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Nonlinear cyclotron resonance in bismuth is investigated experimentally at various microwave- 
field polarizations. The cases of an alternating field parallel and perpendicular to the metal 
surface are considered. It is shown that the resonance line shape is determined by interference of 
two nonlinearity mechanisms, one connected with the magnetic field of the wave, and the other 
with the electric field perpendicular to the metal surface. The resonance fields for the electrons of 
the central section and of the limiting point agree well with those calculated from the McClure 
and Choi model of the Fermi surface. Results of a numerical calculation of the nonlinear- 
cyclotron-resonance waveform are presented and lead to inversion of the resonances with 
increasing incident-wave amplitude, in agreement with experiment. 

INTRODUCTION 

A metallic sample irradiated by a sufficiently strong 
electromagnetic wave of frequency w, has nonlinear proper- 
ties. At low frequencies, when w/v< 1 (v  is the frequency of 
the collisions between the electron and the scatterers) the 
main source of the nonlinearity is the magnetic field of the 
wave.' This field can be regarded as quasistatic with respect 
to the electron motion, but as spatially inhomogeneous. At 
microwave frequencies, w/v> 1, both spatial and temporal 
dispersion of the nonlinear characteristics of a metal are im- 
portant. KopasovZ4 investigated the nonlinear response of a 
metal under cyclotron-resonance conditions, in the limit of 
weak nonlinearity due to an alternating magnetic field. He 
has shown that at a frequency 20 double that of the incident 
wave the coefficient of nonlinear reflection increases signifi- 
cantly if the following conditions are met: 

(a= eH /mc is the cyclotron frequency). 
We shall refer to cyclotron resonances defined by rela- 

tion ( 1 ) as integer resonances. The presence of half-integer 
resonances (2)  distinguishes the resonance conditions ( 1 ) 
and (2)  from the condition of linear cyclotron resonance. 

In an experimental investigation of nonlinear reflection 
of an electromagnetic wave at frequency 213 in Bi in the re- 
gion of electrons and hole6 cyclotron resonances, Gant- 
makher and the present authors have actually observed a 
steep growth of the signal in magnetic fields satisfying the 
condition ( 1). In half-integer resonances, the 4eneration 
was observed to decrease rather than increase. Edel'man7 
has pointed out that a correlation exists in the magnetic-field 
dependences of the squared product of the sample over the 
magnetic field and the nonlinear-reflection coefficient. 

The reason for the different forms of the integer and 
half-integer resonances in the experiments of Refs. 5 and 6 
was not clearly explained. It was assumed that the resonant 
changes of the linear conductivity of the metal at double the 
frequency must be taken into account in the interpretation of 
the experiments. It is known, however, that these changes do 
not exceed several percent, whereas the nonlinear-reflection 

coefficient in integer resonances increases by two decades. It 
was also noted4 that besides the nonlinearity due to the mag- 
netic field of the wave an important role can be assumed in 
the experiment of Ref. 5 by some additional nonlinearity, 
that alters the form of the resonance and is due to the pres- 
ence of a large electric-field component of frequency w and 
perpendicular to the sample surface. At normal incidence of 
the wave on the sample,24 the resonances ( 1 ) and (2)  had 
the form of emission maxima independently of the condi- 
tions under which the electrons were reflected from the sur- 
face. 

We show in the present paper that at any polarization of 
the exciting microwave field the different forms of reson- 
ances ( 1 ) and (2)  are due to interference of two nonlinearity 
mechanisms. The first stems from the wave's magnetic field, 
and the second is due to the anisotropy, in Bi, of the electric 
field perpendicular to the sample surface. In the presence of 
both fields, the resonances ( 1 ) and (2)  can take the form of 
either peaks or dips of radiation. If one manages to leave only 
one field in the metal, the dependence of the nonlinear reflec- 
tion coefficient on the external magnetic field takes the theo- 
retically predicted form-all the resonances appear as maxi- 
ma. 

