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The theory of pair production by a photon in single crystals is developed for arbitrary energies 
and entry angles. For small entry angles the theory describes the pair production in the field of 
the axes or planes of the crystal. In this case corrections to the constant-field approximation 
are found. For relatively large entry angles the general expressions go over to the standard 
theory of coherent pair production. A modification of the theory of coherent pair production 
applicable to a broader range of entry angles is obtained. 

I. INTRODUCTION 

When a high-energy photon interacts with a crystal the 
mechanism by which electron-positron pairs are produced is 
considerably modified in comparison with an amorphous 
medium. Even in the 1950s it was known that when the pho- 
ton momentum k lies near the direction of axes or planes 
there is interference of the contributions to pair production 
at different centers. For certain values of the photon angle of 
incidence and energy the probability of this mechanism (co- 
herent pair production; see Refs. 1 and 2 and references cited 
therein) differs substantially from the probability of inde- 
pendent pair production at separate centers, which occurs in 
an amorphous medium (the Bethe-Heitler mechanism). 

Also well known is the mechanism for production of a 
pair of particles by a high-energy photon in a constant exter- 
nal electromagnetic field (see, e.g., Section 11 of Ref. 3 ) .  
Very recently it has been established that for photon energies 
which are readily available at the present time (tens of GeV) 
this mechanism can appear in crystals when the photon an- 
gle of incidence & (the angle between k and the axis or 
plane) is small. The constant-field approximation is applica- 
ble if 9,(Vo/m, where Vo is the characteristic scale of the 
potential, for in this case the field in the axis (or plane) can 
be considered constant over the pair formation length.4 The 
rest of the problem then reduces to selecting an adequate 
potential and performing appropriate  average^.^.^ This 
mechanism has been discussed previously also in Refs. 6 and 
7. In Ref. 6, where the planar case was considered (for which 
the effect appears at a higher energy), an asymptotic expres- 
sion was found for the pair production probability at low 
frequencies [in essence, Eq. ( 11.32) from Ref. 31 and an 
expression was obtained for the spectrum of one of the re- 
sulting particles of a polarized e+e-  pair in a constant field 
[we note that this result follows from Eq. ( 10.100) of Ref. 3 
with use of substitution rules]. The subsequent analysis re- 
duced to estimates which contain a number of inaccuracies. 
In Ref. 7 the problem for the axial case was solved numeri- 
cally, without use of the results for a constant field, for the 
( I  10) axis of diamond. The probabilities obtained by us in 
Ref. 4 (for the same conditions) was found to be several 
times lower than those calculated in Ref. 7. In Ref. 8 the 
constant-field results were used, but a discrepancy with 
Refs. 4 and 5 remains; after correcting errors in the calcula- 

tions the probabilities were found to be in reasonable agree- 
ment with Refs. 4 and 5 (J .  C. Kimball, private communica- 
tion). 

The behavior of the pair production probability in a 
constant field is determined by the parameter" 

where X" (o,  k )  is the photon Cmomentum, m is the elec- 
tron mass, E is the local value of the electric field of the axis 
orplane,andEo = m2/e = m2c3/efi= 1.32.1016V/cmisthe 
critical field. For x( 1 the probability of pair production in a 
constant field is exponentially small, a exp( - 8/3x), and 
in single crystals only coherent pair production is a specific 
effect. For 3t - 1 the pair production probability in a constant 
field WFFrises rapidly and becomes equal to the probability 
of the Bethe-Heitler mechanism W,, at a photon energy 
w = a,. For example, at room temperature for the ( 11 1) 
axis in tungsten w ,  -- 22 GeV and o, ~ 9 0  GeV in diamond4; 
see Table I. 

Many features of this process-pair production by a 
photon in a crystal-are similar to the production of pairs in 
the field of a plane electromagnetic wave. This is due to the 
fact that for photons (ultrarelativistic particles) moving 
near axes or planes, the crystal field can be reduced to a flux 
of incident equivalent photons. Since the description of pair 
production in the field of the wave is considerably simpler 
than in a single crystal, the analogy mentioned turns out to 
be extremely useful. We shall represent the crystal potential 
in the form 

the explicit form of G(q) will depend on the type of lattice 
and so far we do not need it. In the rest system of the crystal 
there is only an electric field E. In the system of reference 
moving with a velocity v = nv along the direction of entry of 
the photon n, a magnetic field H = y, E X v arises, where 
y, = ( 1 - u2)  - ' I2> 1. The resulting field in this system, as is 
well known, can be represented in the form of a flux of equi- 
valent photons with frequency y, ( qll lv, where qll = qn, 
which with relativistic accuracy has the form 
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TABLE I. Parameters of the potential and certain quantities characterizing the production of 
pairs by a photon in the field of crystal axes. 

