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A new method of classifying nonlinear structures in different nonequilibrium systems is 
proposed. Lying at the basis of the new approach is the idea of an attractor as a stable state in 
which a physical system can remain, in principle, for an unlimited time. Two logical operations 
(superposition and combination) make it possible to use algebraic methods for the analysis of 
complicated nonlinear structures. An algorithm for constructing complicated attractors from 
elementary ones is demonstrated for the example of a gas discharge. 

1. INTRODUCTION 

Investigations of nonlinear structures in various non- 
equilibrium s ~ s t e m s ' ~  constitute one of the most rapidly 
developing trends of modern natural science. During the 
study of such structures the problem of seeking possible 
ways of classifying them has arisen.' The purpose of this 
paper is to describe one of these ways and to illustrate its 
effectiveness for the example of a gas discharge. 

At the basis of the approach developed lies the idea of an 
attractor. By an attractor, as is well known,' we mean that 
set (in the phase space of the dynamical system of equations 
that describes some particular process) which is approached 
asymptotically by phase trajectories from a certain neigh- 
borhood of the set and which, from this point of view, is an 
attracting set. The concept of an attractor makes it possible 
to dispense with many of specific features of qualitatively 
different (at first glance), stable stationary states of the dy- 
namical system, and affords the possibility of considering 
these states as equivalent in many aspects, in the sense that 
none of them is in any way unique but, depending on the 
conditions, can be realized on an equal footing with the oth- 
ers. Three varieties of attractor are known: stable static equi- 
librium states (or in other words, stable singular points of 
the dynamical system), stable limit  cycle^,^ and stochastic 
attractors (e.g., the so-called strange attractors) .'s7 

Henceforth, by an attractor we shall mean not only an 
attracting set in the phase space, but also the corresponding 
stable state in which the particular physical system, in prin- 
ciple, can remain for an unlimited time. This extension of the 
concept of an attractor, as will be seen from the following 
account, makes it possible to introduce a universal classifica- 
tion for different nonlinear structures, without reference to 
the concrete mechanism of their formation. Here, we shall 
take into account the fact that the character of the variation 
of the parameters of any physical system, both in space and 
in time, has many general features, inasmuch as these fea- 
tures are a consequence of the operation of a set of particular 
nonlinear processes. Because of this, besides the spatially 
uniform structures whose temporal analogs in systems with 
concentrated parameters are the static states, there can exist 
structures with spatially periodic (the analog of cyclic oscil- 
lations) and spatially stochastic (the analog of stochastic 
oscillations) distributions of the parameters. 

An important role in the construction of the proposed 
classification is played by the concept of two algebraic oper- 

ations that can be applied to attractors-the operation of 
superposition (superposition of structures onto each other), 
the meaning of which is especially clear in the case of weakly 
interacting structures, and the operation of combination of 
attractors, which is physically equivalent to the simulta- 
neous existence of different structural formations of the 
phases of the system. Therefore, the approach developed 
here to the analysis of nonlinear structures can be called an 
attractor algebra. 

Before proceeding to the detailed account of the pro- 
posed way of classifying nonlinear structures, with the aim 
of giving greater clarity to the formalism developed below 
we shall consider a number of concrete examples from the 
field of gas-discharge physics, concentrating attention on 
the analysis of the contracted states of a glow discharge. 

2. Phenomenon of dynamical contraction and superposition 
of nonlinear structures in a glow discharge 

In the analysis of the contracted states of a gas dis- 
charge in general, and of a glow discharge in particular, it is 
possible to distinguish, first of all, two qualitatively different 
arcing regimes-static and dynami~al .~ 

Whereas the static regime of contraction of a gas dis- 
charge has been studied in some detail (see, e.g., Ref. 9),  the 
phenomenon of dynamical contraction has been established 
experimentally very recently8 in a glow discharge in condi- 
tions corresponding to regular self-oscillations of the param- 
eters characterizing this discharge. 

