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It is shown that a uniform external field qualitatively alters the pattern of critical anomalies at 
ferroelastic phase transitions. It is found that effects due to the breakdown of the rotational 
invariance of the system energy in an external field play a fundamental role. The general 
conclusions are illustrated for examples of spin-reorientation phase transitions in magnets. 

1. INTRODUCTION 

The interaction of the order parameter of a phase transi- 
tion with macroscopic strains of the crystal lattice can have a 
decisive influence on the critical dynamics.'*2 Even a small 
strictive coupling can lead to qualitative changes in the dy- 
namics of the order parameter and to anomalies of the elastic 
properties of the crystals in the critical region. Striction ef- 
fects are manifested most clearly at phase transitions that are 
classified on the basis of symmetry as proper ferroelastic 
transitions. In this case there is a linear relation between the 
order parameter and the nonisomorphic striction. If the 
transition is of the soft-mode type, the spectrum of oscilla- 
tions of the order parameter develops a strictive gap, which 
does not vanish at the critical point (many examples of this 
kind have been analyzed in Refs. 3-5). In this case the lead- 
ing anomalies are observed in the elastic properties of the 
system. 

The present paper is devoted to the study of these anom- 
alies at phase transitions in polarized media in external 
fields. The elastic anomalies discussed below are completely 
general in nature and do not depend on the specific physical 
causes leading to the proper ferroelastic phase transition. In 
particular, our treatment applies to an extremely broad class 
of magnetic spin-reorientation phase transitions, the major- 
ity ofwhich are classified by symmetry as proper ferroelastic 
transitions. 

Because the spectrum of acoustic vibrations of an un- 
bounded crystal is nonactivational, for small wave vectors q 
the vibrations in a sound wave occur so slowly that any of the 
subsystems (e.g., the magnetic subsystem) has time to 
readjust to the strain field arising in the sound wave. It is for 
this reason that the sound velocity for 9-0 is determined by 
the static elastic constants of the crystal, which include con- 
tributions from all the subsystems that interact with the 
strains. It is this region of the acoustic vibration spectrum 
that we will be studying in this paper. At large wave vectors 
an approach based on the continuum theory of elasticity is 
inadequate, and it becomes necessary to write out the explic- 
it dynamical equations for the other (e.g., magnetic) subsys- 
tems of the crystal that interact with the sound.6 

In the absence of magnetic and electric fields, the ener- 
gy density w of a slightly strained crystal is determined by 
the symmetric strain tensor u, (Refs. 7 and 8 ) 

This is a consequence of the fact that w is independent of the 
spatial orientation of the crystal volume element (i.e., a con- 
sequence of the rotational invariance). Here and below,the 
components u , ~  of the strain tensor describe the small de- 
viations from the equilibrium position that arise in the sound 
wave. The same is true for the remaining components of the 
distortion tensor considered below: 

Ua,  B " 8 ~ a / 8 ~ 8 = ~ a 6 + ~ a ~ ,  (2)  

where 
~ a g = ' / , ( u a ,  6+%, a )  , aag='/z ( ~ a ,  6-UB, a ) .  

At the point of a proper ferroelastic transition, the qua- 
dratic form ( 1 ) suffers a loss of positive definiteness. Here 
the anomalies associated with critical behavior are com- 
pletely determined by the anomalies of the elastic properties 
of the crystal. 

In fact, in the absence of external fields, the expansion 
of the free energy in powers of the order parameter r ]  and 
strain tensor ii has the following structure for a ferroelastic 
phase transition: 

Here 

r] ;  are the components of the order parameter (the index i is 
the number of the row of the irreducible representation re- 
sponsible for the phase transition), and Fa B,gv are the bare 
elastic constants. 

Let us transform from the ordinary Cartesian compo- 
nents uap of the strain tensor to their linear combinations 
which form the irreducible representations of the symmetry 
group of the high-symmetry phase 

here r is the number of the irreducible representation, and i 
is the row index in it. Substituting (5)  into ( 3 )  and (4),  we 
get 

w (q, ic)  =h ( q )  +b ( 6 )  -hqiui; & ( a )  = ' l z ~ u i u t + .  . . . (6) 

Here we have written out in w (ii) only the term correspond- 
ing to the irreducible representation according to which the 
order parameter transforms (ui cc v i  ). We shall drop the in- 
dex r for this representation. The quantity F is the corre- 
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sponding linear combination of the elastic constants E, a ,,,. 
Using the condition dw/dvi  = 0, we eliminate the vari- 

ables pi from (6). As a result, we arrive at expression ( 1 ) for 
the total energy 

where 

Eliminating the components of the strain tensor from Eq. 
(61, we get 

where . . 
a=a-hZIc, ui=hqili  

The stability region of the symmetric phase is deter- 
mined by one of the equivalent inequalities 

At the point of the ferroelastic transition we have 

and quadric forms ( 1 ), (3),  (6) ,  (7),  and (9) simultaneous- 
ly suffer a loss of positive definiteness. 