Crystal 

1 

Note. Data are given for the (1 10) axis incooledGe(100) and for the (1 1 1 )  axisin theremaining 
cases. The numbers in parentheses after the designation of the crystal are the values of tempera- 
ture; where no numbers are given, T = 293 K. The quantities V,, a,, 7, and x, are the parameters 
ofthe potential (3.8); u ,  is the amplitudeofthermal vibrations; w, is the photonenergy at which 
the probability of the process in the field of axes is comparable with the amorphous value; 
Fa" = W2Ea,/ WeH is an estimate on the basis of Eq. (3.15) of the maximum value of the effect. 
The symbol (d)  denotes a structure of the diamond type fcc(d). 

where q, = q - n(qn). In the interaction region, the trans- 
verse dimension of which is of the order kc = l/m = Nmc, 
and the longitudinal dimension is the formation length, 
which in the c.m.s. system of the incident and equivalent 
photons is of the order 2r/l qll ly,, there are 
Nq z / J q  (27TiZz/I ql l  Iy, photons. The effective strength of 
the interaction is characterized by the parameter 

This parameter is purely classical (it does not contain f i )  and 
always arises in problems with an external electromagnetic 
field. The parameter in the theory of processes with an 
intense plane wave has the same meaning (see for example 
Section 101 of Ref. 9 and also Ref. 10); the parameterp in the 
problem of radiation in quasiperiodic motion also has the 
same meaning (see Ref. 1 1 ). For aN,, ( 1 the external field 
can be taken into account in perturbation theory, and for 
aN,, B 1 we have the constant-field limit. For estimates we 
canrassume that IG(q) 1 - V,, qil -9, a,, in which case 

Therefore for do( Vo/m the constant-field approximation is 
applicable, and at V,) Vo/m perturbation theory is valid, the 
first approximation of which is the theory of coherent pair 
production. These criteria were obtained previously by the 
present authors4s5 from other considerations. 

The probability of coherent pair production is greatest 
at photon entry angles 

where A is the typical distance between axes or planes. As 
the photon energy increases the position of the maximum 
shifts toward smaller angles, and when an angle 9, - V , m  
is reached the theory of coherent pair production becomes 
inapplicable in the region of its maximum (and to the left of 
it). In this sense this theory is completely inadequate in the 
high-energy region. 

The present work is devoted to construction of a unified 
description of the process of pair production by a photon in a 
crystal which is applicable for any photon entry angles and 
at any energies (Section 11). For 904 Vo/m and 8,) V,/m 
the probabilities obtained go over to well-known limiting 
cases. In the case i?,(V,/m a correction oc (m90/Vo)2 is 
also calculated. For x )  1 the probability for production of a 
pair of particles in a constant field WSFcan exceed W,, by 
10-100 times5; see also Table I and Section 111. 

In Section IV for the region 9,2 V,/m we have ob- 
tained from the general formulas an expression for the prob- 
ability which consists of a modification of the theory of co- 
herent pair production which has a broader region of 
applicability in 8, than the standard theory. Calculation of 
the probability on the basis of the general formula is a rather 
complicated computational problem. On the other hand, in- 
clusion of corrections - (m9JVo)2 to the constant-field ap- 
proximation and modification of the theory of coherent pro- 
duction permits one to describe the probability of the process 
by means of simple expressions for all entry angles except 
9,- VJm; in this region we used interpolation. 

II. QUASICLASSICAL DESCRIPTION OF PAIR PRODUCTION 
BY A PHOTON IN SINGLE CRYSTALS 

A general expression for the probability of production 
of a pair of particles in an external field in the quasiclassical 
approximation was obtained in Section 11 of Ref. 3. The 
essential features of the problem considered appear only 
when we evaluate the magnitude of the discarded terms. As 
was shown, they are 5 l/ma(l, where a is the size of the 
region of action of the potential, provided that 

p,=v,o/m2> 1. (2.11 

Actually the production of electron-positron pairs in the 
field in an axis or plane becomes observable only if this con- 
dition is satisfied (see Ref. 4).  Then the pair production 
probability (during the entire interaction time) is [compare 
with Eq. (2)  in Ref. 51  

am' d" d 3 p ,  
Ue=---J+- ( ~ n ) ~ o  J7 8 e 
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Here V is the volume of the crystal and p, is the momentum 
of a particle of the resulting pair at the production point r,. 
Similar expressions for the radiation can be found in Section 
2 of Ref. 11. 

