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The photoelectric effect in superconductors, as a result of which a stationary invariant 
potential and an emf (in the spatially inhomogeneous case) appear under the action of an 
electromagnetic field, is investigated theoretically. Only those cases in which the effect 
manifests itself even when the parameter E / E ~  vanishes (where E -  (T,A) and E ,  is the Fermi 
energy) are analyzed. This anomaly, which is connected with an amplitude asymmetry in the 
electron- and hole-excitation scattering, obtains in the presence of magnetic and (under certain 
conditions) nonmagnetic impurities. In the latter case the situations in which the 
photoelectric-effect anomaly is due to an anisotropy in the order parameter and to the presence 
of an external magnetic field are analyzed. 

1. INTRODUCTION 

In many papers devoted to the investigation of the effect 
of an electromagnetic field on superconductors,'-3 the phe- 
nomena due to the change in the modulus A of the order 
parameter are studied. As is well known,'v2 under nonequi- 
librium conditions, the quantity A depends on the form of 
the quasiparticle distribution function, or, more precisely, 
on that part of the distribution function which is the same for 
the electron- and hole-excitation branches. It is generally 
believedIs2 that it is precisely such symmetric nonequilibri- 
um states (with identical branch populations) that arise in 
superconductors under the action of an electromagnetic 
field. 

Besides the symmetric states, there can be excited in 
superconductors, when subjected to other influences, asym- 
metric states4 characterized by the presence of a population 
difference (imbalance5) between the electron and hole 
branches. The creation of a branch imbalance causes the 
gauge-invariant potential 

where q, is the electric potential and x is the phase of the 
order parameter (the electron charge is taken to be equal to 
unity ), and a longitudinal electric field whose stationary val- 
ue is given by the time-averaged quantity V ,ii to appear in 
the superconductor. In theoretical studies (see the review in 
Ref. 4) ,  which were started by T i ~ ~ k h a m , ~  various mecha- 
nisms have been investigated for determining the branch- 
imbalance relaxation time 7,, on which depends, in particu- 
lar, such an important quantity as the attenuation depth I ,  
for a longitudinal electric field in the s~perconductor.~ It has 
been found that I ,  in superconductors with a gap can be 
significantly greater than the characteristic values of the co- 
herence length { and the London penetration depth A,. 

We have already noted above the prevalence of the 
point of view that branch imbalance is not produced under 
the action of an electromagnetic field. This assertion is valid 
only when we neglect the effects of the magnitude of the 
order of the small parameter .F/E,, where E - T ,  A is the 

characteristic quasiparticle energy and E ,  is the Fermi ener- 
gy. To first order in Z / E ,  the branch imbalance and the po- 
tentialp are, under the nonequilibrium conditions, bound to 
manifest themselves as consequences of the difference in the 
excitation momenta 

for the electron and hole branches. Note that the potential 
produced as a result of irradiation and due to the allowance 
for the terms of first order in the parameter E / E ~  is analyzed 
in Ref. 6 by Aronov." 

In the present paper we shall study the photoelectric 
effect2) (PE), consisting in the appearance of a stationary 
potential ,ii and a stationary emf (in the spatially inhomo- 
geneous case) under the action of an electromagnetic field, 
the investigation being restricted only to those situations in 
which the effect manifests itself even when the parameter Z/ 
EF vanishes. As has been demonstrated by V. V. Zaitsev and 
the present author,' this anomaly occurs, in particular, when 
the superconductor contains paramagnetic impurities. The 
magnitude of the PE in this case is not of the order of the 
small parameter Z / E F  because of a peculiarity of the ampli- 
tude of the scattering by the paramagnetic impurities, name- 
ly, the asymmetry of this quantity for the electron and hole 
excitation branches. Note that this asymmetry has been 
known for a long time in the case of normal  metal^.^ In that 
case it is found when allowance is made for the Kondo effect 
resulting from the quantum nature of the spin impurity (see, 
for example, the reviews in Refs. 10 and 1 1 ) . 

The specific character of superconductors manifests it- 
self in the fact that the scattering amplitude is asymmetric 
(in the above-indicated sense) even when the Kondo effect is 
not taken into account, i.e., even when in the operator de- 
scribing the interaction between the electron and the mag- 
netic impurity (located at the point ri ), which is usually 
written in the form 

h 

(S  and S are respectively the impurity- and electron-spin 
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,-. 
operators), we replace the operator S by the classical vector 
S .  The scattering on the magnetic impurities in supercon- 
ductors was first described exactly in this model (which can 
be justified when S )  1 ) by ShibaI2 and Rusinov. l3  Note that 
we can find the electron-hole scattering asymmetry, which is 
essential to the effect we are considering, only when we go 
beyond the Born approximation.3' 

In the investigation carried out in Ref. 8, of the PE in 
superconductors with magnetic impurities, the scattering on 
these impurities is described in the model adopted in Refs. 12 
and 13 (henceforth referred to, for brevity, as the SR mod- 
el). The case of the dirty superconductor, in which the fre- 
quency of collision with the nonmagnetic impurities v, ) T, 
A, is considered there. In Sec. 2 of the present paper we find 
out how the magnitude of the effect depends on v, , v,, T, 
and A (v, = T; l, where T, is the time characterizing the 
spin-flip scattering of an electron on a magnetic impurity) in 
a broad range of values of each of these parameters. We shall 
take account of the scattering by the magnetic impurities 
largely within the framework of the SR model, but we shall, 
to conclude Sec. 2, briefly discuss the influence of the Kondo 
effect on the results. 

