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The low-temperature conductivity u(w,q) of one-dimensional disordered metals in an external 
field with an arbitrary frequency w and a wave vector q is calculated allowing for the scattering 
of electrons by thermal phonons. It is shown that the dependence of the electrical conductivity 
on q is oscillatory with a period r [ l ;  l l n ( ~ ~ / 2 ~ ~ ,  ) I ] - I ,  which is governed by the characteristic 
separation between two quasistationary localized states which appear as a result of quasielastic 
scattering of electrons by vibrating impurities. An analysis is made of the characteristic 
features of the temperature dependence of the frequency of the electron-phonon interaction 
and of the value of u(w,q) associated with the one-dimensional nature of carrier motion. 

1. INTRODUCTION 

A rigorous theory of the electrical conductivity u(o,q) 
of one-dimensional disordered metals subjected to an alter- 
nating inhomogeneous external field with a frequency w and 
a wave vector q was developed by Berezinskii.' The complex 
mathematical structure of the main equations of this theory 
has been the reason why for several years the main topics in 
studies of the kinetics of such systems has been the frequency 
dependence of the conductivity in homogeneous fields 
(q = 0). Detailed studies have been made of u ( o )  both at 
T= 0 (Refs. 1 and 2) and at finite temperatures (see the 
review in Ref. 3 and the literature cited there). 

The problem of the conductivity of Id metals in an inho- 
mogeneous electric field was solved relatively re~ent ly .~  This 
was done by solving the Berezinskii equations for an arbi- 
trary value of the spatial dispersion parameter qli, where 1; is 
the mean free path of an electron governed by the scattering 
on impurities. It was found that the dependence of the con- 
ductivity of a Id metal on the wave vector is quite different 
from that in the three-dimensional case. One of the results of 
Ref. 4 was a prediction of a geometric resonance effect mani- 
fested by an oscillatory dependence of the conductivity on 
the wave number q. One should also mention that all these 
results were obtained only for the temperature T = 0. 

A solution of the problem of the temporal and spatial 
dispersion of the conductivity u(w,q) of a disordered Id 
metal at finite temperatures is related closely to the problem 
of the interaction of electrons with phonons in systems of 
this kind. It is known3s5 that phonons in one-dimensional 
metals have a dual influence. First of all, the induced transi- 
tions of electrons between localized states can give rise to 
delocalizing effect tending to increase the conductivity. On 
the other hand, the scattering by short-wavelength phonons 
with a momentum q-2po (p, is the Fermi momentum) is an 
additional factor which results in electron localization. 

The delocalizing role of the electron-phonon interac- 
tion is manifested most clearly in the case when the displace- 
ment field varies rapidly during the mean free time of an 
electron between collisions, i.e., when 

Here, w,, is the characteristic phonon frequency; T, and T ~ ,  

are the mean free times of electrons scattered by impurities 
and by phonons, respectively. It was shown in Ref. 6 that in 
this limiting case the scattering of electrons by phonons can 
be simply allowed for in the ladder approximation, whereas 
the scattering by impurities has to be included exactly. In 
other words, the conductivity u(w,q) of a one-dimensional 
metal at a finite temperature can be calculated, according to 
Ref. 6, using the Berezinskii equations in which the real fre- 
quency w is replaced with the sum w + i/~,, . 

A calculation of the conductivity of a Id metal at low 
temperatures when Tri ( 1 is a difficult task. The first reason 
for this situation is that at temperatures of this kind the lo- 
calization due to phonons is also important and this requires 
an accurate description of the repeated scattering of elec- 
trons by both impurities and phonons allowing for the mutu- 
al interference between these processes. Moreover, at low 
temperatures the very mechanism of the interaction between 
electrons and phonons changes. This is due to the fact that at 
temperatures below the Debye value the main role is played 
by long-wavelength phonons and the interaction of these 
with electrons is greatly weakened by the electron screening 
effect.' Consequently, the familiar deformation mechanism 
does not operate in the case of Id metals and the electron- 
phonon interaction in the metals is governed largely by the 
weaker cross-deformation and inertial mechanisms. 