We shall represent the velocity as v(t) = v, + Av(t, 
v,), and then the integrand in the phase A in Eq. (2.2) can be 
written in the form 

where 

so that we can assume that the vector u lies in the plane 
perpendicular to n. If the condition (2.1) is satisfied, the 
main contribution to the probability (2.2) will be from the 
portions of the trajectory in which the direction of the vector 
v,, is close to that of n: 

I u I - ~ I ~ ,  lAv( t ,  v0) I-117. 

However, in that case we can make the substitution 

Accordingly in the coefficient of the exponential expression 
in (2.2) we shall make the substitution 

v ( t , ) - ~ ( t z )  +Av(t l ) -Av(tZ).  

With relativistic accuracy we can rewrite the phase space 
d 3p0=.~2d~d 'u. After these transformations the integration 
over u can be carried out. As a result we obtain 

where 
7 , -  

and we have gone over to the variables t, T: t, = t - 7/2, 
t, = t + 7/2; the direction in which the point T = 0 is en- 
closed (the sign of the imaginary increment) follows from 
the condition of convergence of the integral over u. 

All of the interesting effects occur at small photon-en- 
try angles a,( 1. We shall consider the case in which 9,>9,, 
where 9, = (2U0/w) "' is the critical angle for a given axis 
or plane and Uo is the depth of the corresponding potential 
well. Sincep, ) 1, we have 9, ) l/y. It was shown above that 
the particles of the pair which results are emitted into a nar- 
row cone with an opening angle - l /y about the direction of 
n. Then, if 8,>9,, the particles of the pair will move high 
above the barrier (from the point of view of the mode of their 

motion in the channels formed by the axes or planes) and to 
find Av(t) for them one can use the straight-line-trajectory 
approximation. In the crystal potential (1.2), using the 
equation of motion and the straight-line-trajectory approxi- 
mation, we find 

We note that, since in (2.4) Av enters quadratically, the 
result in the straight-line-trajectory approximation no long- 
er depends on the sign of the potential, and the difference 
between electrons and positrons in the final state drops out. 
Substituting (2.5) into (2.4) and calculating the integrals 
which are obtained, we find the pair production probability: 

sin[ (qIl+ql~') 2/21 sin (qll.t/2) sin (q l11d2) l2 ( ~ o + q 1 / ) ~  
- 4 

qllz ~ 1 1 ' ~  11. 
(2.7) 

In this expression the time t enters only in the form of the 
combination roll + t, and after the substitution roll + t-+roll 
the dependence on time remains only in the limits of integra- 
tion over roll . This dependence can be neglected if the length 
of the crystal (in the longitudinal direction) is considerably 
greater than the formation length in the production of an 
electron-positron pair I f .  At an energy w =. 100 GeV in ger- 
manium If - 10W5 cm and increases slowly with increase ofw 
(asymptotically cc al l3) ,  so that this condition is essentially 
always satisfied. In this case we can omit the integration over 
t, and the region of integration over r, since the integrals 
converge rapidly, can be extended to infinity. As a result we 
obtain for the probability of production of an electron-posi- 
tron pair per unit time 

,., *. 

sin (ql l+ql l ' )  r sill q11~ sin ~ I I ' T  - - .  11 (2.8) 
qi17 411'2 

Although the expression for the probability We was ob- 
tained for an entry angle 9,)6,, below we shall show that 
actually the formula (2.8) is valid right down to 8, = 0 and 
is a general expression for the probability of pair production 
by a high-energy photon entering the crystal at a small angle 
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to a crystallographic axis or plane. In the large-angle region 
We (2.8) goes over to the well-known probability of coher- 
ent pair production, and at small angles it goes over to the 
probability of pair production in a constant field. These tran- 
sitions will be traced in detail below. In the intermediate 
region it is necessary to use (2.8) directly. 