In Sec. 3 we shall investigate the anomalous PE in the 
absence of magnetic impurities, which remains as a result of 
the presence of nonmagnetic impurities when the parameter 

Z Z / E ~  goes to zero. The cause is the same scattering asymme- 
try, which can arise, for example, in the presence ofanisotro- 
py or spatial inhomogeneity in the (unirradiated) supercon- 
ductor. We shall consider the anomalous PE due to 
anisotropy of the order parameter, as well as to an external 
magnetic field. 

Usually, in experiments the effect of the irradiation or 
alternating electric field on the superconductor is not uni- 
form. Some examples of this situation are shown in Fig. 1, 
which also shows schematic representations of the form of 
the spatial distribution of the induced potential p (x). To 
determine the invariant potentialp in that part of the super- 
conductor where it is coordinate-independent (Figs. la and 
lb),  it is sufficient to consider the spatially homogeneous 
problem. Let us proceed now to solve it. 

2. THE PHOTOELECTRIC EFFECT IN SUPERCONDUCTORS 
WITH MAGNETIC IMPURITIES 

We shall, in solving the problem begin with the system 
of equations for the Green's functions integrated over 
{=vF(p-p,) (Refs. 17and 18): 

" Y 

~ w = ~ F P .  (o) ~ z + ~ o i ~ y + p o l ,  

where 

FIG. 1 .  Examples of structures in which under the action of radiation 
(depicted by arrows) or current I, a nonuniform time-independent in- 
variant potential P ( x )  is excited and, consequently an emf % appears 
across some section: a)  Two methods ofproducing roughly the samep(x) 
distribution in a film, the difference being only that ,ii decreases more 
rapidly in the regions 1x1 > L in the situation depicted by the bottom dia- 
gram (of Fig. la ) ,  in which the film is the link member of a bridge of 
variable thickness; it is assumed that the length L > l b .  b) A film junction 
between two superconductors S, and S2; an emf will develop when S, and 
S2 differ only in their impurity concentrations. c )  A bulk superconductor 
of thickness d>R, ,Ib. 

p, is the superfluid momentum, which is connected with the 
electricvfieldvE an$ p bx the relation dp,/dt = E + V p. 
bbove 8 = 8, + 8, + 8,, , where the self-energy matrix 
8,,,, describes theinteraction with the magnetic (nonmag- 
netic) impurities, X,, describes the interaction with the 
phonons, A is the electron-phonon interaction constant, and 
w, is the Debye frequency. 

As has already been noted above, we shall describe the 
interaction with the magnetic impurities, using the SR mod- 
e1,l2,I3 which allows us to relatively simply take account of 
that distinctive feature of the scattering which is responsible 
for the appearance of the anomalous PE. The question of the 
influence of the Kondo effect will be touched upon at the end 
of this section. 

V 

The expression for 8, can, as in the equilibrium 
be obtained, using the solution to the scattering 

problem for an isolated impurity, which leads to the follow- 
ing formula: 

where c, is the magnetic impurity concentration, i * is the 
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vertex matrix describing the sattering by an impurity with 
spin parallel (antiparallel) to an arbitrarily chosen direc- 
tion, and satisfying the following equation: 

' t"=aa/n~,+iaa(i>g (4)  

(we take the impurity potential U, to be a 6-function: 
V, ( r )  = V,S(r),J(r) = JS(r) ). Here 

NF = mp,/2?r2 is the density of states at the Fermi surface, 
and a * = T( V, + JS/2)NF. From (4)  it follows that 

h 

and the expressio~ for Z:,, is given in Refs. 17 and 18. 
The matrix 2, describing the scattering on the non- 

magnetic impurities can easily be found from (3)  and (4)  as 
a particular case: 

here c, is the nonmagnetic-impurity concentration and 
a, = TV, NF = tgS,. 

To Eq. (2)  and the relations given above must be added 
the normalization conditionI8 

as well as the expression relating the Green's function to the 
( 5 )  ~otential". '~ u: 

fa=  (l'Liia(gR>)-licia(g) ( T - i ~ ~ < g ~ ) ) - ~ c i ~ / n ~ ~ .  1 
p.=- - JdE s*<&,.-.). 

In the equilibrium case we have 8 

Em(&, ~')=&,,(&)2n6(&-E'). 

From (5)  we obtain 

Introducing the scattering phase S * (tgS' = a * ) in the 
model, we obtainI3 

The expression (6)  coincides with the one obtained in Refs. 
12 and 13 (here the quantity of(&) does not include the 
constant determining the renormalization of the chemical 
~otential). As we shall see later, the occurrence in the matrix 
8: (E) of the component #(E), which is responsible for the 
breaking of the electron-hole scattering symmetry, leads to a 
situation in which the PE occurs even in lowest order in 
the parameter F/cF (we take into account only the terms 
of this order in the quasiclassical equations we use for 
the Green's functions). In the presence of electron-hole 
scattering symmetry, the t-matrix compo%ent ~ P ( E ) ,  de- 
fined according to the relation c, t P (E) = (2: (E) ) I  l A ~ a t i ~ -  
fies the relation t P ( E )  = - ( t  P (  - E )  )*. Since SpZ: ( E )  

=2&(&) =c, [t;(&) + ( t p (  -&))*],it isclearthatthe 
breaking of this symmetry is due to the nonvanishing com- 
ponent (E ) . 