We shall consider the spatial dispersion of the electrical 
conductivity in the range of temperatures defined by the ine- 
quality of Eq. ( I ) ,  which makes it possible to ignore the 
effect of localization of electrons in the course of their scat- 
tering by phonons. For this purpose we have to regard the 
temperatrue as low compared with the Debye frequency w,. 
Then, the characteristic phonon frequency w,, is deter- 
mined by temperature and Eq. ( 1 ) yields the condition 

Naturally, the inequalities of Eq. (2)  can be satisfied only if 
WDT;, 1, i.e., when the scattering of electrons by impurities 
is sufficiently weak. 
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2. INITIAL RELATIONSHIPS 

In the range of temperatures defined by the inequalities 
of Eq. (2) the spatial and temporal dispersion of the electri- 
cal conductivity a(w,q) of a one-dimensional metal is de- 
scribed6 by the Berezinskii equations in which the substitu- 
tion w -+ w + i/rph is made. This replacement is correct 
subject to the condition (2)  and subject to the inequality 

I W+i/TPh(7i<l. (3)  

It means6 that the scattering by phonons is practically iso- 
tropic, i.e., that the probability of such scattering is indepen- 
dent of the sign of the electron velocity. We shall show below 
that if T(w, , then the ratio ri/rph is always small compared 
with unity and, consequently, the inequality of Eq. (3)  re- 
duces to wri ( 1. 

Using the results of Ref. 4, where the Berezinskii equa- 
tions were solved for arbitrary wavelengths and complex fre- 
quencies, we shall write down the conductivity equation in 
the form 

m 

The following notation is used above: 

li = vr i  is the mean free path of electrons in the case of back- 
scattering by impurities, v is the Fermi velocity, and a, 
= ne2.r,/m is the dimensional factor which is identical in 

form with the static conductivity of a three-dimensional 
metal. The delocalization factor D,, (z) describes the influ- 
ence of localization of electron states on the electrical con- 
ductivity. Its asymptotic forms for low and high values of z 
can be found in Ref. 4. 

It is clear from Eqs. (4) and ( 5 ) that the delocalization 
factor is governed by the complex parameter z and depends 
strongly on the ratio of the times 7, and rPh. We shall first 
consider possible values of the ratio ri/rPh. We shall esti- 
mate the mean free time rPh . In the range of temperatures of 
interest to us the usual deformation interaction is absent and 
the scattering of electrons by phonons is due to the cross- 
deformation and inertial mechanisms. For the first of these 
mechanisms the frequency l/rph of the scattering of elec- 
trons by phonons is proportional to the square of the modu- 
lus of the product of the effective constant A of the cross- 
deformation interaction and the strain tensor u - (q/Ms) ''' 
(S is the velocity of sound and M is the mass of an ion) 
multiplied by the relative number of phonons participating 
in the scattering process (which in the one-dimensional case 
is of the order of q/p,,- T/w,) and by the delta function 
which describes the law of conservation of energy (on the 

scale because of the absence of intergration over angles 
in one measurement). We consequently obtain the estimate 

In the case of the cross-deformation interaction the role 
of the constant A is played by the x-dependent quantity7 

where x is the electron coordinate, A is the cross-deforma- 
tion potential tensor (of the scale of unity), and c (x )  is a 
complex random Gaussian field with a correlation function 

< r; (3) f+ (x') ) ' l i6  (5-2') .  (7) 

The delta function appears in the above expression because 
the correlation function (7)  is calculated for the limit 5 -+ 0 
(Ref. 8),  where 5 is the correlation radius of a random field 
c (x ) .  We therefore have to assume that in the case of identi- 
cal arguments the delta function is of the order of I/{. Bear- 
ing in mind that the correlation radius5 is of the atomic size, 
we obtain from Eq. (7) the following estimate 

Consequently, the effective cross-deformation interac- 
tion constant can be estimated from 

Substituting this result into Eq. (61, we obtain 

l / t p h - T 2 / t i ~ P u ~ ,  T<oD. (10) 

A calculation carried out using the transport equation 
makes it possible to obtain the exact result: 

where a is the lattice constant in the direction of the chains. 
We therefore reached the conclusion that in the case 

under discussion the frequency of the scattering of electrons 
by thermal phonons is much less than the frequency of the 
scattering of electrons by impurities: 

Consequently, at low temperatures the electrons are scat- 
tered mainly by impurities. Collisions with phonons are rela- 
tively rare and in the intervals between them the electron 
states become localized. 

The inertial electron-phonon interaction mechanism at 
low temperatures T<wD does not contribute to the transport 
time rPh , because the number of photons with the momen- 
tum 2p, is exponentially small. 