A further dynamical-contraction regime, correspond- 
ing to stochastic self-oscillations, is observed when the dis- 
charge gap is subjected to a magnetic field (Fig. 1 ) which, 
upon increase of the power supplied to the discharge, pro- 
motes the formation of a complicated, turbulent plasma 
flow. Here the positive column of the glow discharge consists 
of a set of regularly spaced current filaments (Fig. 2), inside 
which the turbulent plasma flow occurs. At the same time, 
the discharge current varies in a pulsed-periodic manner 
with frequency - 1 kHz and modulation depth - 25%, and 
each current pulse has a wide-band high-frequency duty cy- 
cle (Fig. 3). Thus, for the dynamical-contraction regime un- 
der discussion, simultaneous manifestation of stochastic and 
regular variation of the discharge parameters, both in time 
and in space, is characteristic. In other words, what is real- 
ized in this experiment is nothing other than a superposition 
of several nonlinear structures; to be precise, on a spatio- 
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FIG. 1. Section of the discharge gap in a constant magnetic field: 1, 2 )  
water-cooled anode and cathode; 3 ,4 )  core and coil of a cylindrical elec- 
tromagnet. 

temporal stochastic structure (the turbulent state of the 
plasma) is superposed a structure with parameters that vary 
regularly in space and in time. 

In both the experiments discussed above, although they 
demonstrate a new, general form of stable state of a dis- 
charge (the regime of dynamical contraction), essentially 
different structures are actually realized. In fact, in the first 
experiment the contracted state arose as a result of the action 
of an external factor, viz., the fact that the physical system 
under consideration has a finite size (determined by the di- 
ameter of the tube) in a direction transverse to the current. 
This circumstance led to the formation of a nonuniform gas- 
temperature profile and thereby induced a thermal mecha- 
nism of contraction.' Therefore, the structure that arises in 
this case can be called an induced structure. In the second 
experiment, the formation of the corresponding structure is 
connected primarily with features of processes occurring 
within the physical system itself-the gas discharge. The fin- 
iteness of this system (say, along the electric-field lines) and 
the nonuniformity of the magnetic field (and also, in gen- 
eral, the character of the variation of the external factors in 

FIG. 2. Structure of the gas discharge in a magnetic field in the regime of 
dynamical contraction (CO, at a pressure of 15 Torr, and with a discharge 
current of 4 A ) .  

FIG. 3. Character of the variation of the discharge-current strength in the 
regime of dynamical contraction. 

space and in time) introduce distortions that are only secon- 
dary from the standpoint of the essence of the phenomenon 
(see the interpretation given in Sec. 4).  Therefore, it is natu- 
ral to call the given structure a spontaneous structure. In the 
following we shall consider only such spontaneous struc- 
tures. 

3. THE ALGEBRA OF ATTRACTORS 

3.1 The operation of superposition of attractors 

We shall denote by the symbol r,b the set ($i ) ofdifferent 
internal mutually related parameters ( i  = 1, 2, ... ) that 
describe the behavior in time and in space of a certain phys- 
ical system in a stationary (not necessarily static) state. We 
shall call 1/, the state function of the system. We shall consid- 
er features of the behavior of such a system in cartesian co- 
ordinates x, y, z. Since in the following we shall be studying 
spontaneous structures, we shall assume, in accordance with 
what was said at the end of Sec. 2, that the external (control- 
ling) parameters are constant or (as, say, in thecase of struc- 
tures that arise in the presence of high-frequency electro- 
magnetic fields) averaged over the space-time continuum, 
and that the unperturbed system is uniform and unbounded. 

Let the symbols A j, A k, A :, A ," or combinations of 
them show how the state function Y = Y (A :, A t, A :, A ,") 
=Y (Aik'" ) varies, i.e., how each function $, from the inves- 
tigated set {$i varies as a function of the time t and the 
spatial coordinates x ,  y, z. Here, taking into account what 
was said in the Introduction, we assume first that the indices 
i, k, I, m can take only three values: 0 (a  static (in time) or 
uniform (in space) state), c (a  cyclic structure),'' and s (a  
stochastic structure). Then, for example, Y (A OooO) will cor- 
respond to a static, spatially uniform state, *(Aa ) will 
correspond to a time-periodic, spatially uniform structure 
(self-oscillations), and Y (A O" ) will correspond to a static 
structure with parameters that vary in a stochastic and cy- 
clic manner in thex andy directions, respectively, but do not 
depend on z. 