Ill. PROBABILITY OF THE PROCESS FOR 90(Vdm. 
CORRECTIONS TO THE CONSTANT-FIELD 
APPROXIMATION 

Let us turn to analysis of the general expression (2.8). 
For estimates we shall assume 

where a is the characteristic linear scale of action of the po- 
tential. Then the order of magnitude of the double sum in A, 
in (2.8) is ( VO/m6,) '. We shall discuss first the case of rela- 
tively small angles when 9,gVO/m (as before we shall as- 
sume that 8,f,,B,, which is possible as a result of the condi- 
tion p, ) 1). We shall choose the z axis along the 
crystallographic axis with respect to which2' the angle 8, is 
measured. Then for vectors q lying in the xy plane we have 
ql l  7-S,m/V,( 1, and for any other q we will have ql l  T-m/ 
V,) 1, while in the double sum in A ,  it is necessary to retain 
only terms with q, = qi = 0; the contribution of the remain- 
ing terms with q, #O is down by a power in the parameter 
V,/m. Expanding the functions qll 7 in powers of the argu- 
ment, we obtain 

where the subscript t denotes the component of a vector ly- 
ing in thexy plane and p, = rot .  We can rewrite Eq. (3.1 ) in 
terms of the potential along the axes, which depends only on 
the transverse ordinate [compare with Eq. ( 1.2) 1 

namely: 

where b = VU( p,)/m, V = d /dp,. After a similar proce- 
dure the expression multiplying the exponential in the inte- 
grand of (2.8 ) takes the form 

Note that b is expressed in terms of the particle acceleration 
b = - yv( p,), so that the entire expression is dependent on 
the local properties of the motion, which is characteristic for 
pair production by a photon in a constant field. The terms in 
(3.3) which contain n have a relative magnitude - ( m h /  
Vo)2, and we can expand these terms in exp iA,. After substi- 
tuting (3.3) and (3.4) into (2.8) and performing this expan- 

sion, we evaluate the integrals over T by means of well- 
known relations: 

and the recurrence relations for the modified Bessel func- 
tions K, (z) . Carrying out this calculation, we obtain for the 
pair production probability in the limit V,/m 

"2 

I b (Vn) 'b -- 2 

3 1bl4 s(&) [&(A)- H h ~ ~ ( i ) ]  

Since the expression for W does not depend on z,, we have 

.I d3n/v - J d 2 p . / ~ ,  

where S is  the area of the cross section of the crystal perpen- 
dicular to the selected axis. In view of the periodicity of the 
crystal, the average overp, can be carried out over the region 
of the cross section associated with a single axis; then S = So 
is the area of this region. The first two terms in (3.6), which 
do not depend on n, are the pair production probabilities 
assuming a constant (over the pair-formation length) field 
which were found previously in Refs. 4 and 5, and the re- 
maining terms are a correction = 9 :. 

Further simplifications of Eq. (3.6) are possible if the 
potential of the axis can be assumed to be axisymmetric. In 
some cases, for example, for the ( 11 1) axis in crystal struc- 
tures of the fcc(d) and bcc types, the potential is very accu- 
rately axisymmetric about the distinguished axis over the 
entire region So asociated with this axis. However, even if the 
potential is not axisymmetric over the entire region So, it in 
any case has these properties for I pol 5 a,, where a, is the 
effective screening radius of the potential of the string andp, 
is measured from the axis. The intensity of the electric field 
in which pair production occurs is maximal just in the region 
I pol 5 a,. Assuming that U = U( p: 1, we can carry out the 
integration over the angles of the vector po in Eq. (3.6): 
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1 4 +- ( 2 ~ ' g " + ~ ~ + 1 4 g ~ ' ~ + f 3 ~ ~ ~ g " )  ( AKll, ( A )  - - K*,, ( A )  
2 0 ~ " ~  3 

where we have gone over to the variable 
x =&a:; x; ' = 7ra:nd; d is the average distance between 
atoms of the string forming the axis, n is the density of atoms 
in the crystal, and we have used the notation 
U'(x) = V,g(x); then we have 

m30aa l o 2  1 1 a = =_---. 
~ E E ' V ~ J X ' ~ ~ ~  3 ee' %(a8 )  Ix'"g1 

Eq. (3.7) is applicable for an arbitrary shape of an axisym- 
metric lattice potential. To obtain specific predictions we 
shall use an explicit form of the axis potential which has been 
found to be completely adequate in the radiation problemI2 
and has been used in Refs. 4, 5, and 13: 

For estimates we can assume that V, ,-Ze2/d, 7 ,- 2ut /a:, 
where u, is the amplitude of thermal vibrations. Actually the 
potential parameters were determined by means of a fitting 
procedure, of which the details can be found in Ref. 12, using 
a model of the lattice potential based on a Moliere potential 
for an isolated atom (the parameters are given in the table). 
For the potential (3.8) the value of the electric field and the 
parameter x are 

The electric field (3.9) vanishes at x = 0 as a result of ther- 
mal vibrations, reaches a maximum at 

~=~,='/,{[1+16~l (qS1) 1%-1-2q), 

and then falls off. In what follows we shall use 

%,,,EX (2,) , x..=Voo/aams. 