The forms of the resonances ( 1 ) and (2)  depend also on 
the amplitude of the incident wave. When it increases, the 
nonlinear signal first grows in proportion to the square of the 
incident-wave amplitude, and then much more slowly. The 
deviation from the quadratic regime sets in first in integer 
resonances and leads, in the upshot, to their inversion-the 
emission at resonance becomes weaker than in a nonreson- 
ant field. We shall discuss a model that takes into account 
the possible nonlinearity mechanisms and permits a numeri- 
cal calculation of the evolution of the forms of cyclotron 
resonances ( 1 ) and (2) .  

PROCEDURE 

We studied in the experiment the nonlinear microwave 
response produced in Bi at a frequency 2w on irradiation of 
the sample by an electromagnetic wave of frequency w/ 
277 = 9.3 GHz. The main difference between the experi- 

392 Sov. Phys. JETP 63 (2), February 1986 0038-5646/86/020392-07$04.00 @ 1986 American Institute of Physics 392 



FIG. 1. Bimodal rectangular ( a )  and cylindrical (b )  cavities. The metal- 
lic parts of the structure are shown shaded in Fig. b. 

ments described below and those of Refs. 5 and 6 is in the 
method used to irradiate the sample. 

In the investigation of second-harmonic generation in a 
microwave field parallel to the surface, the sample was 
clamped to a diaphragm on the bottom of a bimodal rectan- 
gular cavity (Fig. la).  The cavity operated on the H,, , mode 
at the frequency w and the H,,, mode at double this frequen- 
cy. The electric and magnetic fields of both modes were par- 
allel. The electric field of the H,, , mode had a single nonzero 
component Ex.  The force lines of this field formed a bundle 
of straight lines parallel to thex axis, with maximum density 
aty = b /2 andz = 1 /2. The magnetic force lines were closed 
concentric rings that encircled this bundle. 

The bottom of the cavity is a metallic foil 0.1 mm thick. 
The diaphragm is a round aperture with center (x = a/2, 
z = I / e )  placed in the antinode of the magnetic field Hz of 
the H,,, mode. Hereafter, the amplitude of the alternating 
magnetic field on the surface of a sample in a rectangular 
cavity is taken to mean 

- [ ""Q ] ' h  

oba(Z2+b2) ' 

and is equal to the amplitude of the field Hz of frequency w at 
the center of the sample. P,, Q, and w in Eq. (3)  are the 
dissipated power, the unloaded Q, and the cavity frequency. 

Besides experiments with linearly polarized transverse 
fluxes of the incident and excited waves, we investigated har- 
monic generation in an electric microwave field perpendicu- 
lar to the sample surface. We used for this purpose cylindri- 
cal cavity 1, tuned to the frequencies w and 2w (Fig. lb) .  At 
the frequency 2w the cavity operated in the HI,, mode. At 
the frequency w we excited in the cavity an E,,, mode whose 
electric force lines were parallel to the cavity axis and in- 
creased in density as this axis was approached. The magnetic 
field of the E,,, mode is zero on the cavity axis and reaches a 
maximum H -  at a distance 9 mm from the axis of the cavity 
used by us. 

Sample 2 was mounted on a contactless teflon piston 3. 

A metallic cover 5, with a round opening (diaphragm 6) was 
placed on top of the piston through a thin teflon film.4 The 
inside periphery of the cover was coated with a layer of ab- 
sorber 7. The sample was clamped to the diaphragm with a 
spring 8 that pressed against a gasket 9 made of cloth-rein- 
forced laminate. The diaphragm diameter was varied in the 
experiment from 17.6 to 3 mm, which made it possible to 
obtain in the sample various ratios of the amplitudes of the 
magnetic field and of the electric field perpendicular to the 
sample surface. 

The experiments were performed at various incident- 
wave power levels, and the alternating magnetic field 
strength could be varied in the range from 0.1 to 10 Oe. In 
the interval 1 Oe < H- < 10 Oe the cavities were excited by a 
magnetron pulses with a repetition frequency 40 Hz and du- 
ration 2ps. At very low signal levels, H- < 1 Oe, the sample 
was irradiated with a microwave generator modulated by 
rectangular pulses at a frequency 5 kHz. The double-fre- 
quency radiation was picked up with a heterodyne receiver 
whose output signal was fed either to an integrator or to a 
narrow-band amplifier with a lock-in detector and from the 
latter to the Y input of an automatic plotter, whose X input 
was the sweep of the external magnetic field. The magnetic 
field was produced with a Helmholtz system compensated 
for the earth's field. The magnetic field could be rotated 
through any angle in the plane of the sample, accurate to 20'. 