From (2)  and (6 )  we obtain for g: and f : the expres- 
s i o n ~ ' ~ ~ ' ~  

geR=ucR [ ( u , ~ ) ~ - I ]  -"z=~eRfeR, 

& f o e P h  [I- (u.")~]"' 
-={I+ A 

T.A [ (u.") '- w2] 

We shall, in determining g, take into consideration the 
fact that this matrix can be expressed in terms of two distri- 
bution functionsI8 and f l  and f,: 

Let us now proceed to solve a specific problem. Let us 
consider a thin film acted upon by an electromagnetic field of 
frequency 0 as a result of irradiation or the passage of cur- 
rent. We shall assume that only the electric component 
E = dp, /at of the microwave field is important, and that we 
can neglect the magnetic component H = curl p, and, con- 
sequently, the variations in thep, distribution over the cross 
section of the film. This is justified if the film thickness and 
width satisfy d(A(f2) and b(il '(R)/d, with 
A(fl) -min(A, ,A,, ( a ) )  where A,, (f2) is the skin depth. 
The field-induced superfluid momentum 

pa ( t )  =AQ cos Qt, AQ=En/Q 

is assumed to be small compared to the critical unpairing 
momentum, which implies that the relation 

is satisfied. 
In the presence of an alternating field 

where the first term determines the time-independent re- 
sponse to the external influence, and the second term, the 
time-dependent response. The distribution function 

f l  (E)  = ( fi (&,pF ) )  characterizing the symmetric part of 
the branch populations has been studied in a large number of 
papers'.' for the case in which the external influence is an 
electromagnetic field (usually the function 
n, = 1 [ 1 - f l  (&)sign E]  is considered). As will be shown 
below, allowance for the electron-hole asymmetry in the 
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scattering on the magnetic impurities leads to a situation in 
which the field creates another distribution function 
f 2 ( & )  = ( f2(&,pF ) ) determining the imbalance between the 
branch populations. 

Proceeding to the derivation of the kinetic equations for 
f  ,,,, ( E ) ,  we consider the condition ( 1 2 ) ,  which allows us to 
use the method of successive approximations with the small 
amplitude A , .  The ultimate aim is to separate out in the 
system ( 2 )  the relations which are second order in A, ,  from 
which it would not be difficult to derive the required kinetic 
equations. Before proceeding to carry out this program, let 
us stipulate that the characteristic value of the energy relaxa- 
tion time 

Because T, has such a large value, the derivation of f , ( e )  
from the equilibrium value th ( & / 2 T )  can be fairly large even 
for weak fields, as defined by the condition ( 1 2 ) .  This cir- 
cumstance will be taken into account in the derivation. 

Let us first find the first-order-in A ,  --correction H:,:) 
to the Green's function. From ( 2 )  it follows that we can 
write it in the form (the x axis lies along the film in the 
direction parallel to E) 

It is convenient to represent the matrix J,,,, as follows: 

Substituting ( 1 3 )  into ( 2 ) ,  taking account of the spatial ho- 
mogeneity of the problem, as well as the relation 

which follows from ( 9 ) ,  we easily find that4' 

where 

eoR(') ( E ,  E ' )  = [uoR ( E )  -uoR(A) ( e ' )  ] [g.R+g.:'A' + i v , ] - ' ,  - .  ceR= [ ( E + U ~ ~ ( E )  )'- ( A + U ~ ~ ( E ) ) ~ ] ' ~ ,  

be:?) = [ i  - ( s ~ ~ ( ~ )  ( e ,  e ' ) ) 2 ] - i l g . R + [ ~ ~ A '  +iv , ] -I ,  
vn=4c, sin2 6 , /nNp.  

Further, we can, by substituting ( 1 4 )  into ( 2 ) ,  separating 
out the terms proportional to S ( E  - E ' ) ,  and averaging over 
the angles, obtain an equation for the matrix (H, (p, ) ), and 
from it the kinetic equations for f  ,,,, ( E ) .  In doing this, we 
should take account of the fact that 

(ge (pp )  ) = ( g e R ( p ~ ) - g e A  (PF) ) f i  ( E )  f ( & ? e R ~ z - ~ z g e A ) f z ( ~ )  
+( (gR(1)6f( l ) -6 j ( l )gA(l )  ) ( 8 )  ) d l $  ( 1 5 )  

where the suffix attached to the last term indicates that we 
should take the stationary part of this expression, i.e., the 
coefficient of - E ' ) ;  the first-order (in A ,  ) matrix 
Sj"", which can easily be determined from ( 1 4 )  and ( 13'), is 
equal to 

( 1 )  6 f . . . ~ = n v J p [ 6  ( E - E ' S Q )  4-8 (E-E' -Q)  ] b t , .  ( f l  (8 ' )  - f i  ( E ) )  

Consequently, we can, after simple but involved calculations 
obtain the following kinetic equations5': 

Qi ( E )  =IIPh,  ( 1 7 )  

Q Z ( € )  = v b ( ~ ) f ~ ( ~ ) + I ~ ~ ~ ~  ( 1 8 )  
where the sources Q, ( E ) ,  which determine the rate of change 
of the function fi ( E )  under the action of the field, and the 
integrals ITh for the collisions with the phonons have the 
form 

Qj(e )=Qj (E ,  Q)+Qj(E,  - 9 ) -  

Q I  ( e l  Q )  =ap I m [  b ~ c - ( l - g , R g , - A - f , R f , - A )  

Here 

Notice that the source Q , ( E ) ,  in contrast to Q , ( E ) ,  is not 
equal to zero only because of the presence of magnetic im- 
purities. Using the solution to this system, we can find the 
steady-state values of A andji. For the latter quantity, using 
( l o ) ,  ( 1 5 ) ,  and ( 1 6 ) ,  we obtain the following expression: 

x['~% Ty2R e+ - Re (:,,a ( e ,  E,) b:, ,) 

The second term in ( 1 9 ) ,  whose meaning is not so clear as 
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that of the first one, is due to the allowance made for the last 
term in the expression ( 15). In the limiting cases v, (A and 
v, )A, which we shall analyze later, the dominant contribu- 
tion to the effect is made by the first term. 