We note that the spectrum d W,F/d& of one of the particles of 
the produced pairs follows from Eq. (3.7) if we omit integra- 
tion over E. 

Equations (3.6) and (3.7) were obtained from the 
probability (2.8) in the region where the latter is applicable 
(8,)8, ), but as the angle 8, decreases further the probabil- 
ity changes insignificantly, which obviously follows from 
(3.7), so that Eqs. (3.6) and (3.7) and therefore also Eq. 
(3.8) are valid down to 8, = 0. 

The behavior of the probability in a constant field is 
illustrated in Figs. 1 and 2. In Fig. 1 we have shown the pair 
production probability as a function of photon energy for 
several materials. In Fig. 2 we have shown the spectrum of 
the electrons or positrons produced for various photon ener- 
gies for the (1 11) axis in tungsten. It can be seen that the 
peak at E zw/2 at comparatively low energies gradually goes 
over into a broad plateau as the energy increases, and in the 
middle of the plateau a dip then appears, so that the spec- 

FIG. 1. Probability of production of a pair by a photon for an entry angle 
8, = 0 relative to the (1 11) axis (for Ge the (1 10) axis). The numbers in 
parentheses denote the temperature of the crystal; where the temperature 
is not given it is T = 993 K. 

trum shape becomes rather similar to the Bethe-Heitler 
spectrum. 

There is an analogy between Eq. (3.7), which we shall 
give in the form 

WeF=Fi+ (m80 /Vo)  ' F 2 ,  (3.10) 
and the probability of radiation in quasiperiodic motion W, , 
when the principal parameter which determines the proper- 
ties of the radiation is p = 2y2 [ (v2) - (v)~] ) 1. Here the 
angle brackets indicate averaging over time. For p( 1 the 
radiation is dipole, and forp) 1 we have the limit of synchro- 
tron radiation. In the latter case the quantity Wr can be 
represented in the form Wr = f, + f2/p [compare with Eq. 
(4.16) in Ref. 1 1 1. Thus, the quantity ( Vo/m&) plays the 
role of the parameter p. The ratio F2/F, of the functions in 
Eq. (3.10) is shown in Fig. 3 as a function of energy for 
various materials. At those values of w for which F2 > 0 the 
probability (3.10) has a minimum at 8, = 0. For x, z (5.1- 
5.3)7'12 the function F, changes sign and at large values of 
x ,  the probability W f  has a maximum at 8, = 0. As w (x, ) 
continues to increase the height of this maximum increases 
and the width begins to narrow, since for x, ) 1 F2 increases 
faster than F,. 

dW y/dx, ern - i 

FIG. 2. Distribution in energy e of one of the particles of the produced pair 
(X = E / W )  for the (1 11) axis in tungsten, T = 293 K, 8, = 0; for w = 25 
GeV (1) ,50GeV (2) ,  100GeV (31, and 500GeV (4) .  
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FIG. 3. The ratio F,/F, in Eq. (3 .  lo), which characterizes the magnitude 
of the correction to the constant-field limit. The notation is the same as in 
Fig. 1.  

The maximum value of ~ f ' f r o m  (3.7) and (3.10) at 
t90 = 0 is reached for x, % 1. In this case we can obtain an 
explicit asymptotic expression3' for We which is very con- 
venient for our analysis. The region of integration in (3.7) 
can be broken up into three parts: 1) O<x<x,(l; 2) 
x,<x<x,, where ~ ~ $ 1 ;  3) x2<x<x0, assuming xo)l, with 
A (x, ) 4 1, A (x2) ( 1. It is necessary also to take into account 
that the integral over energy gets its main contribution from 
the region in which o2/4&&'- 1. Then in regions 1 and 3 we 
can replace xl"g(x) by approximate expressions for small 
and large x and go over to integration over A, while in region 
2 we can use the expansion of the functions K ,  (A) for A( 1, 
extending the integration to infinity. As the result of rather 
involved calculations we obtain 

where 

B, (0) =3'"n/2+ '1, In 3+ln 2-C+3/70-6--0.374, 

B, (0) =-3"n/2+"I, In 3+1n 2-C+4+3/7-B/,,-i3/,o=3.T0. 