We introduce the operation of superposition of differ- 
ent structures. For this we consider the set of all possible 
states of the physical system, the elements of which are the 
sets of functions r,bi, i.e., the state functions Y={qhi ). Here, 
we shall regard as different only those states (or, in other 
words, only those elements of Y) which cannot be obtained 
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from each other as a result of a continuous variation of the 
controlling parameters without the appearance of a bifurca- 
tion. Then a superposition of structures under investigation 
can be described as follows in the framework of the approach 
being developed. Let the operator Aik'" act by "converting" 
one structure of the physical system into another, i.e., by 
associating one element of the set Y of states with another by 
the following rule: 

AitAtltm~qf (Ai&bm) = y  (Aitktl,mtAidbbn*) 
=Y (A>A>, A>Axb, Ayl'AylO, AzmlAzw).  

Here the combination A :A f (or, e.g., A ,klA $implies that on 
the structure A ! ( A  2) a structure of the type A :'(A ,kl) is 
superimposed, i.e., superposition of these structures occurs. 
Forexample,ifi,=O(ko=O) andi, = c ( k ,  =c),wehave 
a time-periodic (space-periodic in the direction of the x 
axis) modulation of the initially constant (uniform) param- 
eters, while if i, = s (k, = s) and i, = c (k ,  = c) a stochastic 
structure is modulated periodically. 

We shall define the product (or, in other words, super- 
position) 

of the operators under consideration by the rule 
n 

Here, notation of the type 

(1-0 

implies the superposition of m (m = n + 1) different struc- 
tures on each other. For example, if m cyclic structures are 
superimposed, we can realize a situation corresponding to 
so-called m-dimensional tori. But if in this example m tends 
to infinity, then, under the condition that the motion is not 
periodic and that for no finite value of m can a strange attrac- 
tor arise as a result of bifurcations, a stochastic structure 
corresponding to the Landau model of t~rbulence"~ '~  (see 
also Refs. 13 and 14) is formed. 

We now suppose that each of the indices i, k, I, m can 
take a further, fourth value, equal to unity. We shall further 
assume that when i, k, I, and (or) m = 1, the identity trans- 
formation is realized, i.e., the specific features of the behav- 
ior of the nonlinear structure as functions of the correspond- 
ing coordinate of the spatio-temporal continuum are not 
destroyed in this case. For example, if k = 1 the relation 

Ail'"Y (Aiobbm) =Y (At,'Atb, AdA,b, AylAylo, AlmAlmo) 
=Y(At iAt io ,  A,b, AylAy4, AZmA."b) 

is valid. It is obvious that A " I 1  will be a unit operator, i.e., 
will effect the identity transformation of each element of the 
set Y of states of the physical system into itself: 

~ l t l t y  (Aiklm) =y (AltttAiklm) =y (Aiklm). 

Now, when the formalism of the operation of superposi- 
tion of attractors has been described, we shall assume that, in 
all situations to be considered below, the initial state of the 
physical system is static and spatially uniform. Therfore, to 
simplify the writing we shall omit the state function Y in the 
relations given below, and confine ourselves to pointing out 
only the operators of their superpositions (which, for bre- 
vity, will also be called attractors) corresponding to any par- 
ticular nonlinear structure. 

3.2 Examples of nonlinear structures in a gas discharge 

To illustrate the results that can be obtained by means 
of the approach described above, we shall consider some of 
the possible nonlinear structures in an electric discharge, 
having assumed for definiteness that thex axis is in the direc- 
tion of the electric-field intensity: AO& are the rest strata, 
A'& are the running regular strata, A are the rest irregu- 
lar strata with stochastically spaced layers, A"" is the con- 
tracted state with stochastically spaced current filaments, 
along which regular strata propagate, and so on. 