Thus, to compute ji, we need, generally speaking, to 
solve two equations: ( 17) and ( 18 ) . In the present paper we 
limit ourselves to the analysis of the case of low-intensity 
pumping, for which the deviations off, ( E )  and A from their 
equilibrium values are small, and can therefore be neglected 
in the computation of f2(&) and ji. In particular, as follows 
from ( 17), for A - T the perturbations off, (E)  and A will be 
small if the following condition is fulfilled: 

B P = U Q C O D ~ Z / ~ & ~ [  If (QT)']K&/Q, 
(20) 

Let us now consider Eq. ( 18) with allowance for the 
foregoing. We shall assume that the relaxation off, (E)  is due 
largely to the interaction with the magnetic impurities. This 
is true provided 

as a result of which I$' is small compared to v,, ( E )  f2 ( E ) ,  and 
therefore the solution is easy to find: 

where we taken account of the fact that, in the region of 
energies I E I  > E, (E,  is the gap in the excitation spectrum) of 
interest to us, we have 

,,m(ph) being determined by the interaction with the magnetic 

impurities (phonons). Let us first analyze the dominant 
contribution to the potentialp, i.e., we shall set f2 = f y).  Let 
us consider the limiting cases. 

1. Low magnetic impurity concentration: rSA,l 

Relatively simple analytic expressions can be obtained 
under the condition that the parameter w is not close to zero 
or unity. A distinctive feature of the present case is the pres- 
ence of impurity bands that arise as a result of the broaden- 
ing of the local energy levels f &, (&, = wA < A), which are 
due to the interaction of the electrons with a single magnetic 
impurity. For l l & I  - &,I (E,, we find from (7) that 

uCR=w sign ~+'l~y[y+i(l-yz)'"l, 

For Iyl- 1, these relations are valid if y(w, 1 - w. To the 
impurity bands, in which the density of states 
n ( ~ )  = Imu;/( 1 - w2)'I2, corresponds the energy region 
E ~ < J E I < E ~ + , E $  = ~ , + y h ( l y l < l ) .  

To lowest order in the parameter 7, A, we calculate ji, 
from the first term in ( 19), and find from (7) ,  ( 18), ( 19), 
(22), and (23) that (v, =v)v, ) 

F=D ( E , / Q )  'F ( a )  sin .B., (24) 

where 

Q-Q, 
! IA(Q)==! I  &), 

I 1  
~ ( X ) = ~ ( ~ - I X I )  [--I-- 2 n ( a r c s i n x + x ( ~ - z ' ) ' ~ ) ] + ~ ( x - ~ ) ,  

D=vp2~/3, g,= (&'-A2) 'lr sign E. 

Notice that the functions q, ( R )  govern the rapid variation a )  rA( 1. For R satisfying the conditions rR(  1 and 
of F ( n )  (in the frequency range IR - R, I < yA, which is rR2/A< 1, and with only the leading terms retained, we have 
small compared to A), that arises as a result of the rapid 
growth of the amplitude for scattering on a magnetic impuri- t 

ty in the region of energies corresponding to the impurity F (Q) = -?!!? ( th -$ - th E) p , ( ~ )  (?+2ke.) 
bands. Let us investigate (24') in the various limiting cases. 8 A  !,--I 2 T 
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In the high-frequency region R)A, rR2> 1 we have the fol- 
lowing asymptotic form: 

The change in sign of the function F ( R )  at certain frequen- 
cies is due to the fact that the sign of the source Q,(E) de- 
pends on the relation between E and R [notice that 
S ~ E Q ~ ( E )  = 01. 

b)  TA) 1. Assuming R k A, and taking account of only 
the leading terms, we obtain 

F (P)  =-h (Q) IQT, 
where the function h ( R )  is defined in (24" ) . 

In the region R < A - E; the magnitude of the effect is 
markedly smaller for any value of rA. Thus, we can assert 
that, in the case of low magnetic-impurity concentrations 
under consideration the frequency fl, = A - E; (or 
6, = A + E: when A% T) constitutes a threshold frequency 
for the PE. In principle, R, can be small compared to A; the 
expressions obtained are, however, valid for not too small 
f l d A  z 1 - w%y. Notice also that [as can be shown, using 
(17)],  in the case when T(A and In- A-~, l -yh ,  the 
neglect of the nonequilibrium character off, (E, - R )  is jus- 
tified if the parameter 5, (y. 

