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A perturbation theory is developed for the generalized quasienergy that determines the 
spectrum of a quantum system in the presence of multimode radiation. Equations are obtained 
for the second-order additive Stark shift and for the fourth-order nonadditive shift in a 
bichromatic field. Nonresonant restructuring of the atomic spectrum in the field of two 
monochromatic waves of close frequency is investigated. It is shown that the spectrum 
acquires a satellite structure if the frequency difference is decreased to the level Stark shift. The 
intensities of the satellite lines are calculated. 

61. INTRODUCTION 

The restructuring of an atomic structure in the presence 
of intense monochromatic radiation has been investigated in 
sufficient detail both theoretically and experimentally.'.' 
The theoretically most convenient and appropriate for the 
physical formulation of the problem is the semiclassical ap- 
proach, in which the atom is described quantum-mechani- 
cally and the electromagnetic radiation classically. 

In the case of monochromatic radiation, the Hamilto- 
nian of an atom located in an electromagnetic field has a 
periodic dependence on the time. Shirley3 has shown on the 
basis of the Floquet theorem that in this case the Schro- 
dinger equation has solutions with a quasiperiodic time 
structure 

I$,(t))=IU.(t)>e-'"', (1)  

I U, ( t  + T))  = 1 U, ( t ) ) ,  where T is the period of the field. 
The solutions ( 1 ) were named quasienergy and E is 
called the quasienergy. The quasienergy determines the 
spectrum of a quantum system in an external monochromat- 
ic field.3-6 It is most useful to separate beforehand the quasi- 
periodic structure of the Schrodinger-equation solutions 
both for the clarification of the qualitative features of the 
atom's behavior in the presence of monochromatic radi- 
ation, and for approximate (perturbation-theory) and nu- 
merical calculations of the spectrum and of the transition 
probabilitie~.~.~.~.' This is precisely why the method of qua- 
sienergy states (QES) has established itself as the most effec- 
tive method of investigating the dynamics of quantum sys- 
tems in an intense monochromatic field. 

Shirley's method was recently generalized to include 
the multimode case (Ref. 7)  ." Generalization of the Floquet 
theory enabled Ho and Chus to study the behavior of the 
sublevels of a system in an intense bichromatic field outside 
the framework of the resonance approximation. 

Most convenient for the investigation of multilevel sys- 
tems in a multimode radiation field is, from our viewpoint, a 
generalization of the QES method on the basis of the "multi- 
time formalism" (see, e.g., Ref. 10). Let the system Hamil- 

tonian be 

where Vi (q,t + Ti ) = Vi (q,t) and the periods Ti are gener- 
ally speaking incommensurate, so that H is not a periodic 
function of the time, and the QES method is inapplicable. 
The entire reasoning that follows pertains to two fields V, 
and V2 (generalization to more than two modes entails no 
difficulty). To elucidate the structure of the solutions of the 
Schrodinger equation 

it suffices to consider for the function F(q,t,,t,) and equa- 
tion that depends on two temporal arguments: 

where 

A(q, ti, tz)=fio(q)+Vl(q, ti)+Vz(q, tz). 

If we put t, = t,, Eq. (2 )  becomes the Schrodinger equation 
(2 )  for the wave function 

0 (a, t)  =%(a, t, t) - (4) 

The operator 

%(q, ti, t,) = ~ ( q ,  t,, t,) -ia/at,-ia/at, ( 5 )  

commutes with the operator for the shift by T, and T, in the 
variables t, and t2, respectively. Equation (3)  has thus solu- 
tions with the following property: 

a,,, el(q, ti+T~, tz+Tz) 