We note that in the general case several different states 
of the physical system can correspond to the same attractor 
naA iak,l,m, . For example, if the dependence on x and t of the 
discharge parameters qhi appears only in the form of the com- 
bination x - ut, where u = const, then A" can be interpret- 
ed either as a set of stochastically spaced filaments along 
which irregular strata propagate with velocity u, or as irregu- 
lar oblique strata,I5 the direction of the displacement of 
which does not coincide with the direction of the electric 
current. If, however, there is no such dependence of qhi on x 
and t, then A" can be interpreted as a turbulent state of the 
plasma, and this will be assumed in the following in respect 
of this attractor. The turbulent regime in the plasma, as is 
well known, arises especially easily in the presence of an ex- 
ternal magnetic field. For example, in the plasma of a glow 
discharge in crossed electric and magnetic fields there devel- 
ops the so-called ionization turbulenceI5 (see also Ref. 16) 
which, to all appearances, is also observed in the second ex- 
periment described in Sec. 2. Here, as already noted in Sec. 2, 
we have simultaneous superposition of regularly spaced cur- 
rent filaments and low-frequency modulation of the dis- 
charge parameters. Therefore, the structure under discus- 
sion corresponds to a superposition of two attractors: A'''' 
and A", i.e., to the attractor A"" A". 

We analyzed above only a small number of different 
variants of nonlinear structures. For example, to the attrac- 
tors A'~'" alone, even without allowance for the possibility 
of associating several real physical situations with them, can 
correspond as many as 81 varieties of such structures. Obvi- 
ously, for the attractors 

fi Aizknl=ms 
a-t 

there will be many more such structures. All of this is evi- 
dence of the considerable effectiveness of the approach de- 
veloped in the present paper to the systematization of differ- 
ent nonlinear structures. 
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3.3 The operation of combination of attractors 

Up to now it has been assumed that the nonlinear struc- 
ture corresponding to a particular attractor or superposition 
of attractors is formed simultaneously in the whole space. 
However, in practice one fairly frequently encounters situa- 
tions in which nonlinear structures coexist in the same way 
that different phases of a substance (e.g., in a liquid-vapor 
system) coexist. In this case there arises a new structure that 
is a combination of a certain set of attractors. Below we shall 
confine ourselves to an analysis of the case in which the in- 
termediate layer between one nonlinear structure and an- 
other is planar. We let the y axis be perpendicular to this 
layer. Then, by the combination +A i-k-l-m- of 

two attractors Ai+k+l+m+ and A'-~-'-"- we shall mean that 
attractor for which as y-, + a, a structure of the type 
A'+~+ '+"+ is realized and as y- - a structure of the type 
~ i - k - 1 - m -  is realized. 

We shall give only two examples, assuming that the op- 
eration of combination can be applied in relation to all 
(without exception) attractors of the type II,A 
((~21):  1) [Am]'  + [Am]'-in the case of a gas dis- 
charge the given layer structure corresponds to the simulta- 
neous coexistence of a static, weak-current phase (e. g., 
[Am ] ') and a static, strong-current phase ( [Am ] ); 2) 
Am + Add As'& , e.g., an ionization wave, with stochasti- 
cally varying parameters that are modulated in a periodic 
manner, propagating through a gas. 

4. GLOW DISCHARGE STRUCTURE CORRESPONDING TO 
THE ATTRACTOR AC'ccA8~s 

We shall now explain in more detail one of the possible 
mechanisms of formation of the nonlinear structure (dis- 
cussed in Sec. 3.) of the type AC'"A"", and this will enable 
us to give greater clarity to the operation of superposition of 
attractors. Here, for definiteness, we shall consider the case 
of a glow discharge excited in crossed electric and magnetic 
fields in conditions similar to those which obtained in the 
second of the experiments described in Sec. 2; we shall as- 
sume that the unperturbed state of this discharge is static 
and spatially uniform. 

We suppose that at a certain time a fluctuation has ap- 
peared in the discharge under investigation. It is known (see, 
e.g., Ref. 17) that an arbitrary fluctuation decays in a natu- 
ral way into two component parts, the development of one of 
which (the spatially uniform part) is accompanied by a 
change in the current I passing through the discharge, while 
the development of the other (the spatially nonuniform 
part) is not accompanied by such a change. 