Here C = 0.577 ... is Euler's constant. The integrals in B, 
and B2 are expressed in terms of hypergeometric functions. 
Taking into account that usually 7 4  1, we give the following 
approximate expressions: 

whereB= q / ( 1 +  7 ) .  
In deriving (3.11) the integration over x was carried 

out between infinite limits. Since the main (logarithmic) 
contribution to (3.1 1 ) is from the region x - x3" (region 3), 
it is clear that the asymptotic behavior (3.11 ) is valid only 
forx:l3 <x0, i.e., for photon energies less than a few TeV. At 
such energies when x S / ~  -x0, the main contribution is from 
large distances from the axis, where the cylindrical symme- 
try of the potential can be destroyed and it is necessary to 
take into account the influence of several axes. Then the 
probability of pair production at small entry angles is given 
by Eq. (3.6), in which it is necessary to substitute the poten- 
tial (3.2). 

ThefunctionFl(x,) l )=F~in (3.10) and (3.11) has 
a maximum at the point xy = exp [ 3 - B, (7)  1, near which 
the function F y  changes very smoothly. Therefore the ener- 
gy value w0 obtained from x: is only an order of magnitude 
estimate. However, the value Wfmax = F $ ( x ; )  is given by 
Eq. (3.1 1) quite satisfactorily and is in good agreement with 
the results of a numerical calculation using the exact expres- 
sion (3.7): 

where the coefficient k depends on the material and, for the 
materials usually used, varies in the range 1.93-1.59 as 7 
varies from 0.025 (diamond) to 0.15 (silicon). Equation (6) 
of Ref. 5 used the rounded value k = 2. 

It is of interest to determine the maximum value of the 
increase of the probability for pair production in the field of 
an axis over the pair production probability in the corre- 
sponding amorphous medium (the Bethe-Heitler mecha- 
nism). Taking ( 3.14) and W,, (see for example Refs. 3 and 
9),  we obtain 

where the second (simplified) estimate is relatively crude. It 
can be seen from this that Pax is greater, the lower is Z and 
the larger is a,. The greatest gain (among the materials 
used) is achieved in diamond (Pax - 160); values of Pax 
are given in Table I. Here it is appropriate to mention that 
the effect of pair production in the field of an axis becomes 
appreciable at x, - 1 [see Eq. (4.9) 1, and a rough estimate 
of the corresponding energy4 is 

from which it is evident that the effect shows up primarily 
for those materials for which the gain in Pax is minimal. 
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IV. PROBABILITY OF THE PROCESS FOR aO> Vdm; 
MODIFICATION OF THE THEORY OF COHERENT 
PRODUCTION OF PAIRS 

Let us consider now the region of large photon angles of 
incidence. We shall show first that in this region the results 
of the standard theory of coherent pair production follow 
from (2.8). From the estimates made at the beginning of 
Section I11 it follows that the order of magnitude of the dou- 
ble sum in A, (2.8) is ( Vo/m90)2. Therefore for 9,) Vo/m 
the term with the double sum in A, is small and exp(iA,) can 
be expanded accordingly. As a result the probability (2.8) 
takes the form 

O m 

 in q l l r  sin ql{r 

z sin qllz sin YII'T 

4lT q,,'z 1) 

Integration over r, in (4.1 ) is elementary and gives 6,  + ,,,, 

(q is a discrete variable), after which the sum over q' is cal- 
culated and the integrals over T are easily evaluated by 
means of the theory of residues. Finally we obtain 

Carrying out the integration over E in Eq. (4.2), we obtain 

where 

( x ' )  i + ( l - x ) ' / *  
f ( x ) =  l + x - -  In- - ( l + x ) ( l - x h .  (4.4) 

2 I - (I -x) '& 

The probabilities (4.2) and (4.3) coincide with the results of 
the standard theory of coherent pair production (see for ex- 
ample Refs. 1 and 2).  We recall (see Ref. 1 ) that the well- 
known expression for the cross section for production of a 
pair of particles by two photons leads directly to Eq. (4.3) by 
means of the method of equivalent photons (see for example 
page 414 of Ref. 9): 

o,,=n (a21m2) yf ( y ) ,  y=2mzllcq. 
Then for a photon density I J, I given by Eq. (1.3) we have 

W e =  ~ ~ T T l ~ q l O ( ~ - ~ ) ,  
9 

where the 8 function corresponds to the threshold of the 
reaction y + y e +  + e-. 