It is worth noting that, under the condition (21), the 
effect in the region R > A + E: depends weakly on v, and, 
hence, on the magnetic-impurity concentration c, , and is 
determined by the parameters characterizing the scattering 
on a single impurity atom. This property is due to the fact 
that, under the condition (2 1 ) , T,, (E)  - r, and Q2 - Y, , and 
therefore ,!i -.fd&rb (&)Q2(&)n ( E )  is a slowly varying func- 
tion of v, and c, at all temperatures T except those in the 
narrow range T, - T- v, < T, , where the dependence of A 
on v, must be taken into account. In the case of very small 
v, , when the inverse of the relation (2 1 ) is fulfilled, the mag- 
nitude of the effect will decrease as c, --to. 

2. High magnetic impurity concentration: 7,A.fl 

In this case, which corresponds to the gapless state, we 
have to leading order in the parameter r, A 

- R(A) - u:'*' = (E* ivd)/A, ge  -*e+iv,/2. (25) 

Taking account of (18'), (18"), (191, (221, and (25), we 
find ji, the expression for which can again be represented in 
the form (24) ; let us give F( R )  in the region of frequencies 

(where the effect is most noticeable) satisfying the condition 
( R / A ) ~ )  1: 

As can be seen, in the region R > A (for A which are not too 
small; the condition ( 2  1 ) gives the upper bound for f l  and 
the lower bound for A )  the dominant contribution to F ( R )  
does not depend on A.6) Let us give certain asymptotic forms 
that follow from (26). Taking into account the fact that at 
temperatures far from T, the parameter 7, T< 1, we obtain 

I T,TQ~[I+ (I+ (QT,) 2, -'- (~ /QT,)  arctg QT,] , 
F(Q)=;w 

TaQ,  v,<<v, 

In the vicinity of T, , where the parameter T, T is not neces- 
sarily small, we have in the limit when R, Y ~ Y ,  the expres- 
sion 

m 

Notice that, in the region Y, (0 < Y ,  as in the case when 
v, <A and A<R < Y,  the function F ( R )  increases like R2. 

Above we analyzed the contribution to F (R) ,  found 
without allowance for the correction f :" [see (22) 1 due to 
the electron-phonon interaction. By taking account off i", 
we can find the corresponding correction,!i'"(R) to the po- 
tential. The contribution of this fucntion is greatest in the 
region of high R, where its asymptotic form can be repre- 
sented as 

p (Q) "' = 
3nh..c.Q5 

p(Q)'O', PBA, T. 
8 0 ~ 0 o ~ A ~  

Here,!i'O'(R) is a function given by the expression (24'") and 
(26). 

Thus far, we have carried out the computation of ,!i in 
the SR model. To conclude this section, we shall briefly dis- 
cuss the question of the influence of the Kondo effect on the 
results; this will give us some idea about the limits of applica- 
bility of this model. The Green's functions of a superconduc- 
tor have been computed with allowance for the Kondo effect 
in numerous papers (see the review in Ref. 11 ). At present 
this complicated problem has been solved only by means of 
specific approximations. The most consistent solution, 
which was obtained on the basis of the Nagaoka-Suhl ap- 
proximation (see Refs. 10 and 11 ), was given in a series of 
papers by Miiller-Hartman and Zittartz (for references, see 
Refs. 1 1 and 19). These authors showed that, in the region of 
energies I E ~  -A, the Green's functions 2: have the same 
form as in the SR model, i.e., the form (7 ) ,  and that the 
influence of the Kondo effect manifests itself only in the 
expression for the parameter w, which, under the condition 
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that JSNF (I, is given by the following formula1 '.I9: 

w=p[n2S(S+1)+f12]-'" sign j, p=j-'-ln gp/T, 

\ 

Th-=gR exp (-j-l), (27) 

where TK = 2, exp( - j - ' )  is the Kondo temperature, t, 
being an energy ofthe order of&, (in the expression forp the 
difference between EF and E, is insignificant); the introduc- 
tion of TK makes sense only in the case of antiferromagnetic 
coupling between the electron and impurity spins ( j> 0).  
Thus, allowance for the Kondo effect leads to a situation in 
which the parameter w depends on the temperature, as well 
as on the sign of the exchange interaction. 

The general expressions obtained above for ji, in the 
derivaiion of which we did not use specific forms of the ma- 
trices CLRsA', contain the function of'A' (&) as well. From the 
results obtained in Ref. 11, the function of(&) can, when 
allowance for the Kondo effect is included, be represented in 
the form 

uoR(e) =-Zv. sin 8 { w (f.7 
(B.~)~- -  (wfcR) 

+ k,R sign j 
[n2S(S+1)+i32]'A 

where k is some complicated function that depends on E ,  A, 
v, , and T. It has a much simpler form in the limit 7, A< I, in 
which we can ignore the dependence of k : on A. In this case 
we have''.' 

where $(z) is the digamma function. Thus, the second term 
in (28), in contrast to the first term, which has the same 
form as in the SR model, i.e., the form (6), does not vanish as 
A+O. It is therefore clear that the related contribution to the 
PE may be greatest when A(vs. In this case, taking account 
of ( 19), (22), and (28'), we can obtain forji an expression of 
the form (24) with F replaced by = F + F, , where I: is 
given by the formula (26) and the function FK has the fol- 
lowing form (we assume, for simplicity, that Slgv): 

F ,  (Q) =-mTQZ sign j/2A2[n2S (S+l) + P ~ ] ' ~ .  (29) 

Notice that the expression (29) has been derived under the 
condition (2  1 ), which specifies, in particular, the lower 
bound for A. From (26) and (29) it follows that the relation 
F, /F< 1, which allows us to use for ji the expressions found 
by means of the SR model, is satisfied at sufficiently ;high 
values of S and /?, whose magnitudes depend on Sl and the 
ratio T/A; the influence of the Kondo effect then amounts 
only to the renormalization of the parameter w. This is also 
attested by the estimate that can be obtained for arbitrary 
values of 7, A in the region A, v, , the optimum region for 
observing the PE (we assume A - T) : 

We now proceed to investigate the anomalous PE in the ab- 
sence of magnetic impurities. 