The experiments were performed on several Bi samples 
with nllC,, in the form of disks 17.8 mm in diameter. The 
deviation of the C, axis from normal did not exceed 1.5". The 
cavity construction provided for the possibility of rotating 
the sample through an arbitrary angle in the experiment 
with liquid helium. All the experimental plots in this paper 
were obtained at T = 1.5 K. 

EXPERIMENT 

We measured in the experiment the power P,, of the 
wave of frequency 2w reflected from the sample, as a func- 
tion of the external magnetic field H. Figure 2 shows a typi- 
cal plot of the P,, (H) signal at different polarizations ofthe 
microwave field, which was parallel to the sample surface. In 
a geometry H, IIH,,lC,, H(IC, and with exact tuning, the 
signal amplitude decreases drastically and is not observed 
below H- = 10 Oe. At an insignificant deviation from exact 
tuning (lower curve of Fig. 2) the resonance curve has a 
simple form: the integer ( 1 ) and half-integer (2)  resonances 
are manifested as emission maxima, with the signal ampli- 
tude larger in the integer than in the half-integer resonances. 
The small maximum on the right of the first resonance is due 
to cyclotron resonance of the electrons from the vicinity of 
the limiting point. With further increase of the angle 
between Hand H, , the signal P,, (H) increase still further, 
but the form of the resonance lines changes significantly, and 
at HJIH, IIH,, IIC, (upper curve of Fig. 2) the half-integer 
resonances take the form of minima. 

Figure 3 shows the experimental plots ofP,, (H) in the 
H, IIH,,lC,, geometry and with angle 0.5" between H and 
C,, for different amplitudes H- of the electromagnetic wave 
incident on the sample. The solid lines in the insetl'show the 
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FIG. 2. Typical plot of P,, (H)  signal of Bi sample with nllC,. 
HIIH, IIH,, JIG, for the upper curve, H, IIH,,lC, for the lower, and the 
angle between H and C, is 0.5". The zero levels P,, = 0 and the amplitude 
H-  in oersteds (the numbers on the right) are indicated for each curve. 
The vertical strokes mark the positions of the ( 1) and (2) resonances as 
calculated from the known cyclotron masses.' 

cyclotron masses, calculated from the spectrum of McClure 
and Choi (Ref. 9, first set of parameters), of the electrons of 
the central section of thep ellipsoid and of the turning point 
as functions of the angle p of rotation of the magnetic field H 

FIG. 3. Plots of P,, (H)  for H, IIH,,lC, with angle 0.5" between H and 
C,. The H-  amplitudes for the lower and upper curves are 0.6 and 5.1 Oe, 
respectively. The zero levels P,, = 0 are indicated. The curves are plotted 
at different sensitivities. 

FIG. 4. Radiated power P,, vs the power P, incident on the sample in 
integer ( n  = 3) and half-integer (n = 5/2) resonance fields. 

in the sample plane. The experimental locations of the reso- 
nance 1 p (circles) and of the maximum on its right (black 
dots) fit splendidly the calculated plot. No resonance signal 
from electrons of the limiting-point vicinity are observed in 
investigations of linear cyclotron resonance in this geome- 
try. 

The upper plot of Fig. 3 was obtained at a higher ampli- 
tude H -  of the high-frequency field in the cavity. It can be 
seen that the ratio of the radiation intensities in the integer 
and half-integer resonances has changed: the half-integer re- 
sonances increase more rapidly with increasing H -  . The 

FIG. 5. Inversion of cyclotron-resonance lines with increasing H -  ; the 
values of H-  (in oersteds) are indicated on the right of the curves. The 
curve are plotted with different sensitivities; H, IIH,, lC,,QH, C, = 0.5". 
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FIG. 6. Plots of P,, ( H )  for Bi sample placed in the cylindrical cavity; 
nllC,,HIIC,. To the right of the curves are indicated the values of the 
radius R d the diaphragm on the sample surface. 

reason for this change is that integer resonances deviate from 
the quadratic relation 

earlier than the half-integer ones (Fig. 4).  The saturation of 
the resonance signal is accompanied by broadening of the 
resonance line. The saturation results in inversion of the cy- 
clotron resonance lines (Fig. 5) .  Inversion sets in earlier the 
weaker the field H that is at resonance. 