We separate the temporal components of 6: 

where, as follows from (6),  
vet, sz (9, ti+Ti, t2+Tz) =Uei, er (q, ti, ta), 

so that this function can be expanded in a double Fourier 
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series: 

ntrna 

where o, = 2r/TI,02 = 2r/T2. 
It can be concluded on the basis of (4)  and (7)  that 

there exist Schrodinger-equation solutions with the follow- 
ing structure: 

where the function U, (q,t) can be expanded in a series 

U. (q ,  t )  = u.,.,(p) exp[i(nt~i+nro3 t l .  (9) 
m,na 

The state described by the wave function @, (8)  will be 
called the generalized QES, and E the generalized quasien- 
ergy. We show in the next section that E is real (we do not 
consider decaying QES here). In full analogy with the sin- 
gle-mode case, the generalized quasienergy determines the 
spectrum of a quantum system in a multimode radiation 
field. Thus, in a bichromatic field the system emits spontan- 
eously at the frequencies 

where k,  and k ,  are integers. 
Note that in the case of commensurate frequencies the 

generalized QES are transformed into the QES ( 1 ) . Equa- 
tion (9) describes then the structure of the periodic part of 
the QES function somewhat more specifically. 

The "multitime formalism," naturally, leads to the 
same structure (8)  of the Schrodinger-equation solutions as 
the approach based on the generalization of the Shirley 
rne th~d ,~  but in the approximate calculation of the spectrum 
it dispenses with an analysis of the Floquet Hamiltonian 
with its cumbersome ~ t ruc tu re ,~ .~  and permits development, 
for the generalized quasienergy, of a perturbation theory 
(PT) close in form to the stationary PT.,' 

We develop in this paper a PT for the generalized qua- 
sienergy, and investigate, for the multimode case, the nonre- 
sonant atomic-spectrum restructuring that occurs when the 
two radiation-mode frequencies come close together. 

$2. PERTURBATION THEORY FOR GENERALIZED 
QUASIENERGY. SHIFT OF ISOLATED LEVEL 

We return to the "two-time formalism." Substituting 
the function &,,,: (7) in Eq. (3) we obtain an equation for 
U: 

%u.=~u., (11) 

where the operator &' is defined in (5).  Equation ( 11 ) 
shows that the function U is determined by the generalized 
quasienergy E = E ,  + E,. 

We generalize the method proposed in Ref. 1 1 for QES. 
To this end, we introduce the Hilbert space Q e ~ ,  "7, of 
functions that depend on the spatial variable q and on the 
temporal variables t ,  and t,, and is periodic in t ,  and t, with 
periods T, and T,. We define the scalar product of the ele- 
ments of this space as follows: 

Equation ( 1 1 ) can be regarded as the eqgation for the 
eigenvalues of the Hermitian operator A? acting in 
Q "T, "T,. Hermiticity of means that the generalized qua- 
sienergy is real, that the eigenvectors ) U, ) corresponding to 
the different eigenvalues are orthogonal, and that the set of 
eigenvectors is complete. With allowance for the definition 
( 12) of the scalar product, we write the orthonormalization 
condition 

The completeness condition is 

We note that from the completeness of the set U, in Q 'T ,T ,  

follows also completeness of the set of these functions in Q 
space. Therefore any solution of the Schrodinger equation 
(2) can be represented by a series in the wave functions of 
the generalized QES @, ( B )  : 

The generalized quasienergy, just as the usual one, is 
not uniquely defined. Thus, if U,, an$&, are the eigenfunc- 
tion and eigenvalue of the operator 2?? (5)  that satisfy Eq. 
(11), then 

U. n , R t , k Z  (q ,  t )  =UEn (q ,  t )  exp[ i (k to i t t+kz@rt~)  I ,  ( 13) 

En, k t ,  k z = ~ n f  ki01+k202 

also satisfy this equation. The wave function (8)  corre- 
sponding to the generalized QES is not altered here. 