3. ANALYSIS OF SPATIAL DISPERSION OF THE 
CONDUCTIVITY 

The simplest results are obtained in the limiting case of 
high frequencies wri) 1. In this frequency range the scatter- 
ing of electrons by phonons can be ignored. Therefore, the 
conductivity is independent of temperature and is described 
by the appropriate formula from Ref. 4. In particular, the 
imaginary part of the conductivity is given by the Drude 
formula and the dissipative part differs numerically from the 
Drude formula because of the localization of electron states. 

The most interesting is the frequency range wri & 1. We 
then have Iz((1 and the function D,, ( z )  is a sum of two 
different terms4: 

D, ( z )  =nz/ch ( 4 2 )  

-'/,nz sh-? ( x k / 2 )  ( l+ ip /2 )  ( z /4 )  
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where r (x)  is the gamma function. The corrections to each 
of the terms in Eq. ( 13 ) are characterized by a relative small- 
ness of the order ofz. It should be pointed out that represen- 
tation of the delocalization factor D, ( z )  in the form of Eq. 
( 13) does not literally represent an expansion in terms of z .  
In the absence of phonons the first term in Eq. ( 13) allows 
for the localization of the electron states and gives the domi- 
nant contribution to the polarizability. The low-frequency 
dissipative conductivity due to the hopping mechanism ap- 
pears because of the second term in Eq. ( 1 3 ) .  When an 
allowance is made for the scattering by phonons, the param- 
eter z of Eq. ( 5 )  becomes complex (and not just purely 
imaginary) and an additional contribution to the dissipative 
conductivity is made by the first term in Eq. ( 13).  

In accordance with Eq. ( 13), we shall represent the 
complex conductivity as a sum of two terms, a = a"' + d2', 
and we shall analyze the dependence ~ e a " '  on the wave 
number q. We shall first discuss the case when w = 0 .  Then, 
u("(0,q) is given by the expression 

rn 

where 

The formula ( 1 4 )  describes the contribution made to the 
static conductivity by those electrons which are in localized 
states, that now become quasistationary states because of the 
electron-phonon scattering. 

The spatial dispersion of a"'(0,q) is governed essential- 
ly only by the mean free path in the case of the scattering by 
impurities l i ,  because li 41ph = vrph. In the limiting case of 
low values of q when (ql ,  ) 2 <  1 Eq. ( 14) yields the following 
result first obtained in Ref. 6: 

a(') (0, q )  =4L (3) aozi/zph. ( 1 5 )  

At high values of qli this conductivity decreases strongly 
because of the spatial dispersion, 

and is independent of the time r i  in the case of the scattering 
of electrons by impurities. 

The form q of the part of the conductivity ~ ' ~ ' ( 0 , ~ )  
which is due to the Second term on the right-hand side of Eq. 
( 13) is more complex. The reason is that the second term in 
the expression for D, (z) contains not only li but also an 
additional large parameter with the dimension of length, 
which represents the length of a jump of an electron between 
localized states, proportional to 1nJzJ. Consequently, the 
range of low values of q when qli( 1 splits into two intervals 
with different dependences of the conductivity on the wave 
number q. In the range of low values of q, when 

2 q l i l l n  ( ~ i 1 2 ' C p h )  I 1, ( 1 7 )  

we find that 

~ ' ( 0 ~  4 )  = - 4 ~ o  ( ' t r / T p h )  ' 1n2 ( ~ t / 2 ~ p h ) .  ( 1 8 )  

This quantity is small compared with a"'(0,q) of Eq. ( 1 5 )  
because of the smallness of the parameter aln2a, where 
a = r i / r p h .  On the other hand, in view of the large value of 
the logarithm [ ln2(r i /2rPh ) % 1 ] the quantity given by Eq. 
( 13) exceeds the corrections to the main term a"' represent- 
ing the higher powers of a. 

It should be noted that in the limit of very low values of 
q the static conductivity ~ ( ~ ' ( 0 , ~ )  exhibits spatial dispersion 
in the range q - 1 ;  ': if qlph 4 1 ,  then d ( 0 , q )  contains the 
factor 1 + 4(ql )' whereas for qlph %l  the factor is 

4h 
1 + 3(qlp, ) -', I.e., if qlph - 1 there is a minimum of 
d2' (0 ,q ) .  

