satisfied 
right up to splitting of the order of 1013 Hz. Moreover, the 
technique for generation of the required ultrashort pulse 
trains has recently become reasonably accessible and popu- 
lar.21 The promising nature of this method is mentioned in a 
recent review on laser spectrosc~py.~' 

However, in all the experimental investigations (with 
the evident exception of Ref. 17) the condition of wide opti- 
cal lines T; ' $w,, has not been satisfied. In some cases the 
homogeneous width has been even less than the pulse repeti- 
tion frequency, i.e., less than the interval between consecu- 
tive pulses in a train. Under these conditions each atom in- 
teracts only with one pair of spectral components which are 
in resonance with the optical lines. In such a case the phase 
relationships between the modes are unimportant, so that 
there is no need to ensure mode locking of laser radiation. 
Such spectroscopy involving the use of a train of ultrashort 
pulses is closely related to the familiar variant of the spec- 
troscopy of quantum beats based on mode crossing reson- 
a n c e ~ . ~ ~  

On the condition T, ' $a,, ensures that each atom in- 

teracts with all the spectral components of laser radiation, 
i.e., that interacts with a train of pulses as a whole and, con- 
sequently, this condition ensures the fullest spectroscopic 
utilization of a sequence of ultrashort pulses. Resonances 
which occur in the presence of wide-band optical transitions 
( T; ' $w,, ), when the low-frequency structure is com- 
pletely submerged under the homogeneous broadening of 
the optical lines, provides an approach to spectroscopy 
which is free not only of the Doppler line broadening, but 
also of the homogeneous (including natural) broadening. 
The possibility of such "subhomogeneous" spectroscopy de- 
pends on the resonant nature of the coherent nonlinearity of 
a three-level medium which is manifested on interaction 
with a periodic train of ultrashort pulses. 

It should also be mentioned that, in spite of several ex- 
perimental investigations, the theoretical discussions of the 
interaction between a train of ultrashort pulses and a three- 
level medium have been limited so far to the statement that 
the sum of single, decaying at a rate characterized by the 
time r2 and oscillating at a natural frequency w,,, responses 
of a low-frequency coherence to the individual pulses in a 
train should increase resonantly under conditions when the 
natural frequency is a multiple of the interaction frequen- 
cy. " However, the law describing the change in the intensity 
of the pulses as they propagate in the medium and an analyt- 
ic expression for the absorption profile (dependence of the 
absorption coefficient on the pulse repetition frequency), 
particularly the dependence of the resonance width and 
depth on the intensity, have not been hitherto determined. 
The knowledge of these dependences described by Eqs. 
(4.2), (3.6), (3.8), and (3.9) makes it possible not only to 
find the splitting frequency w,,, but also the low-frequency 
coherence relaxation time T, and, if the parameters of the 
three-level medium are known and the splitting frequency 
can be varied (for example, by the application of a magnetic 
field in the case of the Zeeman sublevels), these equations 
can be used to find the parameters of an ultrashort pulse 
train. 

A three-level medium can also be applied as a nonlinear 
filter for the passive mode locking of laser radiation. This 
possibility has been mentioned earlierz4 using the mode ap- 
proach. The above space-time description makes clear the 
physical mechanism of passive mode locking by a three-level 
filter. In contrast to the usual saturable absorbers which 
operate on the basis of a nonlinear reduction in the absorp- 
tion because of the saturation effect,'' a three-level filter op- 
erates by means of coherent bleaching. Since this effect is of 
resonant nature, mode locking should break down when the 
condition that the splitting frequency is a multiple of the 
intermode interval is no longer obeyed. This circumstance 
can be used in intracavity laser spectroscopy. 

'A. Javan, Phys. Rev. 107, 1579 ( 1957). 
'A. M. Clogston, J. Phys. Chem. Solids 4,271 (1958). 
'V. M. Kontorovich and A. M. Prokhorov, Zh. Eksp. Teor. Fiz. 33, 1428 
(1957) [Sov. Phys. JETP 6, 1100 (1958)l .  
4V. M. Fain and Ya. I. Khanin, Kvantovaya radiofizika, Sovetskoe Ra- 
dio, Moscow, 1965 (Quantum Electronics, 2 vols., MIT Press, Cam- 

949 Sov. Phys. JETP 63 (5). May 1986 0. A. Kocharovskaya and Ya. I. Khanin 949 



bridge, Mass, 1968; Pergamon Press, Oxford, 1969). 
5G. Alzetta, L. Moi, and G. Orriols, Nuovo Cimento B 52,209 (1979). 
"G. Orriols, Nuovo Cimento B 53, 1 ( 1979). 
'P. M. Radrnoreand P. L. Knight, J. Phys. B 15,561 (1982). 
'M. Kaivola, P. Thorsen, and 0. Poulsen, Phys. Rev. A 32,207 ( 1985). 
9. R. Hemmer, S. Ezekiel, and C. C. Leiby, Jr., Opt. Lett. 8,440 (1983). 
'9. J. Dalton, R. McDuff, and P. L. Knight, Opt. Acta 32, 61 (1985). 
"P. M. Radmore and P. L. Knight, Phys. Lett. A 102, 180 (1984). 
12Z. Deng, Phys. Lett. A 105,43 (1984). 
13G. P. Agrawal, Phys. Rev. A24, 1399 (1981). 
I4J. Mlynek, F. Mitschke, R. Deserno, and W. Lange, Phys. Rev. A 29, 

1297 (1984). 
15V. G. Minogin and Yu. V. Rozhdestvenskii, Zh. Eksp. Teor. Fiz. 88, 

1950 (1985) [Sov. Phys. JETP61, 1156 (1985)l. 
16L. A. Bol'shov and V. V. Likhanskir, Kvantovaya Elektron. (Moscow) 

12, 1339 (1985) [Sov. J. Quantum Electron. 15,889 ( 1985)l. 
"J. Mlynek, W. Lange, H. Harde, and H. Burggraf, Phys. Rev. A 24,1099 

(1981). 

950 Sov. Phys. JETP 63 (5), May 1986 

18Ya. I. Khanin, Dinamika kvantovykh generatorov (Dynamics of La- 
sers), Sovetskoe Radio, M., 1975. 

19H. Harde and H. Burggraf, Opt. Commun. 40,441 ( 1982). 
'OH. Harde and H. Burggraf, Laser Spectroscopy VI (Proc. Sixth Intern. 

Conf., Interlaken, Switzerland, 1983, ed. by H. P. Weber and W. 
Liithy ), Springer Verlag, Berlin, 1983, p. 117. 

'lE. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, and 
V. N. Serkin, Zh. Eksp. Teor. Fiz. 89,781 (1985) [Sov. Phys. JETP 62, 
448 (1985)l. 

22R. C. Thompson, Rep. Prog. Phys. 48,531 (1985). 
23E. B. Aleksandrov, Usp. Fiz. Nauk 107,595 ( 1972) [Sov. Phys. Usp. 15, 

436 (1973) 1. 
240. A. Kocharovskaya, Ya. I. Khanin, and V. B. Tsaregradskil, Kvanto- 

vaya Elektron. (Moscow) 12,1227 ( 1985) [Sov. J.  Quantum Electron. 
15,810 (1985)l. 

Translated by A. Tybulewicz 

0. A. Kocharovskaya and Ya. I. Khanin 950 