3. THE PE IN SUPERCONDUCTORS WITH NONMAGNETIC 
IMPURITIES 

It turns out that, under certain conditions, nonmagne- 
tic impurities in superconductors can also bring about an 
electron-hole scattering asymmetry, and, hence, their pres- 
ence can also lead to the occurrence of the anomalous PE. 
For example, such a situation occurs in the presence of an- 
isotropy in the superconductor. 

1. Let us first consider the case in which the supercon- 
ductor possesses intrinsic anisotropy due to the dependence 
of the order parameter on the direction of the vector n = p,/ 
p,. As is well known,*' intrinsic anisotropy manifests itself 
in single-crystal samples, and is due to the direction depen- 
dence of the electron-phonon interaction, which is then de- 
scribed not by the constant A, but by the function A(n,nl). 
the theoretical investigation of the effect of such an anisotro- 
py on the properties of superconductors was begun by Pok- 
r o v ~ k i ~ , ~ ~  and has since been the subject of a large number of 
papers in which, as in the present paper, the weak-coupling 
model is used (see Ref. 22 and the references cited therein). 
We shall consider the case of the simplest anisotropy, assum- 
ing that the electron spectrum ~ ( p )  in the normal state can 
be regarded as three-dimensional. The equations for the 
Green's functions will then have a form similar to (2)  with A 
replaced by A (n ), where 

W D  

Here the prime on the angle brackets denotes averaging over 
n'; directional averaging should now be taken in the follow- 
ing sense: 

where the integration is over the Fermi surface SF. 
Bekw we shall need the expression for the equilibrium 

matrix 2; ( E ) ,  which, on the basis of (8) ,  can be represented 
in the form (we shall henceforth drop the index n) 

where 
v,?=v (l+stR sin2 ti)-', seR='I2 Sp( ((gcR(n) )-g,R(n))2> 

=<geR(n) Y-(feR(n) )2-.1, u O R ( ~ )  =-1/229,R~eR sin 26. 

In writing down the expression for of(&) we left out the 
constant determining the renormalization of the chemical 
potential. Taking account of (30), we obtain for the equilib- 
rium Green's functions g: (n)  the expression 

kcR (n) = ( E ~ ~ + A . ~  (n) it,) /EeR(n), 

AFR(n) =A (n) + l / z i ~ , R (  [AeR(n') -AsR(,) ]/hR(n') )'- 
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We neglect the effect of the electron-phonon interaction on 
ImAf(n). 

Thus, it follows from (30) and (3  1 ) that, because of the 
anisotropy in the self-energy matrix describing the scatter- 
ing on the nonmagnetic impurities, the component 4 1  is 
nonzero. Therefore, it is to be expected that, as in the case 
with magnetic impurities, the PE will manifest itself in an- 
isotropic superconductors even in zeroth order in the param- 
eter 

Let us proceed to analyze this effect, assuming that a 
thin [characteristic cross-sectional dimension d(A ( R )  1 
single-crystal whisker (see the review in Ref. 23) is subject- 
ed to the homogeneous action of an electromagnetic field 
whose amplitude is so small that the following condition is 
fulfilled for typical energies: 

f, ( e )  - th(e/2T) e t h  ( d 2 T ) .  

In this case it is only necessary to derive the kinetic equation 
for the function fz. Since its derivation is similar to the one 
carried out in Sec. 2, we shall omit the intermediate calcula- 
tions, and write out only the result. We assume here that 
T V ~  (E) (1, which is, as a rule, guaranteed by the smallness of 
the quantity ( (A2) - (A)')/(A)'. AS a consequence the 
anisotropic part fZ(&,pF ) - ( f2(&,pF ) ) is small compared 
to ( fZ (&,pF ) ) =f2(&), and can be neglected; the resulting 
equation for f2 ( E )  is similar to ( 18), where now 

Here Q,(&,R,n) is a function that coincides in form with 
(18') with vf./3 and A replaced respectively by v;x and 
A (n); furthermore, account should be taken of the fact that, 
in the case under consideration, the assumption that 
[ o f ( E ) ~ ]  '4 1 leads to the relations 

H ( 0 I  
b,,,. = [ Z e n  (n) + ZcR' * '  (n) 1 - 1 ,  

g s n  (n) = E e R  (n) [ ~ + ' I ~ i v , ~ (  (n) ) 1 - 
It is well kown that the effect of the anisotropy is stron- 

gest in fairly pure superconductors, for which the parameter 
T(A)) 1. Let us consider the limiting case 

\.<A,,, A,,-A,, A , , -mi~ l  A (n),  A,=max A (n) . (33) 

Furthermore, we shall invoke the condition ( R  2 A - T) 

which allows us to neglect z ; ~  in the calculation of f2(e).  
Taking only the dominant contribution into account, we ob- 
tain for the stationary potential the expression 