Figure 6 shows plots ofP,, (H) at HIIC, for a sample in 
a microwave whose electric field is perpendicular to the sam- 
ple surface. The plots were obtained at different diaphragm 
radii R. The alternating magnetic field H, on the sample 
decreases with decreasing R. Knowing the direction of the 
linear current j'2"' (r,H) (vide infra) and the vector eigen- 
function E'2w) (r,H) normalized in the cavity volume Vand 
corresponding to the mode at the doubled frequency, we can 
numerically calculate the relative power contribution 

P,. ( H )  - [ 5 j('@ (r ,  H) E(2a) (r ,  H )  d ~ ]  , 
v 

made to the measured power P,, ( R )  and due only to the 
nonlinearity caused by the magnetic field H, of the wave. 
This dependence corresponds to the lower curve of the inset 
of Fig. 6. The experimental points measured in a field 
H = 3 1.5 Oe show a much slower decrease of the radiation. 
This indicates directly that at small diaphragm radii the en- 
tire process of harmonic generation in the sample is due to 
the external perpendicular electric field. 

NONLINEAR CURRENT AND NONLINEARITY MECHANISMS 

An electromagnetic wave of frequency o incident on 
the surface of a Bi sample penetrates into the sample (y axis) 
and produces in it a nonlinear current jC2"' (y) at the dou- 
bled frequency 2w: 

j(zo) (y, t )  = j ( 2 m )  ( y )  e-2'of+ c.c. ( 6 )  

Here u6%,! is the nonlinear conductivity tensor and 
E'"' is the alternating electric field with fundamental fre- 
quency w. The nonlinear current plays the role of a source 
that excites oscillations of the harmonic in the cavity and 
enters in the Maxwell equations for the fields of the harmon- 
ic as a given extraneous current. 

The quantity recorded in experiment is P,, (H) de- 
fined by relation (5).  The function EC2"' (r,H) describes in 
the linear approximation the field distribution at the dou- 
bled frequency inside the metal. This function is used to ex- 
press the linear impedance f of the metal: 
f(H) a [E2,'(0,H)] - I .  To find the form of the function 
P,, (H) we must calculate the current j'2") (H) . 

The nonlinear-conductivity tensor and the current (6)  
are calculated from the kinetic equation in which the nonlin- 
ear terms are retained. It was assumed in Refs. 2-5 that the 
main contribution to the nonlinearity is made by the Lorentz 
force due to magnetic field of the wave. Strictly speaking, 
however, for the semimetal Bi it is necessary to take into 
account also the nonlinearity quadratic in the electric field. 

In second order in the field, the general connection 
between the current and the fields can be schematically rep- 
resented in the form 

In the general case the third-rank tensors p and i? de- 
pend on the frequency, on the wave vector k, and on the 
external magnetic field H.  Note that in a medium with inver- 
sion center (such as Bi) the tensorB vanishes as k+O, while 
the pseudotensor a  ̂ remains finite. At low frequencies the 
nonlinearity is therefore due entirely to the magnetic Lor- 
entz force. In the microwavekand, when account is taken of 
spatial dispersion, the tensor0 is not equal to zero. The exact 
ratio of the first and second terms in the expansion (7)  can 
be obtained only by a microscopic analysis, but here we con- 
fine ourselves to a comparison of the forces FE = eE'"' and 
FH = ev,H'"' / c  responsible for the nonlinearity. 