The KT for the eigenfunctions and eigenvalues of the 
operator X (5)  in the space Q "T, "T, is constructed in the 
usual manner. The operator is represented in the form 

where 

[see (3) 1,  and the perturbation operator Vis of the form 

V ( q ,  tt ,  t z ) = V , ( q ,  t , ) + V z ( q ,  t z ) .  
The solution of the unperturbed problem 

is assumed known. In the standard formulas of the station- 
ary PT, the matrix elements of the perturbation operator V 
should be taken in our case to mean 

in accordance with the definition of the scalar product ( 12). 
The indicated ambiguity of the generalized quasienergy 
( 13) leads to an additional quasidegeneracy of the eigenval- 
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ues of the operator &Po in the case of resonance between the 
atomic levels and the external fields. Thus, if 

8:' me,?' +ai+oe 

we get 
(0) ( 0 )  

 en,^,^ ern 

Thus, in the approach developed here the resonances can be 
considered by PT for nearby levels, in full analogy with the 
single mode case, when the QES method is appli~able, '~ 

A PT correction, of gny order, to a nondegenerate 
eigenvalue of the operator &Po can be easily found by iterat- 
ing the equations for the eigenvalue E, (see, e.g., Ref. 13) : 

m 

Here 

is the reduced Green's function. We shall assume below that 

( 0 )  &,=en +E?' +e',o + . . . , 
inasmuch as in an atom, as in any system with inversion 
center, there are generally speaking no level shifts of odd 
order in the field. For &A2' we obtain the known PT expres- 
sion 

The fourth order correction E:', recognizing that EL" van- 
ishes, takes the form 

8''' = (UP' I V G ~ ( o ) V G ; o ) V G ~ V  I UL0)) 
n en 

where account is taken of the identity 

that follows from the definition ( 14) of the reduced Green's 
function and from the fact that / U 2') is orthonormalized. 

Let the atom be acted upon by two monochromatic 
waves: 

F5=Re Fo,e-'"lt, j=l, 2. 

The interaction operator of the jth radiation mode takes in 
the dipole approximation the form 

where 

d is the atom dipole-moment operator. In the case of an iso- 
lated atomic level, the shift of the generalized quasienergy 
can be determined by PT for nondegenerate levels. One can 
regard as isolated an atomic level with zero angular momen- 
tum and far enough from the other levels, or a level with 
nonzero angular momentum if the two waves are polarized 

in the same plane (the angular-momentum component 
along the common polarization direction is preserved, or 
else the two waves propagate in the same direction and have 
the same circular polarization (the component of the atom 
angular momentum along the propagation direction is pre- 
served). It is assumed here that the electromagnetic field is 
not at resonance with the atomic level (nor are there any 
resonances with the combination frequencies). 

To find the shift of the generalized quasienergy we write 
down the operator of the atom interaction with the bichro- 
matic field in the "two-time formalism": 

I 

Let us specify the unperturbed function U'O'in greater detail. 
Let p " be the wave function of the atom, 

and En the energy of the corresponding atomic state. We 
introduce the notation: U Fd,o =pn,  &LO)=En, and 

in accord with the ambiguity of the definition of the quasien- 
ergy ( 13). For the shift ( 15) of second order in the field we 
obtain 

Substituting here the perturbation V in the form (17) and 
taking the definition ( 12) of the scalar product into account, 
we obtain ultimately 

(8) eP' ==en ( a t )  +er' ( a , ) .  (18) 
Here 

(2' en ( u i )  = < ~ n  I V*-gs,,-mi TI;' 1 q n ) + < q n  I V $ + g ~ , , + u ~  Vi- I c p n )  

(19) 
is the quadratic Stark shift of the nth level in the ith field,' 
and 

is the Green's function of the atom. The Stark shift is thus 
additive in second order in the field. This result is obviously 
valid for an arbitrary number of modes. 

The fourth-order shift in the field is determined by the 
general formula (16), which contains a non-diagram term 
with the derivative of the Green's function. We represent the 
generalized-quasienergy shift E:~' in the form 

Here E:~' (0,) and &A4' (w,) are the fourth-order level shifts 
in each of the fields, and are expressed in terms of the dynam- 
ic hyperpolarizability of the atom,' while &L4' (w,,w2) con- 
tains an effect of interference of two fields. The term 
E:~'(w,,w,) (20) appears because combined four-photon 
transitions (two photons w, and two photons w,) are possi- 
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ble without a change of the states of the atom and the field. It 
is these transitions which lead to a level shift in accordance 
with the adiabatic theorem.I3 The interference effect due to 
three fields should obviously appear in the sixth-order shift, 
etc. 