Here T, (E) = T ~ ( E ) ,  where the T-independent function y(&) 
can be found from (3  1 ) and (32); below we shall need its 
asymptotic form for \&\%A,: y(&) =&'((A2) - (A)')-' 
(the effect of the anisotropy on the frequency v, was first 
discussed by Tinkham5). In principle, the function @ ( a )  
can be computed on the basis of (35) if the function A(n) is 
known. For this purpose, in order to estimate ji, it makes 
sense to consider the simplest limiting case: R, A, , in which 
@ ( a )  reduces to a constant @ (of the same order of magni- 
tude as @ for the case when R 2  A, ): 

In deriving (35') we took account of the fact that, to lowest 
order in the parameter ( T A , ) ~ ' ,  we can consider the func- 
tion Ims; to be nonzero only in the region A, < E < A,, 
where we have, on the basis of ( 30) and (3  1 ) , 

Here the double angle brackets denote averaging over n and 
n' and A'EA (n'). Let us, following Gaid~kov, '~ further as- 
sume that the average over the Fermi surface can be written 
down after introducing the function P(A), normalized to 
unity in the interval ( A,,A, ), and determining the distribu- 
tion density of the parameter A: 

By taking account of this for the uniform distribution 
P A  = ( A  - A , ) ,  and assuming A,> 2T and 
sf sin2S41, we can obtain the following estimate: 

Note that this estimate is correct in order of magnitude even 
when A, - A,-v. Thus, we can conclude from (36) and 
the foregoing7' that, under the condition (34), we have 
@ ( a )  2 1 in the region R X A, 2 T. 

Let us now proceed to analyze another case, namely, the 
case in which the anisotropy in the superconductor is caused 
by an external magnetic field H. 

2. We shall assume that the field H is applied parallel to 
the plane of a film whose thickness satisfies the condition 
I = vF~4dgA(n )$ .  To simplify the analysis of the PE, we 
shall assume that the magnetic field is close to the critical 
field H, for the film i.e., that H, %H, - H. It is well known 
that the gapless state, in which the equilibrium Green's func- 
tions are given by the expressionsz4 

is realized in such strong fields. To the film surfaces, which 
are perpendicular to the z axis, correspond the planes 
z =  &d/2 .  
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As we saw above, the occurrence of the anomalous PE is 
due to the presence of the component of(&) in the self-ener- 
gy matrix BR (E).  Below we shall need only the film-thick- 
ness-averaged function # (E). Computing it with allowance 
for (30) and (37), we obtain 

Before proceeding to find the stationary invariant po- 
tential that arises in the film under the uniform action of an 
electromagnetic field, let us note that we shall consider the 
case of low-intensity pumping, in which we set 
fl (E)  = th(e/2T) in computing f2(e) and ji. It is not diffi- 
cult to verify that, because of the smallness of the parameter 
A/r, we can ignore the new terms (i.e., those that do not 
occur in the cases considered above), which arise because to 
first order in A ,  the functions (gI,t)-, ), as well as Aw"' and 
pFLE('), are nonvanishing. Therefore, the derivation of the ki- 
netic equation for f2(e) is similar to the one carried out in 
Sec. 2; the result has the form of Eq. ( 18), in which, with 
account now taken of (37) and (38), we have 

va (8) = 2 A 2 r  ( E ~ + I ' ~ ) - ' ,  

sin 215 ($1 ' 1 
Q 2 ( e ,  Q )  = - 2 

A 2 r r  Im -- 
( l + i P z ) '  

For 

we can easily find the function f2(e);  as a result we find in the 
case when R>A that 

m 

sin 2tjD (z)' 5 (28-P) ( e - r v / Q )  ( r+FrQ)  
p = ---- de 

2 - ce ( ~ ~ + r ' )  2 

Let us note that the function F(n) in (41) to within the 
factor 2w, after replacing vS-+T, with the expression ob- 
tained for the case of magnetic impurities in the limit 
A(vs (Y; therefore, its asymptotic forms can be obtained 
from (26') and (26"). The expression (41) is not correct if 
the parameter A is so small that the inverse of the condition 
(40) is fulfilled. Not wanting to dwell at length on this case, 
we only note that, in this limit, ji tends to zero ( ji - A2) as A 
decreases. 

We have considered only certain situations, unified by 
the presence of anisotropy, in which the scattering on the 
nonmagnetic impurities gives rise to the anomalous PE. In 
particular, here we have not discussed the case of nonmagne- 
tic transition-metal impurities; it must be treated separately. 

4. DISCUSSION OF THE RESULTS 

Thus, the region of frequencies R X A,Y, ,T, Tis the opti- 
mum region for the observation of the PE. Let us estimate 
the magnitude of the effect for these R, taking account of the 
fact that the maximum electric-field amplitude for which 

these expressions can still be used to make order-of-magni- 
tude estimates is given by the condition 

where a; is the critical value corresponding to the appear- 
ance of the inhomogeneous state in the superconductor1 and 
E = max(A,T,vs ,r). Using, for example, the formula (24') 
for the estimate,'' and setting sin 6- 1 and A - T, we obtain 

Here 7; = /2A3/&. Taking account of the fact that a typi- 
cal value of 7; - 10-9-10-10 s, we arrive at the conclusion 
that the characteristic value ofji,,, - 1-10pV; in the dirty 
limit this value is attained in the region n%A. 