For x, )1 one can obtain from the general expression 
(2.8) approximate expressions for the probabilities, the re- 
gion of applicability of which is considerably broader than 
that of the standard theory of coherent production. For this 
purpose it is necessary to take into account that the second 
term in the double sum in the function A, in (2.8) has an 
order of magnitude( Vo/m9,)/xf, while the first term con- 
tains contributions of two types: for qil + q; = 0 of order 
( Vdm90)2, and for qll + qi #O of order ( V , ~ I Y , ) ~ / ~ , .  
Contributions of order ( Vo/m.9.0)3/x, [and even more so 
those of order ( Vo/m90)4/~f 1 can turn out to be small even 
for angles 90 5; VJm. Therefore we shall assume that these 
contributions are small and shall carry out the correspond- 
ing expansions in exp iA,, while the terms with qll + qC = 0 
in the first term in the double sum inA, will be retained in the 
exponential. As a result we obtain an expression which coin- 
cides in form with (4.1 ) except that in it we must make the 
substitution 
e x p ( i m 2 0 ~ / ~ ~ ' )  -+exp ( i m . 2 0 t l ~ ~ ' ) ,  m.z=m2(1+p/2) 

(4.5) 
and in the first term in square brackets it is necessary to 
assume qll + q; #O. Here 

The transition m-m, corresponds to the transition to the 
effective mass in the field of a wave, or in other language we 
have taken into account the parameterp # O  [see the discus- 
sion following Eq. ( 3.10) ]. 

The remaining calculations are carried out in the same 
way as in the transition from (4.1 ) to (4.2). We finally ob- 
tain 

20m2 om.' 

om.' 
x0(*11- 

and after integration over E we have 

where 

z 2m.' 
( I + )  ( I - )  I=-. 

l+p/2  0qll 

Equations (4.7) and (4.8) are no more complicated 
than (4.2) and (4.3) but have a significantly broader range 
of applicability. For ifO)VO/m(p<l) Eqs. (4.7) and (4.8) 
go over respectively into (4.2) and (4.3). 
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~ ( c o s  nk  + cos nm) (cos nm + cos nn), (5.2) 

and for the bcc lattice (W, Fe) 

0 I 2 
a,, mrad 

FIG. 4. Orientation dependence of the probability of pair production by a 
photoninGeat T =  100Kforo=3OGeV ( l ) ,  100GeV (2),and 1000 
GeV (3) .  The photon entry angle a0 is measured from the (1 10) axis. 

V. ORIENTATION DEPENDENCE OF THE PAIR 
PRODUCTION PROBABILITY; DISCUSSION OF RESULTS 

As follows from our analysis, the orientation depen- 
dence of the probability We (9,) can serve as a good test of 
the mechanism of pair production. For 9,< V,/m the mech- 
anism of production in a constant field is dominant, for 
80)Vdm the usual mechanism of coherent production is 
dominant, and in the intermediate region it is necessary to 
use a general approach. As an illustration we shall give here 
the probability We (So) for cooled germanium ( (1 10) axis, 
T = 100 K, which corresponds to the conditions of the ex- 
periment of Ref. 14; see Fig. 4) and for tungsten ( ( 1 1 1) axis, 
Fig. 5 ) .  In Fig. 4 the orientation dependence of We is given 
for the following energies: w = 30 GeV (x, ~0.6)--curve 
1; w = 100 GeV (x, ~2)--curve 2; w = 1000 GeV 
(x, ~20)-curve 3. In Fig. 5 curves 1, 2, and 3 are given 
respectively for energies w = 5 GeV (x, ~ 0 . 3 5 ) ,  w = 35 
GeV (x, z 2.4), and w = 300 GeV (x, ~ 2 1 ) .  The devi- 
ation from the (1 l l )  axis lies in the plane containing this 
axis and forming an angle gp, with the (710) plane. In order 
to avoid the vector n falling in the principal planes of the 
crystal, we selected a value tg p, = fi/6.rr~0.092. 

The quantities G(q) entering into the formulas for 
We (9,) [see Eq. (1.2)] we shall write in the form 

G (q) =ZW39 (q) S m n k ,  (5.1) 
where S,,, is the structure factor, 1 is the lattice constant, 
q = (277/I) x (m, n, k ) ,  and m, n, and k are integers over 
which the summation is carried out in ( 1.2). For an fcc(d) 
lattice of the diamond type which occurs in crystals of ger- 
manium we have 

B& .y 

D 1 2 3 4 So, mrad 

FIG. 5. The same as in Fig. 4 but for tungsten, T = 293 K, the ( 1 1  1) axis, 
a n d o = 5 G e V  (1) ,35GeV (2),and3M)GeV ( 3 ) .  