If the fields E'") and H'"' are Maxwellian, we have on 
the sample surface 

E ( @ =  ( o l c k )  H('),  &/FH=o/vpk-06/vp,  (8)  

where S is the skin-layer depth and v, is the Fermi velocity. 
It follows from (8)  that in typical metals at w - loL0 s-' we 
have the ratio S/v, - 10WL3 s and FE <FH. In Bi at 
w =: 6 . 101° s- ' we have in a zero magnetic field S =: cm 
(Ref. 10). Using for the Bi electrons the value v ,  =:6. 10' 
cm/s, we get from (8)  FE = 0.1 F H .  In a nonzero external 
magnetic field the ratio FE/FH increases additionally, be- 
cause excitation of cyclotron waves in Bi increases the pene- 
tration depth of the alternating field.'." For Bi it is therefore 
necessary to take into account both the magnetic and the 
electric nonlinearities, i.e., both terms of the expansion (7). 

Let us examine in greater detail the forces acting on an 
electron in the skin layer, and the mechanism whereby the 
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FIG. 7. The dependence, calculated from (21 ), of the squared modulus of 
the nonlinear current on the external magnetic field H; w / v  = 20. The 
inset shows schematically the electron trajectory in the skin layer. 

current at the doubled frequency 2w is produced. In agree- 
ment with experiment, we assume that the following condi- 
tions are met: 

Here 7, is the time required by an electron moving in a field 
HIJz along a circular orbit of radius R to pass through the 
skin layer. The electron revolution time is To = T, + r,, 
where T, is the time of motion in the interior of the metal 
beyond the skin-layer boundary. In the linear theory it is 
assumed that the alternating field does not perturb the elec- 
tron trajectory (section ab on the inset of Fig. 7).  At larger 
electromagnetic-wave amplitudes the influence of the alter- 
nating field must be taken into account. Depending on the 
phase of this field, an electron entering the skin layer at a 
point a leaves the layer at a point b ' or b ". This distortion of 
the electron trajectory is due to the action of the alternating 
force Fy : 

At normal incidence of the electromagnetic wave on the 
sample surface, the electric and magnetic field components 
E?' and H 1"' appear in the skin layer because of the anisot- 
ropy of the Fermi surface of Bi. To simplify the equations 
that follow, we have assumed in ( 10) that E ?' and HI"' are 
in phase. The resultant action ofeither field on the electron is 
the same - the onset of a force ( 10) that changes the time 
~ ( t )  of passage of the electron through the skin layer. As a 
result, if the alternating Lorentz force ( 10) is weaker than 
the dc field 

we can write for the time of passage r ( t )  

~ ( t )  =zo(l-E cos a t ) .  (12) 

The nonlinearity in our problem is thus due to the 
change of the time of the electron interaction with the alter- 

nating electric and the magnetic fields in the skin layer. We 
calculate now within the framework of this model the non- 
linear current jC2"' in the cyclotron-resonance region: 

where n0(S/R)'I2 is the number of effective electrons and 
V2"' the velocity of the electrons. 

Assume that the electron left the skin layer at the in- 
stant t. According to (9 ) ,  the phases of the alternating fields 
change little during the time of passage through the skin 
layer. Therefore in the preceding revolution the electron 
emerged from the skin layer at the instant 

t , = t - - z ( t , ) - ~ ~ = t - T ~ + ~ ~ ~  cos ot .  (14) 

Similarly, for the two, three, and n earlier revolutions the 
emergence time was t,,t,,. . ., t ,  : 

t2=t-7(tl) -Td 

=t-2To+~zo{cos at+cos[a (t-To+gzo cos o t )  ] ). 

t3=t2-z(tZ) - T ~ = ~ ~ - T ~ + ~ T ~  cos a t l ,  (15 )  

During the time At-?, of each stay of the electron in the 
skin layer it interacts with the tangential electric field E'"' .' 
The electron velocity is therefore always increased in the 
same direction, parallel to the metal surface; for example, in 
the nth passage through the skin layer 

The total velocity increment is obtained by summing 
Au, from (16) over all the times of stay in the skin layer, 
with a weight exp( - nvT,) ( v  is the collision frequency) 
that takes into account the exponential damping of the con- 
tribution from each passage 

co 

For the term in the square brackets in ( 17) we can write 
n-i  

-iwtzo z p - i m h  h=o 

n- i m-i 

We are interested in the increment of the velocity 
V2"' a e ""' at the doubled frequency. An analytic 
expression for v2"' is obtained from ( 17) by expanding the 
exponential in powers of the small exponent (18). Let us 
ascertain the limits imposed on the parameter 6 in such an 
expansion. We note for this purpose that the maximum value 
of the sum over I in ( 18) is equal to m, and if the inequality 