The critical anomalies of the elastic properties, includ- 
ing the critical behavior of long-wavelength sound, can be 
analyzed by proceeding from the equivalent expressions ( 1 
or (7) for the true (renormalized) elastic energy. We recall 
that these expressions are valid only in the absence of exter- 
nal fields, since they were derived using the invariance of the 
energy density with respect to the spatial orientation of the 
crystal volume element. In the presence of external fields, 
even uniform ones, this invariance is either partially or total- 
ly (in the case of crossed electric and magnetic fields) lost. 
Therefore, before turning to a discussion of the effects due to 
the breakdown of the rotational invariance, let us recall the 
acoustic anomalies that arise at proper ferroelastic transi- 
tions in the absence of external fields. 

Analysis of the stability (positive definiteness) of qua- 
dratic form ( 1) or (7) together with the expressions for the 
velocity of long-wavelength sound in crystals of different 
systems implies that in all cases 

1) The velocity of one or two branches of transverse 
sound, propagating in definite directions, goes to zero at the 
critical point ( 12). 

Further, a direct consequence of ( 1) is the so-called 
reciprocity principle, which holds that the velocity of trans- 
verse sound having x polarization and propagating in they 
direction is equal to that of transverse sound having y polar- 
ization and propagating in the x direction (x and y are two 
mutually perpendicular directions). Thus, in addition to as- 

the dynamics are uniquely determined by the symmetry of 
the initial phase and the transformation properties of the 
order parameter. In fact, the macroscopic symmetry of the 
initial phase and the index of the irreducible representation 
responsible for the ferroelastic phase transition uniquely de- 
termine the anomalies of the elastic properties (and thus of 
the long-wavelength sound) in the critical region. More- 
over, it is precisely the elastic subsystem that is anomalously 
fluctuating in this case. Such a situation is typical in the 
theory of phase transitions. 

However, for ferroelastic phase transitions in polarized 
media (in the presence of a magnetic or electric field) this 
conclusion is no longer valid. We shall see that at a second- 
order phase transition in a polarized medium the critical 
dynamics can differ qualitatively from one case to another 
even if the order parameter has the same symmetry. This is 
due to the breakdown of the rotational invariance of the en- 
ergy density w in the presence of a field. 

As we have mentioned, acoustic vibrations in the limit 
of small wave vectors q can always be treated in the contin- 
uum theory of elasticity, and here the sound velocity will be 
determined by the same parameters (elastic constants) as 
are the static elastic properties. However, when a field is 
present, expression ( 1 ) for the energy density no longer ap- 
plies-its derivation7 was based on rotational invariance, the 
breakdown of which gives rise to an antisymmetric part map 
of the distortion tensor uaSp in the expression for w. The 
influence of these additional terms in w on the critical dy- 
namics at the point of a proper ferroelastic phase transition 
will be considered in the following section. 

Finally, we note that a breakdown of the reciprocity 
principle for sound can originate not only in a breakdown of 
the rotational invariance in an external field but also in the 
influence of the long-range dipole interaction. This second 
mechanism cannot be taken into account in the continuum 
theory of elasticity because of the long-range character of 
dipole interactions. 

2. INFLUENCE OF A FIELD ON THE ANOMALIES OF THE 
ELASTIC PROPERTIES AT A FERROELASTIC PHASE 
TRANSITION 

For the sake of definiteness, let us consider a uniaxial 
(hexagonal) crystal in a field H((z, where z is the symmetry 
axis. The portion of the elastic energy that has complete ro- 
tational invariance is7 

A field Hllz leaves only axial (one-parameter) rota- 
tional invariance. Here the symmetry admits the existence of 
the following contributions to w [in addition to those in 
(1311 

sertion 1 ), it is  also true that 
Naturally, for H = 0 we have A = P = 0. 