s,!,:;= 1 + cos x (m+n+k) . (5.3 

The quantity p (q )  in (5.1 ) is the Fourier component of the 
potential of an individual atom averaged to include thermal 
vibrations. We used for the atom the Moliere potential, and 
in that case 

rp (q) =4nze2 erp (-uiZqz/a) 0' Q2+biZ' 

where u ,  is the amplitude of thermal vibration and ai and bi 
are the parameters of the potential (see for example Ref. 3).  
Use ofa potential averaged over the thermal vibrations actu- 
ally excludes from consideration the Bethe-Heitler mecha- 
nism. The latter also changes in a crystal in comparison with 
an amorphous material (see for example Ref. 1 in the theory 
of coherent production). The parameter p/2 which enters 
into Eqs. (4.7) and (4.8) was calculated in accordance with 
(4.6). Here it is necessary to take care that the contributions 
of planes of high order are adequately treated. Under the 
conditions given above, the calculation yielded p/ 
2~ 1.87( Vo/m90)2 for Ge a n d p / 2 ~  1.04( Vo/m6,)2 for W. 

The curves labeled 1 in Figs. 4 and 5 show the situation 
in which x, < 1; here the effects of the constant field are 
small and the specific features of the crystal appear in the 
action of the coherent pair production mechanism. The ef- 
fect is nonvanishing for those for whichpRg 1, so that the 
probabilities are described by the standard formulas (4.2) 
and (4.3). The curves 2 in Figs. 4 and 5 correspond to the 
case in which with increasing energy the mechanism of pair 
production in a constant field is already included. In accor- 
dance with the results of Section 111, the probability We (9,) 
has a minimum at 9, = O(x, < 4). With further increase of 
the energy the minimum in the probability at 9, = 0 goes 
over to a maximum, and then with increase of the energy the 
width of this maximum narrows. This case corresponds to 
the curves labeled 3 in Figs. 4 and 5. We note that the quanti- 
ty We (0) = W z F  continues to increase as long as x ,  < 25, 
and the maximum value Wym,, is given with high accuracy 
by Eq. (3.14). 

It must be kept in mind that it is comparatively simple 
to calculate the probability by using the formulas for a con- 
stant field with the corrections (3.7) and the modified for- 
mula for coherent pair production (4.8), while the calcula- 
tion according to the complete formula (2.8) is a rather 
complicated computational problem. Therefore in the pres- 
ent work we did not carry out calculations using the formula 
(2.8), but limited ourselves to a calculation with Eqs. (3.7) 
and (4.8) and used interpolation. We made use of the fact 
that for x) 1 the interval separating the regions of applicabi- 
lity of Eqs. (3.7) and (4.8) is comparatively narrow, and we 
checked the accuracy of the interpolation on the basis of a 
model of pair production in the field of a plane wave, where it 
was possible to carry out exact calculations also. For x - 1 
this interval becomes broader, but in return all of the depen- 
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dences become smoother. In Figs. 4 and 5 the dashed part of 
curves 2 and 3 was obtained by means of interpolation. 

A recent experiment14 reported an enhancement of pair 
production by photons with energy w = 50-1 10 GeV inci- 
dent along the (1 10) axis of a germanium crystal cooled to 
temperature T = 100 K. However, the observed probability 
turned out to be about a factor of three smaller than the 
theoretical prediction (see Ref. 13), and the orientation de- 
pendence of the radiation was studied quite inadequately. To 
clarify this situation, further experiments are necessary, in 
particular a detailed study of the orientation dependence. 

The situation described above, in which depending on 
the photon entrance angle the pair production is determined 
by different mechanisms, exists also in the radiation prob- 
lem. At small entry angles, high-energy particles radiate, 
moving in the fields of the axes or planes (in the channeling 
mode or in superbarrier motion), and at comparatively large 
angles aO) V d m  coherent bremsstrahlung occurs. For the 
case of motion in the field of planes this question was ana- 
lyzed in Ref. 15. 

The present work has been devoted to pair production 
by photons. It is evident that any processes occurring in an 
external field can be discussed in an analogous fashion. Such 
processes include, for example, pair production by a charged 
particle, production of neutrino pairs (e-wv?), and photon 
splitting. 

''1n this work we use the system of units li = c = 1. 
"For simplicity in what follows we shall assume in this work that the 
vector n does not lie near crystallographic planes. The question of pro- 
duction of pairs in the planar mode will be considered separately. 

"Simple explicit formulas for the probability WFFfor the case x,  5 1 are 
given in Ref. 4. 
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