It follows from Eq. ( 18 ) that the corresponding contri- 
bution to the conductivity is due to transitions of electrons 
between localized states separated on the average by the dis- 
tance 

L=2li1 ln ( ' t i / Z ' t p h )  1 .  ( 1 9 )  

The order of magnitude of this distance is readily obtained 
on the basis of the familiar arguments of Mott9 if we bear in 
mind that localized electron states become quasistationary 
because of the scattering by phonons. A characteristic 
broadening of the energy levels of the localized states is then 
1 /rph . 

When q is increased, so that the inequality in Eq. ( 17) is 
reversed, an oscillatory dependence of a'2'(0,q) on q is ob- 
tained: 

Equation ( 2 0 )  is obtained as a result of an explicit calcula- 
tion of the integral ( 4 )  involving the substitution in place of 
D, (z) of the second term from Eq. ( 13).  Therefore, the ef- 
fects of spatial dispersion are allowed for asymptotically ac- 
curately in respect of the parameter a. A theoretical analysis 
of the dependence ~ ' ~ ' ( q )  in the range where 2qL 2 1 is cum- 
bersome and does not give clear results. Therefore, we calcu- 
lated numerically the values of d2' (0 ,q )  and the results are 
plotted in Fig. 1 .  The abscissa represents the parameter qli 
and the ordinate the function R W ( ~ ) T ~ , / ~ ~ ~ , .  We can clearly 

Re- 
.GO 7i 

FIG. 1 .  Dependence of the oscillatory part of the conductivity dZ'(O,q) on 
the spatial dispersion parameter .x = ql,,  calculated for T ~ / T ~ ~  = lo-*. 
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see one oscillation of the conductivity in the range of q where 
qli <0.1. The significant difference of the corresponding 
part of the curve from the sinusoid is due to the presence of a 
term tan-' (qvrph) in the argument of the cosine of Eq. 
(20). The structure of the curve in the region of q -I,, -' 
cannot be seen in Fig. 1 because of the inequality Iph >Ii. 

These oscillations are of the same origin as the corre- 
sponding oscillations in the geometric resonance effect pre- 
dicted in Ref. 10. They are due to the oscillatory dependence 
of the matrix element of a transition on the phase advance qL 
experienced by an external wave in a distance L representing 
an electron jump. The second and subsequent periods cannot 
be seen in Fig. 1 because they fall in the range of values of q 
where their amplitude becomes exponentially small. Such an 
exponential damping of the conductivity oscillations is ex- 
plained by the fact that in reality the length L is not rigorous- 
ly fixed but exhibits a normal distribution near its average 
value given by Eq. ( 19). 

Finally, in the range qIi > 0.1, the quantity ~ ' ~ ' ( 0 , q )  de- 
creases proportionaly to l/q2: 

In this region the value of ~ ' ~ ' ( 0 , ~ )  is small compared with 
the main term in the expression where the parameter is 
~ i / ~ p h  

The temporal dispersion of the low-temperature con- 
ductivity is governed by the parameter wr,, and becomes 
significant already at low frequencies where wri( 1. We can 
allow for the dependence of Rw'" on the frequency w simply 
by replacing the arguments of the logarithms in Eq. (20) 
with the quantity 

121 /4= ( ~ 1 / 2 ~ p h )  [i+ ( O Z P ~ )  '1 "' (22) 

and multiplying the whole of Eq. (20) by 1 - (wr,, )2. In 
the case of the principal term of u'"(0,q) in Eq. (15), the 
frequency-dependent corrections are proportional to the 
small parameter (ori )'( 1. 

We shall conclude by considering briefly the tempera- 
ture dependence of the electrical conductivity. The value of 
the conductivity is governed primarily by the term d" of Eq. 
(15). Since, as already pointed out, in a one-dimensional 
metal the collision frequency 1/rPh is proportional to T2, the 
dependence R w (  T) at temperatures defined by the inequal- 
ities of Eq. (2) is basically quadratic. 

In the inhomogeneous case it is worth noting the depen- 
dence on T of the positions of extrema of the oscillatory part 
of the conductivity Rw(''. We can see from Eq. (20) that 
this dependence is fairly complex. However, the general ten- 
dency is that as predicted and this is confirmed by numerical 
calculations, so that cooling shifts the conductivity oscilla- 
tions toward lower values of the parameter qIi. 
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