The problem we have solved in Secs. 2 and 3 clearly 
allows us to find the potential difference that arises in a defi- 
nite region of the superconductor (or across the junction 
between superconductors) in the situations depicted in Figs. 
l a  and lb. The voltage potential that develops in the super- 
conductor in the case shown in Fig. l c  can also be computed 
from these expressions with E, replaced by E, (0) when the 
coupling between ji ( x )  and E, (x)  is l ~ c a l . ~ '  It is not espe- 
cially difficult to generalize the results to the case of nonlocal 
coupling, but we shall not do this here. 

Thus far we have considered the PE in superconduc- 
tors. But a stationary emf 8, will also develop in the normal 
state of the metal under the inhomogeneous action of an 
electromagnetic field. It owes its origin to the diffusional 
current component j, given by the gradient of the distribu- 
tion function f, (e): for an open circuit jd + uE = 0; there- 
fore, a voltage potential develops across a section in which 
diffusion of the excitation  occur^.'^' Thus, there is a definite 
analogy between the PE in the normal state (when the elec- 
tromagnetic field acts nonuniformly) and the thermoelec- 
tric effect, the difference lying only in the mode of excitation 
(and in the form) of the distribution function fl  (E).  

In the presence of magnetic impurities, both the ther- 
moelectric9 and photoelectric effects are anomalously large 
as a result of the electron-hole scattering asymmetry. Taking 
account of the well-known results," and using the analogy 
noted above, we can easily estimate the magnitude Z9, of the 
emf that develops, for example, in the situation depicted in 
Fig. la. Assuming that the pump is weak, i.e., that 

Eale<<rnax ( T ,  Q)  , 1,- (DmnZ/hT3) 

and that L>I,, we obtain 

v . t  (Eple)' sign j 
2TN (52, T )  - sin 6 

T[nZS(S+1) +b2]'h 

(42) 

It follows from (42) and the results obtained in Sec. 2 that 
the ratio 8, (R,T, )/8 (R,T) can be either greater or 
smaller than unity. Without going into details, let us note 
that the emf should increase (even if in a narrow tempera- 
ture range T, - T<T, ) on going from the normal into the 
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superconducting state when magnetic-impurity concentra- 
tions are not too high, i.e., under the condition that r, T, > 1. 

Thus, the appearance in the superconducting state, in 
contrast to the normal state, of an emf under the inhomogen- 
eous action of an electromagnetic field is due to the redis- 
tribution of the excitations over the branches, and the 
change in the distribution function f, ( E ) ,  so long as it is 
small, does not play an important role. In spite of the differ- 
ence in origin, the anomalies of the effect in the two cases are 
due to the electron-hole asymmetry in the scattering on the 
magnetic impurities. In the presence of nonmagnetic impur- 
ities only, an anomalously strong emf can develop only in the 
superconducting state. 

In our opinion, the PE considered here is interesting not 
only from the physical point of view, but also from the stand- 
point of applications. Experimentally, this effect has not yet 
been studied. 

In conclusion, I express my gratitude to V. V. Zaitsev 
and G.  A. Ovsyannikov for useful discussions. 

"The effect studied in Ref. 6 is caused by the magnetic component of the 
microwave field (and in this sense it is similar to the effect investigated in 
semiconductors7); therefore, it disappears in very thin films. Let us note 
that in Ref. 6 thecontribution top  connected with thechange that occurs 
in the quasiparticle distribution function under the action of the electric 
compohentof the microwave field is ignored. 

"Let us note that the effect under consideration is due to the amearance of 
a branch imbalance; as to the production of new quasiia;ticles [de- 
scribed by the distribution function f l (s ) ;  see below], it does not play a 
significant role when pumping is weak. For this reason this effect is 
called light-electric, and not photoelectric. 

"As is well known, the first theoryI4 that explained many equilibrium 
properties of superconductors with magnetic impurities describes the 
scattering on these impurities in the Born approximation. The develop- 
ment of a theory that went beyond this approximation led to the predic- 
tion of new states inside the energy gap ofthe s u p e r c o n d ~ c t o r . ' ~ ~ ~ ~  These 
states have been investigated by means of tunneling measurements in 
numerous papers (see, for example, Refs. 15 and 16). 

4'The form of the expressions ( 14) does not depend on the nature of the 
scattering from the surfaces of the film if I = u , ~ ,  (d; if on the other 
hand I > d, then these formulas are valid in the case of specular reflection 
from the surfaces. 

''Notice that Eq. ( 17) for v, = Oand A,R<v, goes over into theequation 
obtained by Eliashberg in Ref. 17, where the equation for the distribution 
function n, = [ 1 - f, (&)sign ~ ] / 2  is given. 

"It can be shown that, in the A region defined by reversing the inequality 
(21) [theexpressions (24') and (26) are not valid here], the potentialp 

will tend to zero as A-+O. 
7'It can be shown that in the case of weak anisotropy the effect tends to 
zero as A, - A,-&, but that this will occur in the limits opposite to 
(34), when the expressions (35) and (36) are not valid. 

"Similar estimates are valid for the other cases in the region of the optimal 
frequencies. 

"Local coupling obtains in quite a broad range of A - v, and T - Tin the 
case of dirty superconductors, for which the relation 

I,  - [D7* ( ~ ) ] I ' ~ - f < A ( f l ) ,  fl-A is satisfied. 
'''In the superconducting state the diffusional component of the current is 

canceled out by the supercurrent, a situation which leads to the appear- 
ance of an order-parameter phase difference across the section where 
VJ-I(&) f 0. 
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