, ( 11 ) holds the expression in the square brackets of ( 18) is a 
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finite geometric progression with exponent exp(iwT,). It 
can be easily seen that at w = nR + y(y<R),  i.e., near in- 
teger resonances, the sum of the terms of this progression is 
equal to n ,  while far from integer resonances, meaning also 
for half-integer ones, the sum is of the order of 1. This means 
that in integer resonances the current j',"' ceases to be a 
quadratic function of the incident-wave field sooner than in 
half-integer ones. Since the significant terms in ( 17) are 
those with n 5 Wv,  the condition that ( 18) be small takes 
for integer resonances the form 

In half-integer resonances the quadratic regime extends 
to alternating-field amplitudes that are Sl/v times stronger: 

If the inequalities ( 11 ) , ( 19), and (20) hold, we obtain 
from ( 17), accurate to a numerical coefficient of order uni- 
ty, an expression for the nonlinear current ( 13): 

The denominator of (2  1 ) contains resonant factors for 
both integer ( 1) and half-integer (2)  resonances. Further- 
more, inasmuch as for integer resonances both square brack- 
ets reach simultaneously a minimum value v/a ,  the singu- 
larities in these resonances will be stronger than in 
half-integer ones. 

DISCUSSION. COMPARISON WITH EXPERIMENT 

The reflected power P,, (H) determined by (5)  in- 
creases by more than an order of magnitude at resonance 
(see, e.g., Fig. 2) ,  whereas the change of the impedance in 
linear cyclotron resonance does not exceed several percent. 
We can therefore neglect in (5 ) the dependence of the linear 
characteristic of the metal on the field H,  and assume that 
the form of the function P,, (H)  is determined by the depen- 
dence of the nonlinear current squared, (H) 1 2 ,  on the 
magnetic field. 

Figure 7 shows the function 1 j',"' (H) 1 '  calculated 
from (21 ) at w/v = 20. The resonances ( 1 ) and (2)  take the 
form of maxima. The singularities for integer resonances are 
stronger than for half-integer ones. A similar plot was calcu- 
lated for P,, (H) in Ref. 4, where an ellipsoidal model of the 
Fermi surface of B was used. We note the satisfactory simi- 
larity of the resonance curves calculated in Ref. 4 and shown 
in Fig. 7 to the experimental lower plots of Figs. 2, 3, and 5. 

With increasing amplitude of the electromagnetic wave 
incident on the sample, the shape of the resonance lines 
changes (see Figs. 3 and 5) .  This change is due to violation 
of conditions ( 19) and (20) and to deviation from the qua- 
dratic regime (4).  The first to be violated is condition ( 19), 
so that the integer resonances saturate sooner. As a result, 
the amplitudes of the half-integer resonances becomes larger 
than those of the integer ones (see Fig. 3) .  At the same time, 

FIG. 8. Numerical calculation of b'2"' ( H )  1' at o / v  = 30 and at different 
values of the parameter x = ~ ~ ( S / ~ , w ) " ~ .  The zero levels 
lj'2"' ( H )  1' = 0 are marked for each curve. The numbers on the right 
sides of the curves are the factors by which the amplitude 1 j'*"' 1' has 
increased compared with the lower curve. 

the background signal in the interval between the resonance 
lines at H- < 10 Oe always increases quadratically, so that 
at a sufficiently high incident power the amplitude of this 
background already exceeds the amplitude of the resonance 
signal, leading to inversion of the resonance lines (cf. Fig. 
5 1. 