2) If the velocity of anx polarized wave with qJ1y goes to With allowance for ( 13) and ( 14), we have for the elas- zero, then so must the velocity of a y polarized wave with 
tic energy at HfO 

sllx. 
In the case considered above, the critical anomalies of W = ' / ~ C , , U , ~ + C ~ ~ ~ U , , ~  i / z ~ 3 S ~ z r l + 2 ~ ~ 4 ~ x l Z  
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or, equivalently, 

where 

In ( 15) and ( 16) we have not written out the terms contain- 
ing they coordinate; they can be obtained from the terms 
shown by letting x-+y. 

In view of the symmetry of the problem, it is sufficient 
to consider the case in which the wave vector q lies in the xz 
plane. The velocity of sound polarized in thexz plane is given 
by the solution of the biquadratic equation 

where 

For q((z and qllx the two acoustic branches described by ( 18) 
correspond to longitudinal and transverse sound: 

pv1,2=c1, ~ V ~ , ~ = C ~ S  for qllz (x=O), (20) 

pvt;=cz, pvlr2=cii for qllx (%=I).  (21) 

The breakdown of the reciprocity principle in a field Hllz 
reduces to a difference in the values of v,, and v, : 

The third branch of the acoustic spectrum describes trans- 
verse sound with y polarization: 

Let us study the anomalies of the acoustic spectrum at 
the point of a proper ferroelastic phase transition accompa- 
nied by the appearance of monoclinic distortions. Such a 
transition occurs according to a two-dimensional irreducible 
representation of the symmetry group of the initial phase. 
This representation is formed by the pairs {uxz ,uyz)  or 
(axz ,ayz 1. 

If the boundary conditions are such that there is no 
stress at the surfaces of the sample (the sample is free), then 
the stability region of the symmetric phases is the region in 
which quadratic form ( 15) or ( 16) is positive definite. 

Stability against isomorphic strains is ensured by the 
inequalities 

which we assume are satisfied. 
The conditions for stability against monoclinic distor- 

tions are 

or, equivalently, 

The critical point of the proper ferroelastic transition is de- 
termined by the condition 

where ,B, c,,, c, and c, are positive (for H # 0) .  
On passage through critical point (27) in a free sample 

there is a spontaneous lowering of the symmetry: monoclinic 
distortions arise. Here the sound velocity remains finite. A 
distinctive feature of such a phase transition is the absence of 
anomalously large inhomogeneous fluctuations in the criti- 
cal region, and also the impossiblity of breaking the sample 
up into domains. Here Landau theory is fully adequate to 
describe the critical behavior of such a system. 

It is easy to see that for H = 0 the situation becomes 
fundamentally different. Here A = P = 0, c, = c, = c3-c,,, 
and the critical point is determined by the condition c,, = 0. 
At this point, according to (20) and (21), we have 
v,, = vr2 = 0, and the anomalous fluctuations of the order 
parameter that are characteristic for ferroelastic transi- 
t i ons '~~  are observed in the system, and here the sample can 
be broken up into domains. 

The situation will be different if the boundary condi- 
tions are such that the displacements u( r )  are equal to zero 
on the surface of the sample (a clamped sample): 
~ ( r )  1 ,  = 0, where S is the surface of the sample. For exam- 
ple, a sample in the form of a thin slab with normal nllz might 
be cemented to a backing plate. In such a case the point at 
which the elastic subsystem loses stability coincides with the 
point at which the sound velocity goes to zero. More precise- 
ly, under the condition c, ,c,, > d , the following transverse- 
sound branches go to zero at the critical point: 

qllz, u l z  for h<O (2 branches, (28) 
q l z ,  uljz for h>O (1 branch, (29) 

where u is the polarization vector of the transverse sound. 
Importantly, from the symmetry standpoint situations (28) 
and (29) are equivalent: in both cases there is a second-order 
phase transition, which occurs from the same phase acord- 
ing to the same representation. Nevertheless, the critical be- 
havior of the system in cases (28) and (29), and also in case 
(27) (for the free boundary conditions), is substantially dif- 
ferent. 

Here we analyze only one example of a proper ferroelas- 
tic transition in a system with broken rotational invariance. 
The aforementioned features due to the presence of an exter- 
nal field turn out to be so typical that it is pointless to give 
other examples-a11 the fundamental features remain un- 
changed. 