After substituting the perturbation V ( 17), the non- 
diagram term in ( 16) takes the form 

I - i  

f(qn I V t + ( a g ~ , , + o ~  /aEn) Vt-  Ivn)), (21) 

where the second order shift E:' is defined by Eq. (18). 
Contributions to ~:'(w,) are made only by the four terms 
obtained on expansion of the product (2 1 ). In addition, the 
contribution to from the first diagram term of ( 16) is made 
by 4!/(2!2!) = 6 diagrams: 

= (n  I V ? E , , + ~ ~ ~ ~ ~ E , Y & + U J , ? - I " )  

and by those obtained from it upon nonequivalent permuta- 
tions of the photon lines. The structure of E : ~ '  (a,) in (20) is 
similar. Contributions to ~:'(w,,w,) are made by the re- 
maining eight terms of (2 1 ), and also by the diagram 

and by 23 more diagrams obtained from it by permutation of 
the photon lines. By g," is meant here the reduced Green's 
function of the atom: 

93. RESTRUCTURING OF ATOMIC SPECTRUM ON MUTUAL 
APPROACH OF TWO MODE FREQUENCIES 

In the limit of equal frequencies o, = w, = w, the usual 
QES is applicable.' The second-order quasienergy shift if 
field is determined by Eq. (19) with the substitutions w, 
-tw,V'-tV? + v,I:  

where 

The generalized quasienergy should go over into the qua- 
sienergy value at w, = w,, but (8)  does not go over into (22) 
in this case. Equation (18) for the shift of the generalized 
quasienergy in a bichromatic field no longer holds when the 
frequencies come closer together, and this in turn points to 
the onset of singularities in the atom's spectrum. 

The onset of these singularities is easy to trace quantita- 
tively by changing to a quantum description of the electro- 
magnetic field. When the frequencies come close together, 
the energy of the state "atom + n, photons a, + n, photons 
a," becomes close to the energy of the states 

"atom + (n, + k)  photons w, + (n, - k) photons w,." 
Since the energies are close, even a weak interaction of the 
field with the atom causes photons to be transferred from 
one mode to the other. The result is a restructuring of the 
atomic spectrum. 

If the generalized quasienergy is determined by the PT 
developed in $2, the case of close frequencies must be consid- 
ered specigly, for in this case unperturbed eigenvalues of the 
operator Xo come close together. Indeed, since the defini- 
tion ( 13) is ambiguous, the quasienergies that come close 
together are 

where E:' = E n  is the energy of the atomic state, 
6 = w, - w,, k = 0, + 1, f 2 ,... . The corresponding eigen- 
functions of the operator take the form 

Thus, as the frequency difference decreases, PT for close 
levels must be used to determine the generalized quasien- 
ergy. We note that a similar problem arose when the static 
limit of the quasienergy was considered. ' 

According to the PTior close levels, we seek the eigen- 
function of the operator R in the form - 

where the coefficients a, satisfy the system of equations 

The interaction V (17) does not mix the functions Uipi in 
first order. In second order we have 

The sum Z' does not include the terms with 
(m,k,,k,) = (n,k, - k) .  

The integration with respect to t, and t, in the calcula- 
tion of the matrix elements of the operator V in (26) leaves 
only the following nonzero values 

Wkk - I = W,, and W,, + , = W :, where E:" (ai ) and W,, 
are defined by Eqs. (19) and (23). We noted that without 
loss of accuracy we can substitute w ,w, in (23). 

The system (25) for the coefficients a ,  becomes much 
simpler: 

According to (24), the almost periodic part (9)  of the wave 
function of the generalized QES (8) takes in our case the 
form 
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where 

f (t) = z a .  exp (ik6t) , f (t+2n/6) =f (t). 