Using the model described in the preceding section, we 
calculate I jC2"' (H) 1 ' for the case when conditions ( 19) and 
(20) are not met. Substituting expression ( 17) in the form of 
a Fourier series, we separate the second harmonic of this 
series. The numerically calculated function b',"' (HI  l 2  at 
different values of the parameter x = { R [ S / ( U , ~ ) ] " ~  is 
shown in Fig. 8. The lower curve ( x  = 0.01, {gl) corre- 
sponds to validity of conditions ( 19) and (20), and the form 
of the resonance curve is similar to that shown in Fig. 7. 
With increasing x, the resonance lines broaden and, starting 
with weaker .fields H, inversion of the resonances takes 
place. Finally, at the highest alternating-field amplitude 
(upper curve of Fig. 8),  after the integer resonances with 
numbers n = 4 and 5 were inverted, the half-integer reso- 
nance n = 9/2 still retained the shape of a maximum. We 
note that 6 5  1 in this case. The described behavior of 

(H) l 2  agrees with the experimental P,, (H) depen- 
dence shown in Figs. 3 and 5. 

We proceed now to a discussion of the upper curve of 
Fig. 2. To interpret this experiment we must take into ac- 
count two circumstances left out ofour analysis-the anisot- 
ropy of the carrier dispersion in Bi, and the phase difference 
between the electric and magnetic forces in ( l o ) ,  a differ- 
ence that depends on the external magnetic field H. We shall 
show now that when this difference is taken into account the 
simple form of the resonance lines on the lower curve of Fig. 
2 is obtained by excluding one of the nonlinearity mecha- 
nisms previously considered in (7) ,  viz., the nonlinearity 
quadratic in the alternating electric field. In the presence of 
both terms in (7)  and with account taken of the phase differ- 
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ence between them, the signal P,, (H) should increase, and 
the form of the resonance line should change substantially, 
as is indeed observed on going from the lower to the upper 
curve of Fig. 2. 

Let HIIC211z, nllC311y. In this case Bi has a nonzero com- 
ponent of the linear-conductivity tensor a,, (a,, = a,, 
= 0).  It follows from the Maxwell equations that 

j y ( m )  =u ,, E , +u,,E, (a)- - 0, E,'"' - -- (u,.Ja,,,,) EY' (22) 

and consequently a normal electric field E F' is produced in 
the sample only if E y' #O. On the upper plot of Fig. 2 we 
have Ey'#O, and on the lower H llEI"',ELm' = EF' = 0. 

The radiation recorded in experiment always has 
E ,, IIE,, and according to (5)  the value ofP , ,  is determined 
by the scalar product j , ,  . E,, . It can be shown from sym- 
metry considerations that at HIIC, or HI(C, the nonlinear 
current j , ,  is perpendicular to the external field H regard- 
less ofwhich of the components of ( 7 )  make up this field. We 
demonstrate the foregoing using the nonlinearity quadratic 
in the electric field as the example. In the presence of the 
field H, the only remaining symmetry operations of the point 
group 3m that describes Bi are those that leave the direction 
of the external field H unchanged. At HllC2llz this means 
that the operation of reflection in the xy plane is preserved. 
In the case corresponding to the upper plot of Fig. 2 we have 

. ( a m )  - 
1. -0- ( H )  E , ( ~ ) E . ( ~ ) + ~ , , ~  ( H )  E,(.'E,,(~' 

( H )  E,"~ E~TO:'. (23) 

The dependence of the tensor auk on the wave vector k is 
immaterial, since klly and the operation of reflection in the 
xy plane does not affect it. Carrying out the transformation 
z+ - z we find, for example, that the component a,,, (H) 
should reverse sign. At the same time, since this transforma- 
tion is a symmetry operation, and the field H does not re- 
verse sign (axial vector), we get a,,, (H) = - a,, (H) 
= 0. Similar reasoning shows readily that in (23) we have 
a,,, = a,,, = 0 and j12"' = 0. 

Since j , ,  l H ,  the radiation should vanish at E, llz, as is 
in fact observed in experiment. The nonlinear current ( 7 )  is 
then different from zero, but is governed only by the alter- 
nating magnetic field (E,  = 0) .  A slight tilt of the field H 
away from the C,  axis, by an angle $, produces a component 
of the current j , ,  along thez axis and a component E, - $. In 
this case, according to (5), P,, # O  but the contribution 
made to P,,  by the alternating magnetic field is proportional 
to g2, and that from the electric field to $4. The nonlinearity 
connected with the normal electric field E, can therefore be 
neglected and the function P,, (H) on the lower curve of 
Fig. 2 can be regarded as the result of only magnetic nonlin- 
earity. When the field H is tilted away from the C, axis by 
another 0.5", the signal P,, increases by approximately 6 dB, 
i.e., by 4 times, thus attesting to the validity of the foregoing 
statement. 