In the analysis of the distinctive features of the growth 
of uniform perturbations, obviously, it is necessary to take 
into account the influence of the external electric circuit." 
Denoting by E the intensity of the electric field in the glow- 
discharge plasma, taking into account that E- U, is the vol- 
tage drop across the discharge, neglecting the role of the 
regions near the electrodes, and using Kirchhoffs laws, we 
can establish the rigorous (within the framework of the ini- 
tial premises) relation 

where $ is the emf of the power supply, R is the ballast 
resitance, and Cis the stray capacitance. Here and below, the 
symbol S denotes fluctuations of the corresponding quanti- 
ties, and a dot denotes the time derivative. The discharge 
parameters without the symbol S pertain to the unperturbed 
(initial) state of the system. 

In analyzing the development of spatially uniform per- 
turbations we shall not take into account effects associated 
with the role of the magnetic field and gas heating, but draw 
attention to the fact that this does not affect the essence of 
the final conclusions. Then, in the framework of a pheno- 
menological approach, just as was done in Ref. 8, we shall 
describe the kinetics of the development of the ionization by 
means of the equation 

where n, is the electron concentration, vine is the ionization 
rate, and k ,  is the rate constant of the dissociative recombin- 
ation. Here, for convenience in the subsequent reasoning, we 
shall make use of the following approximation for vi: 
vi = I3: -I ,@, where r, a, and fl are known constants. 
Then, from ( 2 1, 

(3)  
Next, if we take into account the fact that the current 

strength I is directly proportional to the current density, 
equal top, En, (p, is the electron mobility ), and, for simpli- 
city, neglect the dependence ofp, on E, we can establish the 
relation 

Substituting S I  /I from (4)  into ( 1 ), substituting SE /E 
from (3)  into the expression thus obtained, and expanding 
the right-hand side of (3)  in a Taylor series in the fluctu- 
ations Sn, /n, and Sn, /n, , we find 

Sii, 6n ,  6n. 
-+oog-- 

n r  
-r-+Q, 

He n, 

where 

and the letter Q denotes terms that are nonlinear in 6n, /n, 
and Sn, /n, . In the form (5) we have introduced the nota- 
tion G,,< = 8 In vi /d In n, , G,, = 8 In vi /d In E and have 
taken into account the relations v,,< = 1 + CY,Vi,, = B 

Confining ourselves in the subsequent analysis to the 
most interesting case, when ot > 0, we shall seek the solution 
of ( 5 ) ,  to within a phase shift that is of no fundamental im- 
portance for the gist of the problem, in the form Sn, /n, = 
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a cos mot, assuming that the amplitude a can vary only very 
slowly with time ( / a o )  so that Sne/n, = 
- ao, sin mot. Then, multiplying both sides of the equality 
(5) by Sne/ne, averaging the relation thus obtained over the 
period T = 2 h 0 ,  and retaining in the expression for Q the 
terms of no higher than third order of smallness in the fluctu- 
ations, we have 

k2=a2 (7 -a2A) ,  (6)  

where 

(in writing (6)  we have taken into account that usually 
3,, ) 1 while I + , ,  ( 5 1, and in the right-hand side of (6) 
have retained only terms linear in 3,' ) . 

It follows from (6) that the static (a  = 0)  gas-dis- 
charge state under consideration can lose stability ( y  > 0)  
only when the condition G,, > 1 + (RCY, ) -' ( 1 - IR / 
8 )  -' is fulfilled, i.e., in other words, only if in the neighbor- 
hood of this state the rate of development of ionization as a 
function of n, grows sufficiently rapidly in comparison with 
the rate of rec~mbination.~ 

If, at the same time, A is positive, then, as can be seen 
from (6), in a certain neighborhood of the unstable-equilib- 
rium state being studied a stable limit cycle (aZ = y/A) is 
formed. 