It is easy to verify that the system (27) is equivalent to a 
differential equation for the function f ( t )  

idfldtf [en-En-v,-21 Wnlcos (&+a,)] f=O, 

where a, = arg W,. This equation has a solution that satis- 
fies the condition 1 f 1 = 1, in the form 

f (t) =exp{i[ (e,,--En-v,)t 

-2 1 Wnl 6-I (sin (bt-ta,) -sin a,) 1). 
From the condition that f ( t )  be periodic we obtain the gen- 
eralized quasienergy E, : 

(2) (n) en=En+vn=En+8, (mi) +en ( ~ 2 )  (28) 

The coefficient a, is expressed in terms of the Bessel function 
J, : 

~k=(-1)~1k(21Wn)b-') exp [i(kaa+21WW\b-'sina,)]. (29) 

Thus, when the frequencies of two radiation modes 
come closer the wave function of the generalized QES that 
corresponds to the generalized quasienergy E, ( 2 8 )  acquires 
the structure 

OZ.(q, t) =cp, (q)f (t)e-'Cn*=cpn(q) exp{-i[ent 

+2 I W, 16-' (sin (btf a,) -sin a,) I).  (30) 

We investigate now the limiting cases. 
1. Distant frequencies: I W, 14 181. From 30 we get 

men (q, t) =cpe(q)e-ienL 

In this case there is no mixing of the harmonics of the gener- 
alized QES, i.e., a,  =IS,,, in (24), as follows also from the 
explicit expression (29) for the coefficient a , .  The shift of 
the generalized quasienergy (28) is determined by the addi- 
tive Stark shift ( 18) in the bichromatic field. 

2. Very close frequencies: I W 14 (61. Taking the limit in 
(30) we obtain 

t )  =cp,(q)exp [-i(en+21 W,) cos a,) t] . (31 

Note that at the phase chosen here for the function Q E n ,  the 
limiting transition of (30) in (31) is valid only if ISlt(1. 
This seemingly strange condition has in fact the following 
meaning. In the limit I W, 1) JSJ,  QEn (30) is a rapidly oscil- 
lating function oft, except for short time intervals r( JSI -' 
which are close to t = 0, 2n-/IS), 4n-/IS], ... at the chosen 
phase of the function Q," (at the chosen time origin). QEn is 
substantially different from zero only in these time intervals, 
and it just here that (30) goes over into (31 ) (generally 
speaking, apart from the phase). The role of the generalized 
quasienergy is now assumed in fact by the quantity 

(2) en=en-k2 ( W, 1 cos a,=E,+e, (a t )  f e,'" (a,) i-2 Re W,, 

(32) 

so that the correct value of the level shift (22) is obtained at 
W ,  = W2.  

condition 

161-1W,,I. (33) 

The matrix element ( Wn ( (23) is of the order of the Stark 
shift of the level. It can therefore be stated that frequencies 
are close if the different 6 between them is of the order of the 
Stark shift of the level. 

Let us examine in greater detail the singularities of the 
emission or absorption spectrum of an atom acted upon by 
bichromatic laser radiation with frequencies that are close in 
the sense of (33). The expression obtained for the wave func- 
tion (30) indicates that the atom emission spectrum corre- 
sponding to the transition n-tn' acquires, besides the funda- 
mental line determined by the difference Q, = E, - en., 
between the generalized quasienergies, also satellites having 
the frequencies 

Equation (34) corresponds to the general expression ( 10) 
with k,  = v. A satellite structure appears also in the absorp- 
tion spectrum corresponding to the transition n'+n. 

The intensity I, of the vth satellites is determined by the 
squared modulus of the vth harmonic of the function 

exp(2i6-'[ I W,, Isin(8t+anq) - 1  W,lsin(bt+a,) I). 
Thus, 

1,-1,2[26-1(1 W,12+l W,. 1'-21 WnWnr I cos (a,-a,,))"]. 
(35) 

The proportionality coefficient common to all the satellites 
is equal to the atom-emission intensity in the absence of the 
laser field. 