In Figs. 3 and 5 we have E, IIE,, Ilz. In this case E, # O  
at HIIC,, but is negligibly small, since it is expressed in terms 

of the small component a,, of the conductivity tensor. At an 
insignificant deflection of H away from the C ,  axis the reso- 
nance curves have therefore a structure similar to the lower 
plot of Fig. 2 and can be described within the framework of 
the model considered. 

We discuss now the experiments carried out with an 
external electric field perpendicular to the surface of the 
metal. In an isotropic medium, this field falls off towards the 
interior of the metal faster than the tangential one, although 
near the surface it is c/wa times larger than the transverse 
electric field (it is advisable to compare the fields at those 
points of the sample where the magnetic field, and with it the 
transverse electric, are not small). In an anisotropic medium 
the external normal electric field penetrates not to the 
screening depth, but to the skin-layer depth. The reason is 
that the longitudinal field excites a transverse one, and with 
it also magnetic fields. Such a field distribution leads to a 
nonlinear cyclotron resonance in exactly the same manner as 
in the transverse excitation considered in the preceding sec- 
tion. The relation between the electric and magnetic nonlin- 
earities is determined by the amplitudes of the alternating 
fields and consequently, when the radius of the diaphragm is 
changed, the form of the resonance lines in not preserved 
(Fig. 6 ) .  Note the similarity of the lower curve of Fig. 6, 
when practically the entire sample is uncovered, and the up- 
per curve of Fig. 2. At the lowest amplitude of the alternat- 
ing magnetic field on the sample, when R = 1.5 mm, the 
integer resonances take the form of distinct maxima. The 
half-integer resonances n = 3/2 and 5/2 are also maxima, 
albeit displaced somewhat from the exact position (2)  to- 
ward weaker magnetic fields. A similar result is observed if 
the maximum magnetic field is removed from the sample 
and the electric field perpendicular to the surface is de- 
creased. 
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dence of the cyclotron masses on the magnetic-field rotation angle. 

'V. T. Dologopolov, Usp. Fiz. Nauk 130, 241 (1980) [Sov. Phys. Usp. 
23, 134 (1980)l. 

'A. P. Kopasov, Zh. Eksp. Teor. Fiz. 72, 191 (1977) [Sov. Phys. JETP 
45, 100 (1977) 1.  

3A. P. Kopasov, ibid. 78, 1408 (1980) [51,709 (1980) 1. 
4A. P. Kopasov, Fiz. Tverd. Tela (Leningrad) 24, 3621 (1982) [Sov. 
Phys. Solid State 24, 2063 (1982)l. 

5V. F. Gantmakher, G. I. Leviev, and M. R. Trunin, Zh. Eksp. Teor. Fiz. 
82, 1697 (1982) [Sov. Phys. JETP 55,931 (1982) 1. 

'M. R. Trunin, Fiz. Tverd. Tela (Leningrad) 27, 2147 (1985) [Sov. 
Phys. Solid State 27, 1285 (1985)l. 

'V. S. Edel'man, Zh. Eksp. Teor. Fiz. 83,3217 (1982) [Sov. Phys. JETP 
56, 1343 (1982)l. 

'V. S. Edel'man, Usp. Fiz. Nauk 123, 257 (1977) [Sov. Phys. Usp. 20, 
819 (197711. 

9J. W. McClure and K. H. Choi, Sol. State Comm. 21, 1015 ( 1977). 
'OG. E. Sith, Phys. Rev. 115, 1561 (1959). 
I'M. R. Trunin, Zh. Eksp. Teor. Fiz. 88, 1834 (1985) [Sov. Phys. JETP 

62, 1087 (1985)l. 

Translated by J. G. Adashko 

398 Sov. Phys. JETP 63 (2), February 1986 G. I .  Leviev and M. R. Trunin 398 