We can now elucidate the physical mechanism of the 
onset of a nonlinear structure of the type ACIcC ASS'". For this 
we take into account the fact of the existence of the magnetic 
field, and the effects associated with the heating of the gas. 
Then spatially nonuniform fluctuations in crossed magnetic 
and electric fields, as already noted in Sec. 3.2, lead to the 
development of ionization turbulence. Uniform perturba- 
tions, however, because of the presence of reactive elements 
in the external circuit, as only just shown, promote in their 
turn the onset of regular self-oscillations in the system. Next, 
since the turbulization of the plasma is accompanied by an 
increase of its resistance,15 provided that the power source is 
operating in the current-generator regime the power sup- 
plied to the discharge increases. It is the latter circumstance 
which, because of the appearance of the superheating insta- 
b i l i t ~ , ~  promotes the formation of a periodic structure of 
current filaments, just as is described, e.g., in Ref. 18. As a 
result of the operation of the processes just considered, the 
complicated nonlinear structure of the attractor A'"" A" is 
formed. 

5. CONCLUSIONS 

Thus, the approach developed in this paper does indeed 
make it possible to construct a universal way of classifying 
nonlinear structures. Within the framework of this approach 
it is possible to exhibit the set of qualitatively different non- 
linear formations that can be realized in physical systems. 
To a considerable extent, this is achieved because of the gen- 

erality of the concept of the attractor, and because an arbi- 
trary nonlinear structure (an arbitrary attractor) is, in the 
final analysis, an aggregate (superposition) of three varie- 
ties of elementary attractors: static (in space, uniform), cy- 
clic, and stochastic. 

At the same time, the given approach, by virtue of the 
very definition of the attractor as an attracting object (see 
the Introduction), rules out, generally speaking, the possi- 
bility of describing the intermediate regions in structures 
that are realized as a result of combining different attractors 
into a single whole, and assumes, in the zeroth approxima- 
tion, that these regions are infinitely thin. However, if we 
know the distinctive features of the structure of such attrac- 
tors it is usually straighforward to establish the character of 
the behavior of the parameters of the physical system in the 
intermediate zone too. Thus, in the case described in the 
second example of Sec. 2.3, it is obvious that damping of the 
cyclic and stochastic oscillations should occur in this zone. 

We draw attention to one intermediate structure that 
arises in the formation of regular spiral self-waves, i.e., self- 
waves having the form of a spiral (or set of with 
regularly varying values of the parameters. In the two-di- 
mensional case, to describe such waves it is convenient to use 
polar coordinates r, q, (Ref. 4) ,  taking the center of the zone 
around which the wave rotates to be at r = 0. In the neigh- 
borhood of an infinitely remote point (r-+W ) it is obvious 
that a cyclic structure will be realized. Therefore, a spiral 
wave arises in the intermediate layer between, e.g., a static 
attractor (for r = 0)  and a cyclic attractor (for r-+ w ) .  

In the framework of the attractor algebra specific mech- 
anisms of formation of particular structures are not consid- 
ered. The main result yielded by the approach using the at- 
tractor algebra consists, rather, in the possibility of 
elucidating by comparatively simple means the qualitatively 
different features of the construction of the nonlinear struc- 
tures that can, in principle, be realized in the most diverse 
physical systems. It is certain that this circumstance simpli- 
fies substantially the search for such structures, both in ex- 
perimental investigations and in the mathematical modeling 
of specific physical phenomena. 

We shall give an example. It was stated above that in the 
intermediate zone between a static attractor (at r = 0) and a 
cyclic attractor (at r-+ w ) a self-wave in the form of a regu- 
lar spiral can arise. But if at r-+ w a stochastic rather than a 
cyclic attractor is formed, then, obviously, in the intermedi- 
ate layer the spiral self-wave should have a stochastic struc- 
ture. The study of such self-waves, like the study of, e.g., 
irregular strata, is of undoubted interest. 

To conclude this paper we draw attention to the fact 
that, using the methods of group theory, one can perform a 
more detailed classification of the different nonlinear struc- 
tures in terms of symmetry characteristics. 

"We note also that isolated nonlinear structures of the self-wave typeg0 
will be considered below as the limiting case of cyclic structures with 
infinitely large period. 
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