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The interaction potential for Brownian particles is computed in the limit of large interparticle 
separation. It is shown that the particles repel each other with a force that is inversely 
proportional to the cube of the separation. The interaction between Brownian particles and a 
plane wall is also considered. 

As is well known, the theory, developed by Lifshitz, 
Dzyaloshinskii, and other  researcher^,'-^ of the long-range 
dispersion interaction between macroscopic bodies allows us 
to consider the interaction between objects in a medium. In 
particular, it allowed the solution of the problem of the inter- 
action of small particles located at large distances from each 
other in a fluid. Here, in contrast to the problem in a vacu- 
um, there also obtains the specific interaction mechanism 
connected with the exchange of phonons across a medium. 
The medium in this case is considered to be compressible and 
inviscid. In such a treatment the interaction disappears in 
the limit when the medium and the particles can be consid- 
ered to be incompressible. 

In the present paper we show that, even in this case, if 
we allow for the viscosity and the fact that the particles in the 
fluid are not stationary but execute Brownian motion, then 
there arises between the particles an interaction that is weak, 
but relatively slowly decreases with distance. The physical 
essence of this interaction is the following: when a particle 
moves, it induces motion in the surrounding fluid layers, 
which, in turn, is capable of acting on the neighboring parti- 
cles and setting them in m ~ t i o n . ~  It would appear that, on 
the average, this motion, like Brownian motion, does not 
have a preferred direction. But this is not so. As will be 
shown below, the relative displacement of the particles is 
characterized by a definite regular, besides a random, part. 
In other words, the consistent particle motions are such as 
would occur if there acted between the particles entirely de- 
terminate forces that in the general case depend on the dis- 
tance and the particle shape. Allowance for these forces can 

particle of radius R,. We shall, for simplicity, assume that 
the second particle is stationary (this assumption has no ef- 
fect on the final result). Since the Auid at the location of the 
second particle moves the velocity vl(r = r,), there occurs 
around it a velocity self-field v" ( r ) .  As a result, the fluid at 
the location of the first particle acquires an additional veloc- 
ity v" (r , ) ,  which produces a force f equal to 67rR , ~ v "  ( r , ) :  

f ( r ~ ;  r2; VO) x-6nRiq (9RIR,I16) [vo/lrl-r,12 
+3 (VO (rt-rz) ) ( r ~ - r ~ ) / ( r ~ - r ~ ( ' ] .  (2)  

The formula (2) does not take account of the interac- 
tion's retardation, which is determined by the time T, re- 
quired for the establishment of the Stokes velocity distribu- 
tion in the region between the particles. The quantity T, is, in 
order of magnitude, equal to Ir, - r212p/~. Therefore, the 
correct treatment requires that we take the velocity v, enter- 
ing into (2) to be not the true velocity of the particle at the 
given moment of time, but the velocity averaged over time 
intervals of the order of T,; then the force f also has the mean- 
ing of an averaged force. 

In order to determine the regular part of the force acting 
on a particle, we should average (2)  over all possible v,. This 
is equivalent to averaging over time intervals T')T,. In this 
case the condition 7'(T2, where T, is the time during which 
the Brownian particle diffuses over a distance of the order of 
Ir, - r,l, should be fulfilled. In order of magnitude, the 
quantity T, = J r ,  - r212Rq/xT, where Tis  the temperature 
of the medium, and in virtually all the situations that really 
occur T,)T,. 

Let us represent f in  the form 
be of interest only when no other interaction mechanisms f [rI+6r (t) , r,, d6rldt ] 4 (r,, r,, d6rldt) 
exist. For example, it is of interest to take into consideration +(8rV)f(rl,r2,d6rldt), ]6rl<lrl-r2/. 
the interaction between macromolecules dissolved in water 

(3 

in the absence of interactions of the electrical nature. Here Sr(t) has the meaning of an averaged displacement, 

L~~ us assume that the Reynolds number Re = i.e., of the integral over time of the averaged (over time inter- 

v( 1 (where v and I are the characteristic values of the parti- vals of the of ) 

cle velocity and particle separation; p and 7 are the density In the case when Sr( t)  is due to Brownian displace- 

and viscosity of the fluid). The velocity field produced by a ments~ we can write 

spherical particle of radius R,  moving with velocity v, is t 

described in this case by the Stokes solution5: d d 
(6.' (tldl 64 (t) ) = lim - bri2(t') dt'] 8,  ,,, L 2 t o  dt' 

v' (r) = [ (3RI/f +R,3/r'S) vo+ [3R, (v0rf) /r' ] (4-R12/rfZ) rf]/4 
= (3RI/4) [vo/f + (vorf ) r'/ fa] , rf*1BRI ( 1 ) = lim I + -  (2Dt8ij/2t) = xT8tj16nRiq; (4) 

(where r' = r - r,, where r,  is the radius vector specifying here the angle brackets denote averaging over time at times 
the position of the center of the first particle). Now let there much greater than T, and D is the coefficient of diffusion of 
be located at the point r = r, the center of a second spherical the Brownian particle. Averaging (3)  with allowance for 
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(4) ,  we obtain Averaging ( 6), we find 

where F is the averaged force and U,, is the effective poten- 
tial. Thus, there arises between the particles a repulsive po- 
tential that falls off with distance like r P 2 ,  but the energy of 
this interaction is smaller than KT. 

Let us also consider the problem of the interaction of a 
particle with a plane. The force f in this case can be repre- 
sented in the form 

f ( z ,  vo) = - 6 2 % ~ ~ ~  { ( 3 /2n ) l ds  (r,-r) (no (rl-r) ) 
x ( (ri-r) V' (r) ) /lrl-r 1') =-6nRiq (9R,vo/8z). ( 6 )  

Here no is the unit vector perpendicular to the plane, r speci- 
fies the points on the plane, the integration is over the entire 
surface, and z is the distance from the particle to the wall. 

In conclusion the author expresses his profound grati- 
tude to N. G.  Esipova, A. A. Sobyanin, A. Yu. Grosberg, 
and L. P. Pitaevskii. 
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