In the next section we illustrate the results for the sim- 
plest example. 

3. SPIN-REORIENTATION PHASE TRANSITIONS IN A FIELD 

Let us study the features of the elastic properties 
(sound) in an easy-plane ferromagnet near the point of a 
spin-reorientation phase transition in a field Hllz. This tran- 
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sition involves the appearance of a transverse (to the z axis) 
component of the magnetization vector m as the field de- 
creases. Simultaneously, the strictive coupling gives rise to 
u, or u, components of the distortion tensor. According to 
a symmetry classification, this transition is a proper ferroe- 
lastic transition, and all of the discussion of the previous 
section carries over to this case. 

Without loss of generality, we can assume that the spin 
reorientation occurs in the xz plane. Then, for studying the 
stability region of the symmetric phase (with m(lHIJz) one 
can start from the following expression for the energy den- 
sity w, in which we have kept only the terms which are qua- 
dratic in the small deviations from the symmetric phase: 

where 

All the contributions to w except the Zeeman term have 
complete rotational invariance to second order in small de- 
viations from the symmetric phase. It is the Zeeman term 
Hm, in (31) that is responsible for the breakdown of the 
rotational invariance. 

Using the condition that w from (3)  be minimum with 
respect to the direction of the vector m, we eliminate the spin 
variables from w. As a result, the expression for the energy 
density assumes the form in ( 15), with 

All the formulas and arguments of the previous section 
remain in force. From a comparison of (22) and (34), we see 
that the nonreciprocity in this case is linear in the field and is 
determined by the magnetostriction constant B,,. 

This effect was first pointed out by M e l ~ h e r . ~  However, 
in Ref. 9 and in a number of subsequent papers, the possibil- 
ity of describing this effect was linked to the use of the theory 
of finite deformations. From the previous discussion it is 
obvious that here we are not dealing with finite deforma- 
tions, but with the linear theory of elasticity, although for 
systems with broken rotational invariance. 

Finally, we note that in the present model of an easy- 
plane ferropagnet with free boundary conditions, the phase 
with m(lH((z is unstable, since at any nonzero field it is favor- 
able for the sample to turn in such a way that the external 
field lies in the basal plane. 

Up till now we have ignored the contribution of the 
magnetic dipole interaction to the system energy. Since this 
is a long-range interaction, allowance for it does not reduce 
to a renormalization of the constants in ( 15) and ( 16). In 
particular, the shape of the sample becomes important. If the 
sample is a slab with normal nllHllz, then, following Ref. 6, 

we easily see that allowance for the dipole interaction re- 
duces to the replacement of the external field H in (34) by 
Hi = 4.nm&, where Hi = H - 4rm0 is the magnetic field 
within the slab. Here, in place of (22), we get for the differ- 
ence in the velocities of transverse sound 

B,lmo2Hi - nm," (B14-K)' 
u * , ~ - u ~ , ~  = - 

p (Hi-Kmo) p (Hi-Kmo) (Hi-Kmof 4nmo) ' 

The first term on the right-hand side of (35) is due to the 
breakdown of the rotational invariance of the energy density 
w in a field Hi, while the second term is of a purely dipolar 
origin and is not related to the breakdown of rotational in- 
variance. The contribution of this term to the velocity differ- 
ence (35) is always negative, whereas the contribution from 
the first term can, in principle, be of either sign. 

Expressions analogous to (35) for antiferromagnets in 
a magnetic field are given in Ref. 9 and 10. 

Naturally, expressions (34) can also be obtained from 
the solution of dynamical equations for coupled magnetoe- 
lastic waves (see Ref. 10 and the references cited therein). 
However, from the arguments given above we see that if one 
is interested only in long-wavelength sound there is no point 
in writing out these equations of motion. In regard to the 
spin dynamics in the critical region, these questions have 
already been studied in detail (see, e.g., Refs. 3 and 10). In 
particular, it is well known that at the critical point of a 
proper ferroelastic phase transition, the activational gap in 
the magnon spectrum does not vanish, and the role of the 
anomalously fluctuating system (if there is one) is taken 
over by the sound. 

The last section of this paper is strictly for illustration: 
all the fundamental results are contained in Sec. 2. Neverthe- 
less, we have found it necessary to give the computations 
here for the simplest model example in order to distinguish 
clearly the fundamental role of the effects of broken rota- 
tional invariance at ferroelastic phase transitions. 
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