If the two waves polarized in one plane either have the 
same propagation direction or the same right (left) circular 
polarization, W, is a real number. Equation (35) for the 
intensity of the satellites takes in this case the simpler form 

From the known property of Bessel functions of integer 
index, J-, = ( - 1) ,JV, it follows that the intensity distri- 
bution in the satellite spectrum is symmetric about the fun- 
damental line. In addition the combined intensity Z,I, of 
the fundamental lines and of the satellites is equal to the 
emission intensity in the absence of the laser field, as follows 
from the identity 

The intensity of the satellites in the absorption spec- 
trum is also given by (35). 

Figure 1 shows the atom-spectrum satellite structure 
produced when the frequencies of two emission modes come 
close together. It follows from (35) that the intensity of the 
satellites depends on the frequency difference S and on the 
intensity, propagation direction, and polarization of each of 
the modes. In the limit of distant frequencies 

The criterion for the proximity of the frequencies is the the satellite structure of the spectrum vanishes (Iv/  
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FIG. 1. Structure of the spectrum of an atom in a bichromatic field: a- 
satellites 0,. = R, - v6 in the case of close frequencies 161 - ) W, \,\ W,,. I ;  
b--distant frequencies, IG I > I W, I ,  I W,,. 1 ;  c-very close frequencies, 
I~l*lW"l?lW"~i. 

ic transition, increases take place in the Stark shift of the 
level and in the matrix element Wn (23), so that the condi- 
tion (33) becomes satisfied at a larger frequency difference 
S. 

We note also that the necessary frequency difference 
can be attained via the Doppler effect by irradiating an atom 
beam or a gas by colliding (generally, crossed) electromag- 
netic waves of equal frequency. 

Spectrum singularities similar to those considered here 
occur obviously also when an atom is irradiated by more 
than two monochromatic waves of close frequency. The sat- 
ellite structure of the spectrum turns out here to be more 
elaborate. It includes lines with frequencies R, + vijSij , as 
well as lines with frequencies R, + vI2Sl2 + vI3Sl3 + ... , 
where Sij = m i  - wj , v,, = 0, + 1, + 2 ,... . An analytic 
expression cannot be obtained for the satellite intensities 
even in the case of three waves, but in principle it can be 
calculated numerically. 

I,- I W/S[~I"', where / W ( = max(( W, I,/ Wn. 1 ) )  leavingra- 
"Note that the structure of Schrodinger-equation solutions in the multi- 

diation at the fundamental frequency = En - En* deter- mode case was indicated already by Shirley3 in an analysis of the transi- 
mined by the difference between the generalized quasiener- tion from the quantum description to the semiclassical one. 

gies ( 28 1. the limit of very ,.lose frequencies, ''A stationary PT for the quasienergy was developed in Ref. 11. 

161 4 / Wn / I W n ,  1, the of the satellites the fun- IL. P. Rapoport, B. A. Zon, and N. L. Manakov, Theory of Multiphonon 
damental lines decreases (like IS/ W I, at / v /  4) W/S/ ). What processes in Atoms [in Russian], Atomizdat, 1978. 

is left, generally speaking is only radiation at the frequency 'N. B. Deloneand V. A. Krainov, The Atom in a Strong Optical Field [in 
Russian], Atomizdat, 1978. 

[see (32) 1, which is produced in transitions between states 
described by the wave functions (3  1 ). It follows from the 
foregoing analysis of the transition from (30) to (3 1 ), this 
radiation occurs during time intervals 7% IS/ - ' and its inten- 
sity is determined by the squared modulus not of one har- 
monic but of an entire group of terms with 
v- (a,, - 6,)s- ' in the Fourier expansion of the transition 
amplitude. 

We stress in particular that the onset of the spectrum 
satellite structure is a nonresonant effect. The frequency of 
the laser radiation can be arbitrary, all that is necessary is 
that the frequencies of the two modes be close in the sense of 
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